This file is indexed.

/usr/include/CGAL/Delaunay_triangulation.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
// Copyright (c) 2009-2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)    : Samuel Hornus

#ifndef CGAL_DELAUNAY_COMPLEX_H
#define CGAL_DELAUNAY_COMPLEX_H

#include <CGAL/Triangulation.h>
#include <CGAL/Dimension.h>
#include <CGAL/Default.h>

#include <boost/iterator/transform_iterator.hpp>

#include <algorithm>

namespace CGAL {

template< typename DCTraits, typename _TDS = Default >
class Delaunay_triangulation
: public Triangulation<DCTraits,
            typename Default::Get<_TDS, Triangulation_data_structure<
                             typename DCTraits::Dimension,
                             Triangulation_vertex<DCTraits>,
                             Triangulation_full_cell<DCTraits> >
                    >::type >
{
    typedef typename DCTraits::Dimension            Maximal_dimension_;
    typedef typename Default::Get<_TDS, Triangulation_data_structure<
                         Maximal_dimension_,
                         Triangulation_vertex<DCTraits>,
                         Triangulation_full_cell<DCTraits> >
                >::type                             TDS;
    typedef Triangulation<DCTraits, TDS>            Base;
    typedef Delaunay_triangulation<DCTraits, _TDS>  Self;

    typedef typename DCTraits::Side_of_oriented_sphere_d
                                                    Side_of_oriented_sphere_d;
    typedef typename DCTraits::Orientation_d        Orientation_d;

public: // PUBLIC NESTED TYPES

    typedef DCTraits                                Geom_traits;
    typedef typename Base::Triangulation_ds          Triangulation_ds;

    typedef typename Base::Vertex                   Vertex;
    typedef typename Base::Full_cell                Full_cell;
    typedef typename Base::Facet                    Facet;
    typedef typename Base::Face                     Face;

    typedef typename Base::Maximal_dimension        Maximal_dimension;
    typedef typename DCTraits::Point_d              Point;
    typedef typename DCTraits::Point_d              Point_d;

    typedef typename Base::Vertex_handle            Vertex_handle;
    typedef typename Base::Vertex_iterator          Vertex_iterator;
    typedef typename Base::Vertex_const_handle      Vertex_const_handle;
    typedef typename Base::Vertex_const_iterator    Vertex_const_iterator;

    typedef typename Base::Full_cell_handle           Full_cell_handle;
    typedef typename Base::Full_cell_iterator         Full_cell_iterator;
    typedef typename Base::Full_cell_const_handle     Full_cell_const_handle;
    typedef typename Base::Full_cell_const_iterator   Full_cell_const_iterator;

    typedef typename Base::size_type                size_type;
    typedef typename Base::difference_type          difference_type;

    typedef typename Base::Locate_type              Locate_type;

protected: // DATA MEMBERS


public:
    
    using Base::maximal_dimension;
    using Base::are_incident_full_cells_valid;
    using Base::coaffine_orientation_predicate;
    using Base::reset_flat_orientation;
    using Base::current_dimension;
    //using Base::star;
    //using Base::incident_full_cells;
    using Base::geom_traits;
    using Base::index_of_covertex;
    using Base::infinite_vertex;
    using Base::insert_in_hole;
    using Base::insert_outside_convex_hull_1;
    using Base::is_infinite;
    using Base::is_valid;
    using Base::locate;
    using Base::points_begin;
    using Base::set_neighbors;
    using Base::new_full_cell;
    using Base::number_of_vertices;
    using Base::orientation;
    using Base::tds;
    using Base::reorient_full_cells;
    using Base::full_cell;
    using Base::full_cells_begin;
    using Base::full_cells_end;
    using Base::vertices_begin;
    using Base::vertices_end;
    // using Base::
    
private:
    //*** Side_of_oriented_subsphere_d ***
    typedef typename Base::Flat_orientation_d Flat_orientation_d;
    typedef typename Base::Construct_flat_orientation_d Construct_flat_orientation_d;
    typedef typename DCTraits::In_flat_side_of_oriented_sphere_d In_flat_side_of_oriented_sphere_d;
    // Wrapper
    struct Side_of_oriented_subsphere_d
    {
      boost::optional<Flat_orientation_d>* fop;
      Construct_flat_orientation_d cfo;
      In_flat_side_of_oriented_sphere_d ifsoos;

      Side_of_oriented_subsphere_d(
        boost::optional<Flat_orientation_d>& x,
        Construct_flat_orientation_d const&y,
        In_flat_side_of_oriented_sphere_d const&z)
      : fop(&x), cfo(y), ifsoos(z) {}

      template<class Iter>
      CGAL::Orientation operator()(Iter a, Iter b, const Point & p)const
      {
        if(!*fop)
          *fop=cfo(a,b);
        return ifsoos(fop->get(),a,b,p);
      }
    };
public:

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UTILITIES

    // A co-dimension 2 sub-simplex. called a Rotor because we can rotate
    // the two "covertices" around the sub-simplex. Useful for traversing the
    // boundary of a hole. NOT DOCUMENTED
    typedef cpp11::tuple<Full_cell_handle, int, int>    Rotor;

    /*Full_cell_handle full_cell(const Rotor & r) const // NOT DOCUMENTED
    {
        return cpp11::get<0>(r);
    }
    int index_of_covertex(const Rotor & r) const // NOT DOCUMENTED
    {
        return cpp11::get<1>(r);
    }
    int index_of_second_covertex(const Rotor & r) const // NOT DOCUMENTED
    {
        return cpp11::get<2>(r);
    }*/
    Rotor rotate_rotor(Rotor & r) // NOT DOCUMENTED...
    {
        int opposite = cpp11::get<0>(r)->mirror_index(cpp11::get<1>(r));
        Full_cell_handle s = cpp11::get<0>(r)->neighbor(cpp11::get<1>(r));
        int new_second = s->index(cpp11::get<0>(r)->vertex(cpp11::get<2>(r)));
        return Rotor(s, new_second, opposite);
    }
    
// - - - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS

    Delaunay_triangulation(int dim, const Geom_traits k = Geom_traits())
    : Base(dim, k)
    {
    }

    // With this constructor,
    // the user can specify a Flat_orientation_d object to be used for 
    // orienting simplices of a specific dimension 
    // (= preset_flat_orientation_.first)
    // It it used by the dark triangulations created by DT::remove
    Delaunay_triangulation(
      int dim, 
      const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation,
      const Geom_traits k = Geom_traits())
    : Base(dim, preset_flat_orientation, k)
    {
    }

    ~Delaunay_triangulation() {}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS

    // Not Documented
    Side_of_oriented_subsphere_d side_of_oriented_subsphere_predicate() const
    {
      return Side_of_oriented_subsphere_d (
        flat_orientation_, 
        geom_traits().construct_flat_orientation_d_object(), 
        geom_traits().in_flat_side_of_oriented_sphere_d_object()
      );
    }


    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS

    Full_cell_handle remove(Vertex_handle);
    Full_cell_handle remove(const Point & p, Full_cell_handle hint = Full_cell_handle())
    {
        Locate_type lt;
        Face f(maximal_dimension());
        Facet ft;
        Full_cell_handle s = locate(p, lt, f, ft, hint);
        if( Base::ON_VERTEX == lt )
        {
            return remove(s->vertex(f.index(0)));
        }
        return Full_cell_handle();
    }

    template< typename ForwardIterator >
    void remove(ForwardIterator start, ForwardIterator end)
    {
        while( start != end )
            remove(*start++);
    }

    // Not documented
    void remove_decrease_dimension(Vertex_handle);

    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS

    template< typename ForwardIterator >
    size_type insert(ForwardIterator start, ForwardIterator end)
    {
        size_type n = number_of_vertices();
        std::vector<Point> points(start, end);
        spatial_sort(points.begin(), points.end(), geom_traits());
        Full_cell_handle hint;
        for( typename std::vector<Point>::const_iterator p = points.begin(); p != points.end(); ++p )
        {
            hint = insert(*p, hint)->full_cell();
        }
        return number_of_vertices() - n;
    }
    Vertex_handle insert(const Point &, const Locate_type, const Face &, const Facet &, const Full_cell_handle);
    Vertex_handle insert(const Point & p, const Full_cell_handle start = Full_cell_handle())
    {
        Locate_type lt;
        Face f(maximal_dimension());
        Facet ft;
        Full_cell_handle s = locate(p, lt, f, ft, start);
        return insert(p, lt, f, ft, s);
    }
    Vertex_handle insert(const Point & p, const Vertex_handle hint)
    {
        CGAL_assertion( Vertex_handle() != hint );
        return insert(p, hint->full_cell());
    }
    Vertex_handle insert_outside_affine_hull(const Point &);
    Vertex_handle insert_in_conflicting_cell(const Point &, const Full_cell_handle);

// - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES

    bool is_in_conflict(const Point &, Full_cell_const_handle) const;
    template< class OrientationPredicate >
    Oriented_side perturbed_side_of_positive_sphere(const Point &,
            Full_cell_const_handle, const OrientationPredicate &) const;

    template< typename OutputIterator >
    Facet compute_conflict_zone(const Point &, const Full_cell_handle, OutputIterator) const;

    template < typename OrientationPredicate, typename SideOfOrientedSpherePredicate >
    class Conflict_predicate
    {
        const Self & dc_;
        const Point & p_;
        OrientationPredicate ori_;
        SideOfOrientedSpherePredicate side_of_s_;
        int cur_dim_;
    public:
        Conflict_predicate(
                const Self & dc,
                const Point & p,
                const OrientationPredicate & ori,
                const SideOfOrientedSpherePredicate & side)
        : dc_(dc), p_(p), ori_(ori), side_of_s_(side), cur_dim_(dc.current_dimension()) {}

        inline
        bool operator()(Full_cell_const_handle s) const
        {
            bool ok;
            if( ! dc_.is_infinite(s) )
            {
                Oriented_side side = side_of_s_(dc_.points_begin(s), dc_.points_begin(s) + cur_dim_ + 1, p_);
                if( ON_POSITIVE_SIDE == side )
                    ok = true;
                else if( ON_NEGATIVE_SIDE == side )
                    ok = false;
                else
                    ok = ON_POSITIVE_SIDE == dc_.perturbed_side_of_positive_sphere<OrientationPredicate>(p_, s, ori_);
            }
            else
            {
                typedef typename Full_cell::Vertex_handle_const_iterator VHCI;
                typedef Substitute_point_in_vertex_iterator<VHCI> F;
                F spivi(dc_.infinite_vertex(), &p_);

                Orientation o =  ori_(
                  boost::make_transform_iterator(s->vertices_begin(), spivi),
                  boost::make_transform_iterator(s->vertices_begin() + cur_dim_ + 1, 
                                                 spivi));

                if( POSITIVE == o )
                    ok = true;
                else if( o == NEGATIVE )
                    ok = false;
                else
                    ok = (*this)(s->neighbor( s->index( dc_.infinite_vertex() ) ));
            }
            return ok;
        }
    };

    template < typename ConflictPredicate >
    class Conflict_traversal_predicate
    {
        const Self & dc_;
        const ConflictPredicate & pred_;
    public:
        Conflict_traversal_predicate(const Self & dc, const ConflictPredicate & pred)
        : dc_(dc), pred_(pred)
        {}
        inline
        bool operator()(const Facet & f) const
        {
            return pred_(dc_.full_cell(f)->neighbor(dc_.index_of_covertex(f)));
        }
    };

private:
    // Some internal types to shorten notation
    typedef typename Base::Coaffine_orientation_d Coaffine_orientation_d;
    using Base::flat_orientation_;
    typedef Conflict_predicate<Coaffine_orientation_d, Side_of_oriented_subsphere_d>
            Conflict_pred_in_subspace;
    typedef Conflict_predicate<Orientation_d, Side_of_oriented_sphere_d>
            Conflict_pred_in_fullspace;
    typedef Conflict_traversal_predicate<Conflict_pred_in_subspace>
            Conflict_traversal_pred_in_subspace;
    typedef Conflict_traversal_predicate<Conflict_pred_in_fullspace>
            Conflict_traversal_pred_in_fullspace;

    // This is used in the |remove(v)| member function to manage sets of Full_cell_handles
    template< typename FCH >
    struct Full_cell_set : public std::vector<FCH>
    {
        typedef std::vector<FCH> Base_set;
        using Base_set::begin;
        using Base_set::end;
        void make_searchable()
        {   // sort the full cell handles
            std::sort(begin(), end());
        }
        bool contains(const FCH & fch) const
        {
            return std::binary_search(begin(), end(), fch);
        }
        bool contains_1st_and_not_2nd(const FCH & fst, const FCH & snd) const
        {
            return ( ! contains(snd) ) && ( contains(fst) );
        }
    };
};

// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
// FUNCTIONS THAT ARE MEMBER METHODS:

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS

template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Full_cell_handle
Delaunay_triangulation<DCTraits, TDS>
::remove( Vertex_handle v )
{
    CGAL_precondition( ! is_infinite(v) );
    CGAL_expensive_precondition( is_vertex(v) );

    // THE CASE cur_dim == 0
    if( 0 == current_dimension() )
    {
        remove_decrease_dimension(v);
        return Full_cell_handle();
    }
    else if( 1 == current_dimension() )
    {   // THE CASE cur_dim == 1
        if( 2 == number_of_vertices() )
        {
            remove_decrease_dimension(v);
            return Full_cell_handle();
        }
        Full_cell_handle left = v->full_cell();
        if( is_infinite(left) && left->neighbor(0)->index(left) == 0 ) // we are on the infinite right.
            left = left->neighbor(0);
        if( 0 == left->index(v) )
            left = left->neighbor(1);
        CGAL_assertion( 1 == left->index(v) );
        Full_cell_handle right = left->neighbor(0);
        if( ! is_infinite(right) )
        {
            tds().associate_vertex_with_full_cell(left, 1, right->vertex(1));
            set_neighbors(left, 0, right->neighbor(0), right->mirror_index(0));
        }
        else
        {
            tds().associate_vertex_with_full_cell(left, 1, left->vertex(0));
            tds().associate_vertex_with_full_cell(left, 0, infinite_vertex());
            set_neighbors(left, 0, left->neighbor(1), left->mirror_index(1));
            set_neighbors(left, 1, right->neighbor(1), right->mirror_index(1));
        }
        tds().delete_vertex(v);
        tds().delete_full_cell(right);
        return left;
    }

    // THE CASE cur_dim >= 2
    // Gather the finite vertices sharing an edge with |v|
    typedef Full_cell_set<Full_cell_handle> Simplices;
    Simplices simps;
    std::back_insert_iterator<Simplices> out(simps);
    tds().incident_full_cells(v, out);
    typedef std::set<Vertex_handle> Vertex_set;
    Vertex_set verts;
    Vertex_handle vh;
    for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
        for( int i = 0; i <= current_dimension(); ++i )
        {
            vh = (*it)->vertex(i);
            if( is_infinite(vh) )
                continue;
            if( vh == v )
                continue;
            verts.insert(vh);
        }

    // After gathering finite neighboring vertices, create their Dark Delaunay triangulation
    typedef Triangulation_vertex<Geom_traits, Vertex_handle> Dark_vertex_base;
    typedef Triangulation_full_cell<Geom_traits,
        internal::Triangulation::Dark_full_cell_data<Self> > Dark_full_cell_base;
    typedef Triangulation_data_structure<Maximal_dimension, Dark_vertex_base, Dark_full_cell_base> Dark_tds;
    typedef Delaunay_triangulation<DCTraits, Dark_tds>   Dark_triangulation;
    typedef typename Dark_triangulation::Face             Dark_face;
    typedef typename Dark_triangulation::Facet            Dark_facet;
    typedef typename Dark_triangulation::Vertex_handle    Dark_v_handle;
    typedef typename Dark_triangulation::Full_cell_handle   Dark_s_handle;

    // If flat_orientation_ is defined, we give it the Dark triangulation
    // so that the orientation it uses for "current_dimension()"-simplices is
    // coherent with the global triangulation
    Dark_triangulation dark_side(
      maximal_dimension(),
      flat_orientation_ ?
      std::pair<int, const Flat_orientation_d *>(current_dimension(), flat_orientation_.get_ptr())
      : std::pair<int, const Flat_orientation_d *>((std::numeric_limits<int>::max)(), (Flat_orientation_d*) NULL) );

    Dark_s_handle dark_s;
    Dark_v_handle dark_v;
    typedef std::map<Vertex_handle, Dark_v_handle> Vertex_map;
    Vertex_map light_to_dark;
    typename Vertex_set::iterator vit = verts.begin();
    while( vit != verts.end() )
    {
        dark_v = dark_side.insert((*vit)->point(), dark_s);
        dark_s = dark_v->full_cell();
        dark_v->data() = *vit;
        light_to_dark[*vit] = dark_v;
        ++vit;
    }

    if( dark_side.current_dimension() != current_dimension() )
    {
        CGAL_assertion( dark_side.current_dimension() + 1 == current_dimension() );
        // Here, the finite neighbors of |v| span a affine subspace of
        // dimension one less than the current dimension. Two cases are possible:
        if( (size_type)(verts.size() + 1) == number_of_vertices() )
        {
            remove_decrease_dimension(v);
            return Full_cell_handle();
        }
        else
        {   // |v| is strictly outside the convex hull of the rest of the points. This is an
            // easy case: first, modify the finite full_cells, then, delete the infinite ones.
            // We don't even need the Dark triangulation.
            Simplices infinite_simps;
            {
                Simplices finite_simps;
                for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
                    if( is_infinite(*it) )
                        infinite_simps.push_back(*it);
                    else
                        finite_simps.push_back(*it);
                simps.swap(finite_simps);
            } // now, simps only contains finite simplices
            // First, modify the finite full_cells:
            for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
            {
                int v_idx = (*it)->index(v);
                tds().associate_vertex_with_full_cell(*it, v_idx, infinite_vertex());
                if( v_idx != 0 )
                {
                    // we must put the infinite vertex at index 0.
                    // OK, now with the new convention that the infinite vertex
                    // does not have to be at index 0, this is not necessary,
                    // but still, I prefer to keep this piece of code here. [-- Samuel Hornus]
                    (*it)->swap_vertices(0, v_idx);
                    // Now, we preserve the positive orientation of the full_cell
                    (*it)->swap_vertices(current_dimension() - 1, current_dimension());
                }
            }
            // Make the handles to infinite full cells searchable
            infinite_simps.make_searchable();
            // Then, modify the neighboring relation
            for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
            {
                for( int i = 1; i <= current_dimension(); ++i )
                {
                    (*it)->vertex(i)->set_full_cell(*it);
                    Full_cell_handle n = (*it)->neighbor(i);
                    // Was |n| a finite full cell prior to removing |v| ?
                    if( ! infinite_simps.contains(n) )
                        continue;
                    int n_idx = n->index(v);
                    set_neighbors(*it, i, n->neighbor(n_idx), n->neighbor(n_idx)->index(n));
                }
            }
            Full_cell_handle ret_s;
            // Then, we delete the infinite full_cells
            for( typename Simplices::iterator it = infinite_simps.begin(); it != infinite_simps.end(); ++it )
                tds().delete_full_cell(*it);
            tds().delete_vertex(v);
            return simps.front();
        }
    }
    else //  From here on, dark_side.current_dimension() == current_dimension()
    {
        dark_side.infinite_vertex()->data() = infinite_vertex();
        light_to_dark[infinite_vertex()] = dark_side.infinite_vertex();
    }

    // Now, compute the conflict zone of v->point() in
    // the dark side. This is precisely the set of full_cells
    // that we have to glue back into the light side.
    Dark_face       dark_f(dark_side.maximal_dimension());
    Dark_facet      dark_ft;
    typename Dark_triangulation::Locate_type     lt;
    dark_s = dark_side.locate(v->point(), lt, dark_f, dark_ft);
    CGAL_assertion( lt != Dark_triangulation::ON_VERTEX
        && lt != Dark_triangulation::OUTSIDE_AFFINE_HULL );

    // |ret_s| is the full_cell that we return
    Dark_s_handle dark_ret_s = dark_s;
    Full_cell_handle ret_s;

    typedef Full_cell_set<Dark_s_handle> Dark_full_cells;
    Dark_full_cells conflict_zone;
    std::back_insert_iterator<Dark_full_cells> dark_out(conflict_zone);
    
    dark_ft = dark_side.compute_conflict_zone(v->point(), dark_s, dark_out);
    // Make the dark simplices in the conflict zone searchable
    conflict_zone.make_searchable();

    // THE FOLLOWING SHOULD MAYBE GO IN TDS.
    // Here is the plan:
    // 1. Pick any Facet from boundary of the light zone
    // 2. Find corresponding Facet on boundary of dark zone
    // 3. stitch.

    // 1. Build a facet on the boudary of the light zone:
    Full_cell_handle light_s = *simps.begin();
    Facet light_ft(light_s, light_s->index(v));

    // 2. Find corresponding Dark_facet on boundary of the dark zone
    Dark_full_cells dark_incident_s;
    for( int i = 0; i <= current_dimension(); ++i )
    {
        if( index_of_covertex(light_ft) == i )
            continue;
        Dark_v_handle dark_v = light_to_dark[full_cell(light_ft)->vertex(i)];
        dark_incident_s.clear();
        dark_out = std::back_inserter(dark_incident_s);
        dark_side.tds().incident_full_cells(dark_v, dark_out);
        for( typename Dark_full_cells::iterator it = dark_incident_s.begin(); it != dark_incident_s.end(); ++it )
        {
            (*it)->data().count_ += 1;
        }
    }

    for( typename Dark_full_cells::iterator it = dark_incident_s.begin(); it != dark_incident_s.end(); ++it )
    {
        if( current_dimension() != (*it)->data().count_ )
            continue;
        if( ! conflict_zone.contains(*it) )
            continue;
        // We found a full_cell incident to the dark facet corresponding to the light facet |light_ft|
        int ft_idx = 0;
        while( light_s->has_vertex( (*it)->vertex(ft_idx)->data() ) )
            ++ft_idx;
        dark_ft = Dark_facet(*it, ft_idx);
        break;
    }
    // Pre-3. Now, we are ready to traverse both boundary and do the stiching.

    // But first, we create the new full_cells in the light triangulation,
    // with as much adjacency information as possible.

    // Create new full_cells with vertices
    for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
    {
        Full_cell_handle new_s = new_full_cell();
        (*it)->data().light_copy_ = new_s;
        for( int i = 0; i <= current_dimension(); ++i )
            tds().associate_vertex_with_full_cell(new_s, i, (*it)->vertex(i)->data());
        if( dark_ret_s == *it )
            ret_s = new_s;
    }

    // Setup adjacencies inside the hole
    for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
    {
        Full_cell_handle new_s = (*it)->data().light_copy_;
        for( int i = 0; i <= current_dimension(); ++i )
            if( conflict_zone.contains((*it)->neighbor(i)) )
                tds().set_neighbors(new_s, i, (*it)->neighbor(i)->data().light_copy_, (*it)->mirror_index(i));
    }

    // 3. Stitch
    simps.make_searchable();
    typedef std::queue<std::pair<Facet, Dark_facet> > Queue;
    Queue q;
    q.push(std::make_pair(light_ft, dark_ft));
    dark_s = dark_side.full_cell(dark_ft);
    int dark_i = dark_side.index_of_covertex(dark_ft);
    // mark dark_ft as visited:
    // TODO try by marking with Dark_v_handle (vertex)
    dark_s->neighbor(dark_i)->set_neighbor(dark_s->mirror_index(dark_i), Dark_s_handle());
    while( ! q.empty() )
    {
        std::pair<Facet, Dark_facet> p = q.front();
        q.pop();
        light_ft = p.first;
        dark_ft = p.second;
        light_s = full_cell(light_ft);
        int light_i = index_of_covertex(light_ft);
        dark_s = dark_side.full_cell(dark_ft);
        int dark_i = dark_side.index_of_covertex(dark_ft);
        Full_cell_handle light_n = light_s->neighbor(light_i);
        set_neighbors(dark_s->data().light_copy_, dark_i, light_n, light_s->mirror_index(light_i));
        for( int di = 0; di <= current_dimension(); ++di )
        {
            if( di == dark_i )
                continue;
            int li = light_s->index(dark_s->vertex(di)->data());
            Rotor light_r(light_s, li, light_i);
            typename Dark_triangulation::Rotor dark_r(dark_s, di, dark_i);
            
            while (simps.contains(cpp11::get<0>(light_r)->neighbor(cpp11::get<1>(light_r))))
                light_r = rotate_rotor(light_r);

            while (conflict_zone.contains(cpp11::get<0>(dark_r)->neighbor(cpp11::get<1>(dark_r))))
                dark_r = dark_side.rotate_rotor(dark_r);

            Dark_s_handle dark_ns = cpp11::get<0>(dark_r);
            int dark_ni = cpp11::get<1>(dark_r);
            Full_cell_handle light_ns = cpp11::get<0>(light_r);
            int light_ni = cpp11::get<1>(light_r);
            // mark dark_r as visited:
            // TODO try by marking with Dark_v_handle (vertex)
            Dark_s_handle outside = dark_ns->neighbor(dark_ni);
            Dark_v_handle mirror = dark_ns->mirror_vertex(dark_ni, current_dimension());
            int dn = outside->index(mirror);
            if( Dark_s_handle() == outside->neighbor(dn) )
                continue;
            outside->set_neighbor(dn, Dark_s_handle());
            q.push(std::make_pair(Facet(light_ns, light_ni), Dark_facet(dark_ns, dark_ni)));
        }
    }
    tds().delete_full_cells(simps.begin(), simps.end());
    tds().delete_vertex(v);
    return ret_s;
}

template< typename DCTraits, typename TDS >
void
Delaunay_triangulation<DCTraits, TDS>
::remove_decrease_dimension(Vertex_handle v)
{
    CGAL_precondition( current_dimension() >= 0 );
    tds().remove_decrease_dimension(v, infinite_vertex());
    // reset the predicates:
    reset_flat_orientation();
    if( 1 <= current_dimension() )
    {
        Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
        int inf_v_index = inf_v_cell->index(infinite_vertex());
        Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
        Orientation o = orientation(s);
        CGAL_assertion( ZERO != o );
        if( NEGATIVE == o )
            reorient_full_cells();
    }
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS

template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Vertex_handle
Delaunay_triangulation<DCTraits, TDS>
::insert(const Point & p, const Locate_type lt, const Face & f, const Facet &, const Full_cell_handle s)
{
    switch( lt )
    {
        case Base::OUTSIDE_AFFINE_HULL:
            return insert_outside_affine_hull(p);
            break;
        case Base::ON_VERTEX:
        {
            Vertex_handle v = s->vertex(f.index(0));
            v->set_point(p);
            return v;
            break;
        }
        default:
            if( 1 == current_dimension() )
            {
                if( Base::OUTSIDE_CONVEX_HULL == lt )
                {
                    return insert_outside_convex_hull_1(p, s);
                }
                Vertex_handle v = tds().insert_in_full_cell(s);
                v->set_point(p);
                return v;
            }
            else
                return insert_in_conflicting_cell(p, s);
            break;
    }
}

template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Vertex_handle
Delaunay_triangulation<DCTraits, TDS>
::insert_outside_affine_hull(const Point & p)
{
    // we don't use Base::insert_outside_affine_hull(...) because here, we
    // also need to reset the side_of_oriented_subsphere functor.
    CGAL_precondition( current_dimension() < maximal_dimension() );
    Vertex_handle v = tds().insert_increase_dimension(infinite_vertex());
    // reset the predicates:
    reset_flat_orientation();
    v->set_point(p);
    if( current_dimension() >= 1 )
    {
        Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
        int inf_v_index = inf_v_cell->index(infinite_vertex());
        Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
        Orientation o = orientation(s);
        CGAL_assertion( ZERO != o );
            if( NEGATIVE == o )
                reorient_full_cells();
    }
    return v;
}

template< typename DCTraits, typename TDS >
typename Delaunay_triangulation<DCTraits, TDS>::Vertex_handle
Delaunay_triangulation<DCTraits, TDS>
::insert_in_conflicting_cell(const Point & p, const Full_cell_handle s)
{
    typedef std::vector<Full_cell_handle> Full_cell_h_vector;
    static Full_cell_h_vector cs; // for storing conflicting full_cells.
    cs.clear();
    // cs.reserve(64);
    std::back_insert_iterator<Full_cell_h_vector> out(cs);
    Facet ft = compute_conflict_zone(p, s, out);
    return insert_in_hole(p, cs.begin(), cs.end(), ft);
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES

// NOT DOCUMENTED
template< typename DCTraits, typename TDS >
template< typename OrientationPred >
Oriented_side
Delaunay_triangulation<DCTraits, TDS>
::perturbed_side_of_positive_sphere(const Point & p, Full_cell_const_handle s,
        const OrientationPred & ori) const
{
    CGAL_precondition_msg( ! is_infinite(s), "full cell must be finite");
    CGAL_expensive_precondition( POSITIVE == orientation(s) );
    typedef std::vector<const Point *> Points;
    Points points(current_dimension() + 2);
    int i(0);
    for( ; i <= current_dimension(); ++i )
        points[i] = &(s->vertex(i)->point());
    points[i] = &p;
    std::sort(points.begin(), points.end(),
            internal::Triangulation::Compare_points_for_perturbation<Self>(*this));
    typename Points::const_reverse_iterator cut_pt = points.rbegin();
    Points test_points;
    while( cut_pt != points.rend() )
    {
        if( &p == *cut_pt )
            // because the full_cell "s" is assumed to be positively oriented
            return ON_NEGATIVE_SIDE; // we consider |p| to lie outside the sphere
        test_points.clear();
        typename Base::Point_const_iterator spit = points_begin(s);
        int adjust_sign = -1;
        for( i = 0; i < current_dimension(); ++i )
        {
            if( &(*spit) == *cut_pt )
            {
                ++spit;
                adjust_sign = (((current_dimension() + i) % 2) == 0) ? -1 : +1;
            }
            test_points.push_back(&(*spit));
            ++spit;
        }
        test_points.push_back(&p);

        typedef typename CGAL::Iterator_project<typename Points::iterator,
                        internal::Triangulation::Point_from_pointer<Self>,
                const Point &, const Point *> Point_pointer_iterator;

        Orientation ori_value = ori(
                Point_pointer_iterator(test_points.begin()),
                Point_pointer_iterator(test_points.end()));

        if( ZERO != ori_value )
            return Oriented_side( - adjust_sign * ori_value );

        ++cut_pt;
    }
    CGAL_assertion(false); // we should never reach here
    return ON_NEGATIVE_SIDE;
}

template< typename DCTraits, typename TDS >
bool
Delaunay_triangulation<DCTraits, TDS>
::is_in_conflict(const Point & p, Full_cell_const_handle s) const
{
    CGAL_precondition( 2 <= current_dimension() );
    if( current_dimension() < maximal_dimension() )
    {
        Conflict_pred_in_subspace c(*this, p, coaffine_orientation_predicate(), side_of_oriented_subsphere_predicate());
        return c(s);
    }
    else
    {
        Orientation_d ori = geom_traits().orientation_d_object();
        Side_of_oriented_sphere_d side = geom_traits().side_of_oriented_sphere_d_object();
        Conflict_pred_in_fullspace c(*this, p, ori, side);
        return c(s);
    }
}

template< typename DCTraits, typename TDS >
template< typename OutputIterator >
typename Delaunay_triangulation<DCTraits, TDS>::Facet
Delaunay_triangulation<DCTraits, TDS>
::compute_conflict_zone(const Point & p, const Full_cell_handle s, OutputIterator out) const
{
    CGAL_precondition( 2 <= current_dimension() );
    if( current_dimension() < maximal_dimension() )
    {
        Conflict_pred_in_subspace c(*this, p, coaffine_orientation_predicate(), side_of_oriented_subsphere_predicate());
        Conflict_traversal_pred_in_subspace tp(*this, c);
        return tds().gather_full_cells(s, tp, out);
    }
    else
    {
        Orientation_d ori = geom_traits().orientation_d_object();
        Side_of_oriented_sphere_d side = geom_traits().side_of_oriented_sphere_d_object();
        Conflict_pred_in_fullspace c(*this, p, ori, side);
        Conflict_traversal_pred_in_fullspace tp(*this, c);
        return tds().gather_full_cells(s, tp, out);
    }
}

} //namespace CGAL

#endif // CGAL_DELAUNAY_COMPLEX_H