/usr/include/CGAL/Linear_algebraHd.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | // Copyright (c) 1997-2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
//---------------------------------------------------------------------
// file generated by notangle from Linear_algebra.lw
// please debug or modify noweb file
// based on LEDA architecture by S. Naeher, C. Uhrig
// coding: K. Mehlhorn, M. Seel
// debugging and templatization: M. Seel
//---------------------------------------------------------------------
#ifndef CGAL_LINEAR_ALGEBRAHD_H
#define CGAL_LINEAR_ALGEBRAHD_H
#include <CGAL/Kernel_d/Vector__.h>
#include <CGAL/Kernel_d/Matrix__.h>
// #define CGAL_LA_SELFTEST
namespace CGAL {
/*{\Moptions outfile=Linear_algebra.man}*/
/*{\Manpage {Linear_algebraHd}{RT}{Linear Algebra on RT}{LA}}*/
template <class RT_, class AL_ = CGAL_ALLOCATOR(RT_) >
class Linear_algebraHd
{
/*{\Mdefinition
The data type |\Mname| encapsulates two classes |Matrix|, |Vector|
and many functions of basic linear algebra. It is parametrized by a
number type |RT|. An instance of data type |Matrix| is a matrix of
variables of type |RT|, the so called ring type. Accordingly,
|Vector| implements vectors of variables of type |RT|. The arithmetic
type |RT| is required to behave like integers in the mathematical
sense. The manual pages of |Vector| and |Matrix| follow below.
All functions compute the exact result, i.e., there is no rounding
error. Most functions of linear algebra are \emph{checkable}, i.e.,
the programs can be asked for a proof that their output is
correct. For example, if the linear system solver declares a linear
system $A x = b$ unsolvable it also returns a vector $c$ such that
$c^T A = 0$ and $c^T b \neq 0$. All internal correctness checks can
be switched on by the flag [[CGAL_LA_SELFTEST]].}*/
public:
/*{\Mtypes 5.5}*/
typedef RT_ RT;
/*{\Mtypemember the ring type of the components.}*/
typedef Linear_Algebra::Vector_<RT_,AL_> Vector;
/*{\Mtypemember the vector type.}*/
typedef Linear_Algebra::Matrix_<RT_,AL_> Matrix;
/*{\Mtypemember the matrix type.}*/
typedef AL_ allocator_type;
/*{\Mtypemember the allocator used for memory management. |\Mname| is
an abbreviation for |Linear_algebraHd<RT, ALLOC = allocator<RT,LA> >|. Thus
|allocator_type| defaults to the standard allocator offered by the STL.}*/
/*{\Moperations 2 1}*/
static Matrix transpose(const Matrix& M);
/*{\Mstatic returns $M^T$ ($m\times n$ - matrix). }*/
static bool inverse(const Matrix& M, Matrix& I, RT& D, Vector& c);
/*{\Mstatic determines whether |M| has an inverse. It also computes
either the inverse as $(1/D) \cdot |I|$ or when no inverse
exists, a vector $c$ such that $c^T \cdot M = 0 $. }*/
static Matrix inverse(const Matrix& M, RT& D)
/*{\Mstatic returns the inverse matrix of |M|. More precisely, $1/D$
times the matrix returned is the inverse of |M|.\\
\precond |determinant(M) != 0|. }*/
{
Matrix result;
Vector c;
if (!inverse(M,result,D,c))
CGAL_error_msg("inverse(): matrix is singular.");
return result;
}
static RT determinant (const Matrix& M, Matrix& L, Matrix& U,
std::vector<int>& q, Vector& c);
/*{\Mstatic returns the determinant $D$ of |M| and sufficient information
to verify that the value of the determinant is correct. If
the determinant is zero then $c$ is a vector such that
$c^T \cdot M = 0$. If the determinant is non-zero then $L$
and $U$ are lower and upper diagonal matrices respectively
and $q$ encodes a permutation matrix $Q$ with $Q(i,j) = 1$
iff $i = q(j)$ such that $L \cdot M \cdot Q = U$,
$L(0,0) = 1$, $L(i,i) = U(i - 1,i - 1)$ for all $i$,
$1 \le i < n$, and $D = s \cdot U(n - 1,n - 1)$ where $s$ is
the determinant of $Q$. \precond |M| is square. }*/
static bool verify_determinant (const Matrix& M, RT D, Matrix& L, Matrix& U,
const std::vector<int>& q, Vector& c);
/*{\Mstatic verifies the conditions stated above. }*/
static RT determinant (const Matrix& M);
/*{\Mstatic returns the determinant of |M|.
\precond |M| is square. }*/
static int sign_of_determinant (const Matrix& M);
/*{\Mstatic returns the sign of the determinant of |M|.
\precond |M| is square. }*/
static bool linear_solver(const Matrix& M, const Vector& b,
Vector& x, RT& D,
Matrix& spanning_vectors,
Vector& c);
/*{\Mstatic determines the complete solution space of the linear system
$M\cdot x = b$. If the system is unsolvable then
$c^T \cdot M = 0$ and $c^T \cdot b \not= 0$.
If the system is solvable then $(1/D) x$ is a solution, and
the columns of |spanning_vectors| are a maximal set of linearly
independent solutions to the corresponding homogeneous system.
\precond |M.row_dimension() = b.dimension()|. }*/
static bool linear_solver(const Matrix& M, const Vector& b,
Vector& x, RT& D,
Vector& c)
/*{\Mstatic determines whether the linear system $M\cdot x = b$ is
solvable. If yes, then $(1/D) x$ is a solution, if not then
$c^T \cdot M = 0$ and $c^T \cdot b \not= 0$.
\precond |M.row_dimension() = b.dimension()|. }*/
{
Matrix spanning_vectors;
return linear_solver(M,b,x,D,spanning_vectors,c);
}
static bool linear_solver(const Matrix& M, const Vector& b,
Vector& x, RT& D)
/*{\Mstatic as above, but without the witness $c$
\precond |M.row_dimension() = b.dimension()|. }*/
{
Matrix spanning_vectors; Vector c;
return linear_solver(M,b,x,D,spanning_vectors,c);
}
static bool is_solvable(const Matrix& M, const Vector& b)
/*{\Mstatic determines whether the system $M \cdot x = b$ is solvable \\
\precond |M.row_dimension() = b.dimension()|. }*/
{
Vector x; RT D; Matrix spanning_vectors; Vector c;
return linear_solver(M,b,x,D,spanning_vectors,c);
}
static bool homogeneous_linear_solver (const Matrix& M, Vector& x);
/*{\Mstatic determines whether the homogeneous linear system
$M\cdot x = 0$ has a non - trivial solution. If
yes, then $x$ is such a solution. }*/
static int homogeneous_linear_solver (const Matrix& M, Matrix& spanning_vecs);
/*{\Mstatic determines the solution space of the homogeneous linear
system $M\cdot x = 0$. It returns the dimension of the solution space.
Moreover the columns of |spanning_vecs| span the solution space. }*/
static int independent_columns (const Matrix& M, std::vector<int>& columns);
/*{\Mstatic returns the indices of a maximal subset of independent
columns of |M|.}*/
static int rank (const Matrix & M);
/*{\Mstatic returns the rank of matrix |M| }*/
/*{\Mimplementation The datatype |\Mname| is a wrapper class for the
linear algebra functionality on matrices and vectors. Operations
|determinant|, |inverse|, |linear_solver|, and |rank| take time
$O(n^3)$, and all other operations take time $O(nm)$. These time
bounds ignore the cost for multiprecision arithmetic operations.
All functions on integer matrices compute the exact result, i.e.,
there is no rounding error. The implemenation follows a proposal of
J. Edmonds (J. Edmonds, Systems of distinct representatives and linear
algebra, Journal of Research of the Bureau of National Standards, (B),
71, 241 - 245). Most functions of linear algebra are { \em checkable
}, i.e., the programs can be asked for a proof that their output is
correct. For example, if the linear system solver declares a linear
system $A x = b$ unsolvable it also returns a vector $c$ such that
$c^T A = 0$ and $c^T b \not= 0$.}*/
}; // Linear_algebraHd
} //namespace CGAL
#include <CGAL/Kernel_d/Linear_algebraHd_impl.h>
#endif // CGAL_LINALG_ALGEBRAHD_H
|