/usr/include/CGAL/Kernel_d/PointHd.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | // Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Michael Seel
#ifndef CGAL_POINTHDXXX_H
#define CGAL_POINTHDXXX_H
#include <CGAL/basic.h>
#include <CGAL/Origin.h>
#include <CGAL/Quotient.h>
#include <CGAL/Kernel_d/Tuple_d.h>
#include <CGAL/Kernel_d/VectorHd.h>
#include <CGAL/Kernel_d/Aff_transformationHd.h>
namespace CGAL {
#define PointHd PointHd2
template <class RT, class LA> class PointHd;
template <class RT, class LA>
std::istream& operator>>(std::istream&, PointHd<RT,LA>&);
template <class RT, class LA>
std::ostream& operator<<(std::ostream&, const PointHd<RT,LA>&);
/*{\Moptions outfile=Point_d.man}*/
/*{\Manpage {Point_d} {R} {Points in d-space} {p}}*/
/*{\Msubst
Hd<RT,LA>#_d<R>
PointHd#Point_d
Quotient<RT>#FT
}*/
template <class _RT, class _LA >
class PointHd : public Handle_for< Tuple_d<_RT,_LA> > {
typedef Tuple_d<_RT,_LA> Tuple;
typedef Handle_for<Tuple> Base;
typedef PointHd<_RT,_LA> Self;
using Base::ptr;
/*{\Mdefinition
An instance of data type |\Mname| is a point of Euclidean space in
dimension $d$. A point $p = (p_0,\ldots,p_{ d - 1 })$ in
$d$-dimensional space can be represented by homogeneous coordinates
$(h_0,h_1,\ldots,h_d)$ of number type |RT| such that $p_i = h_i/h_d$,
which is of type |FT|. The homogenizing coordinate $h_d$ is positive.
We call $p_i$, $0 \leq i < d$ the $i$-th Cartesian coordinate and
$h_i$, $0 \le i \le d$, the $i$-th homogeneous coordinate. We call $d$
the dimension of the point.}*/
const typename _LA::Vector& vector_rep() const { return ptr()->v; }
_RT& entry(int i) { return ptr()->v[i]; }
const _RT& entry(int i) const { return ptr()->v[i]; }
void invert_rep() { ptr()->invert(); }
PointHd(const Base& b) : Base(b) {}
public:
/*{\Mtypes 4}*/
typedef _RT RT;
/*{\Mtypemember the ring type.}*/
typedef Quotient<_RT> FT;
/*{\Mtypemember the field type.}*/
typedef _LA LA;
/*{\Mtypemember the linear algebra layer.}*/
typedef typename Tuple::Cartesian_const_iterator Cartesian_const_iterator;
/*{\Mtypemember a read-only iterator for the cartesian coordinates.}*/
typedef typename Tuple::const_iterator Homogeneous_const_iterator;
/*{\Mtypemember a read-only iterator for the homogeneous coordinates.}*/
friend class VectorHd<RT,LA>;
friend class HyperplaneHd<RT,LA>;
/*{\Mcreation 4}*/
PointHd(int d = 0)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
$d$-dimensional space.}*/
: Base( Tuple(d+1) )
{ if ( d > 0 ) entry(d) = 1; }
PointHd(int d, const Origin&)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
$d$-dimensional space, initialized to the origin.}*/
: Base( Tuple(d+1) )
{ entry(d) = 1; }
template <class InputIterator>
PointHd(int d, InputIterator first, InputIterator last)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
dimension |d|. If |size [first,last) == d| this creates a point with
Cartesian coordinates |set [first,last)|. If |size [first,last) ==
p+1| the range specifies the homogeneous coordinates $|H = set
[first,last)| = (\pm h_0, \pm h_1, \ldots, \pm h_d)$ where the sign
chosen is the sign of $h_d$. \precond |d| is nonnegative,
|[first,last)| has |d| or |d+1| elements where the last has to be
non-zero, and the value type of |InputIterator| is |RT|.}*/
: Base( Tuple(d+1,first,last) )
{ RT D = entry(d);
if ( D == RT(0) ) entry(d) = 1;
if ( D < RT(0) ) invert_rep();
}
template <class InputIterator>
PointHd (int d, InputIterator first, InputIterator last,
const RT& D)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
dimension |d| initialized to the point with homogeneous coordinates as
defined by |H = set [first,last)| and |D|: $(\pm |H[0]|, \pm|H[1]|,
\ldots, \pm|H[d-1]|, \pm|D|)$. The sign chosen is the sign of
$D$. \precond |D| is non-zero, the iterator range defines a $d$-tuple
of |RT|, and the value type of |InputIterator| is |RT|. }*/
: Base( Tuple(d+1,first,last,D) )
{ CGAL_assertion_msg(D!=RT(0),"PointHd::constructor: D must be nonzero.");
if (D < RT(0)) invert_rep();
}
PointHd(int x, int y, int w = 1) : Base( Tuple((RT)x,(RT)y,(RT)w) )
{ CGAL_assertion_msg((w != 0),"PointHd::construction: w == 0.");
if (w < 0) invert_rep();
}
PointHd(const RT& x, const RT& y, const RT& w = 1)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
$2$-dimensional space.}*/
: Base( Tuple(x,y,w,MatchHelper()) )
{ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");
if (w < 0) invert_rep();
}
PointHd(int x, int y, int z, int w) :
Base( Tuple((RT)x,(RT)y,(RT)z,(RT)w) )
{ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");
if (w < 0) invert_rep();
}
PointHd(const RT& x, const RT& y, const RT& z, const RT& w)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
$3$-dimensional space.}*/
: Base( Tuple(x,y,z,w) )
{ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");
if (w < 0) invert_rep();
}
PointHd(const PointHd<RT,LA>& p) : Base(p) {}
~PointHd() {}
/*{\Moperations 4 3}*/
int dimension() const { return ptr()->size()-1; }
/*{\Mop returns the dimension of |\Mvar|. }*/
Quotient<RT> cartesian(int i) const
/*{\Mop returns the $i$-th Cartesian coordinate of |\Mvar|.
\precond $0 \leq i < d$.}*/
{ CGAL_assertion_msg((0<=i && i<dimension()),"PointHd::cartesian():\
index out of range.");
return Quotient<RT>(entry(i), entry(dimension()));
}
Quotient<RT> operator[](int i) const { return cartesian(i); }
/*{\Marrop returns the $i$-th Cartesian coordinate of |\Mvar|.
\precond $0 \leq i < d$.}*/
RT homogeneous(int i) const
/*{\Mop returns the $i$-th homogeneous coordinate of |\Mvar|.
\precond $0 \leq i \leq d$.}*/
{ CGAL_assertion_msg((0<=i && i<=(dimension())),
"PointHd::homogeneous():index out of range.");
return entry(i);
}
Cartesian_const_iterator cartesian_begin() const
/*{\Mop returns an iterator pointing to the zeroth Cartesian coordinate
$p_0$ of |\Mvar|. }*/
{ return Cartesian_const_iterator(ptr()->begin(),ptr()->last()); }
Cartesian_const_iterator cartesian_end() const
/*{\Mop returns an iterator pointing beyond the last Cartesian coordinate
of |\Mvar|. }*/
{ return Cartesian_const_iterator(ptr()->last(),ptr()->last()); }
Homogeneous_const_iterator homogeneous_begin() const
/*{\Mop returns an iterator pointing to the zeroth homogeneous coordinate
$h_0$ of |\Mvar|. }*/
{ return ptr()->begin(); }
Homogeneous_const_iterator homogeneous_end() const
/*{\Mop returns an iterator pointing beyond the last homogeneous coordinate
of |\Mvar|. }*/
{ return ptr()->end(); }
PointHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const;
/*{\Mop returns $t(p)$. }*/
/*{\Mtext \headerline{Arithmetic Operators, Tests and IO}}*/
inline VectorHd<RT,LA> operator-(const Origin& o) const;
/*{\Mbinop returns the vector $\vec{0p}$.}*/
VectorHd<RT,LA> operator-(const PointHd<RT,LA>& q) const
/*{\Mbinop returns $p - q$. \precond |p.dimension() == q.dimension()|.}*/
{ VectorHd<RT,LA> res(dimension());
res.ptr()->homogeneous_sub(ptr(),q.ptr());
return res;
}
PointHd<RT,LA> operator+(const VectorHd<RT,LA>& v) const;
/*{\Mbinop returns $p + v$. \precond |p.dimension() == v.dimension()|.}*/
PointHd<RT,LA> operator-(const VectorHd<RT,LA>& v) const;
/*{\Mbinop returns $p - v$. \precond |p.dimension() == v.dimension()|.}*/
PointHd<RT,LA>& operator+=(const VectorHd<RT,LA>& v);
/*{\Mbinop adds |v| to |p|.\\
\precond |p.dimension() == v.dimension()|. }*/
PointHd<RT,LA>& operator-=(const VectorHd<RT,LA>& v);
/*{\Mbinop subtracts |v| from |p|.\\
\precond |p.dimension() == v.dimension()|. }*/
static Comparison_result cmp(
const PointHd<RT,LA>& p1, const PointHd<RT,LA>& p2)
{ Compare_homogeneously<RT,LA> cmpobj;
return cmpobj(p1.vector_rep(),p2.vector_rep());
}
bool operator==(const PointHd<RT,LA>& q) const
{ if (this->identical(q)) return true;
if (dimension()!=q.dimension()) return false;
return cmp(*this,q) == EQUAL;
}
bool operator!=(const PointHd<RT,LA>& q) const
{ return !(*this==q); }
bool operator==(const Origin&) const
/*{\Mbinop returns true if |\Mvar| is the origin. }*/
{ for (int i = 0; i < dimension(); i++)
if (homogeneous(i) != RT(0)) return false;
return true;
}
friend std::istream& operator>> <>
(std::istream&, PointHd<RT,LA>&);
friend std::ostream& operator<< <>
(std::ostream&, const PointHd<RT,LA>&);
/*{\Mtext \headerline{Downward compatibility}
We provide operations of the lower dimensional interface |x()|, |y()|,
|z()|, |hx()|, |hy()|, |hz()|, |hw()|.}*/
RT hx() const { return homogeneous(0); }
RT hy() const { return homogeneous(1); }
RT hz() const { return homogeneous(2); }
RT hw() const { return homogeneous(dimension()); }
Quotient<RT> x() const { return Quotient<RT>(hx(),hw()); }
Quotient<RT> y() const { return Quotient<RT>(hy(),hw()); }
Quotient<RT> z() const { return Quotient<RT>(hz(),hw()); }
}; // PointHd
/*{\Mimplementation
Points are implemented by arrays of |RT| items. All operations like
creation, initialization, tests, point - vector arithmetic, input and
output on a point $p$ take time $O(|p.dimension()|)$. |dimension()|,
coordinate access and conversions take constant time. The space
requirement for points is $O(|p.dimension()|)$.}*/
#undef PointHd
} //namespace CGAL
#endif // CGAL_POINTHD_H
//----------------------- end of file ----------------------------------
|