This file is indexed.

/usr/include/CGAL/Multiset.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
// Copyright (c) 2005  Tel-Aviv University (Israel).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Ron Wein <wein@post.tau.ac.il>

#ifndef CGAL_MULTISET_H
#define CGAL_MULTISET_H

#include <CGAL/config.h>
#include <CGAL/assertions.h>
#include <CGAL/multiset_assertions.h>
#include <CGAL/enum.h>
#include <CGAL/memory.h>
#include <CGAL/number_utils_classes.h>
#include <iterator>

namespace CGAL {

/*!
 * Container class representing a red-black tree, which is a balanced binary
 * tree that has the following invariants:
 * 1. Each node has a color, which is either red or black.
 * 2. Each red node has two red children (if a child is missing, it is 
 *    considered as a black node).
 * 3. The number of black nodes from every path from the tree root to a leaf
 *    is the same for all tree leaves (it is called the 'black height' of the 
 *    tree).
 * Due to propeties 2-3, the height of a red-black tree containing n nodes
 * is bounded by 2*log_2(n).
 *
 * The Multiset template requires three template parmeters:
 * - The contained Type class represents the objects stored in the tree.
 *   It has to support the default constructor, the copy constructor and 
 *   the assignment operator (operator=).
 * - Compare is a three-valued functor used to define the order of objects of
 *   class Type: It has to support an operator() that recieves two objects from
 *   the Type class and returns SMALLER, EQUAL or LARGER, depending on the
 *   comparison result.
 *   In case the deafult parameter is supplied, the Type class has to support
 *   the less-than (<) and the equal (==) operators.
 * - The Allocator represents an allocator class. By default, it is the CGAL
 *   allocator.
 */

template <typename Type_, 
          class Compare_ = CGAL::Compare<Type_>,
          class Allocator_ = CGAL_ALLOCATOR(int)>
class Multiset
{
public:

  // General type definitions:
  typedef Type_                                     Type;
  typedef Compare_                                  Compare;
  typedef Allocator_                                Allocator;
  typedef Multiset<Type, Compare, Allocator>        Self;
  
  // Type definitions for STL compatibility.
  typedef Type                                      value_type;
  typedef Type                                      key_type;
  typedef value_type&                               reference;
  typedef const value_type&                         const_reference;
  typedef Compare                                   key_compare;
  typedef Compare                                   value_compare;
  typedef size_t                                    size_type;
  typedef std::ptrdiff_t                  difference_type;

protected:

  /*! \struct
   * Representation of a node in a red-black tree.
   */
  struct Node
  {

    enum Color
    {
      RED,                        // Regular red node in the tree.
      BLACK,                      // Regular black node in the tree.
      DUMMY_BEGIN,                // The dummy before-the-begin tree node.
      DUMMY_END                   // The dummy past-the-end tree node.
    };

    typedef char Node_color;

    Type         object;           // The stored object.
    Node_color   color;            // The color of the node.
    Node        *parentP;          // Points on the parent node.
    Node        *rightP;           // Points on the right child of the node.
    Node        *leftP;            // Points on the left child of the node.

    /*! Default constructor. */
    Node() :
      parentP(NULL),
      rightP(NULL),
      leftP(NULL)
    {}

    /*!
     * Constructor of a red-black tree node.
     * \param _object The object stored in the node.
     * \param _color The color of the node.
     */
    Node (const Type& _object,  Node_color _color) :
      object(_object),
      color(_color),
      parentP(NULL),
      rightP(NULL),
      leftP(NULL)
    {}

    /*!
     * Initialize the node.
     * \param _object The object stored in the node.
     * \param _color The color of the node.
     */
    void init (const Type& _object, Node_color _color)
    {
      object = _object;
      color = _color;
    }

    /*! Destructor. */
    ~Node ()
    {}

    /*!
     * Check if the node is valid (not a dummy node).
     */
    inline bool is_valid () const
    {
      return (color == BLACK || color == RED);
    }

    /*!
     * Check if the node is red.
     */
    inline bool is_red () const
    {
      return (color == RED);
    }

    /*!
     * Check if the node is black.
     * Note that dummy nodes are also considered to be black.
     */
    inline bool is_black () const
    {
      return (color != RED);
    }

    /*!
     * Get the previous node in the tree (according to the tree order).
     */
    Node* predecessor () const
    {
      // The DUMMY_BEGIN node has no predecessor.
      CGAL_multiset_assertion (color != DUMMY_BEGIN);

      Node        *predP;

      if (leftP != NULL)
      {
        // If there is a left child, the predecessor is the maximal object in
        // the sub-tree spanned by this child.
        predP = leftP;
        while (predP->rightP != NULL)
          predP = predP->rightP;
      }
      else
      {
        // Otherwise, go up the tree until reaching the parent from the right
        // direction (this also covers the case of the DUMMY_END node).
        const Node    *prevP = this;

        predP = parentP;
        while (predP != NULL && prevP == predP->leftP)
        {
          prevP = predP;
          predP = predP->parentP;
        }
      }

      return (predP);
    }

    /*!
     * Get the next node in the tree (according to the tree order).
     */
    Node* successor () const
    {
      // The DUMMY_END node has no successor.
      CGAL_multiset_assertion (color != DUMMY_END);

      Node        *succP;

      if (rightP != NULL)
      {
        // If there is a right child, the successor is the minimal object in
        // the sub-tree spanned by this child.
        succP = rightP;
        while (succP->leftP != NULL)
          succP = succP->leftP;
      }
      else
      {
        // Otherwise, go up the tree until reaching the parent from the left
        // direction (this also covers the case of the DUMMY_BEGIN node).
        const Node    *prevP = this;

        succP = parentP;
        while (succP != NULL && prevP == succP->rightP)
        {
          prevP = succP;
          succP = succP->parentP;
        }
      }
      
      return (succP);
    }
  };

  // Rebind the allocator to the Node type:
  typedef typename Allocator::template rebind <Node>  Node_alloc_rebind;
  typedef typename Node_alloc_rebind::other           Node_allocator;

public:

  // Forward decleration:
  class const_iterator;

  /*! \class
   * An iterator for the red black tree.
   * The iterator also servers as a handle to a tree nodes.
   */
  class iterator
  {
    // Give the red-black tree class template access to the iterator's members.
    friend class Multiset<Type, Compare, Allocator>;
    friend class const_iterator;

  public:

    // Type definitions:
    typedef std::bidirectional_iterator_tag  iterator_category;
    typedef Type                             value_type;
    typedef std::ptrdiff_t         difference_type;
    typedef size_t                           size_type;
    typedef value_type&                      reference;
    typedef value_type*                      pointer;

  private:

    Node    *nodeP;              // Points to a tree node.

    /*! Private constructor. */
    iterator (Node *_nodeP) :
      nodeP (_nodeP)
    {}

  public:

    /*! Deafult constructor. */
    iterator () :
      nodeP (NULL)
    {}

    /*! Equality operator. */
    bool operator== (const iterator& iter) const
    {
      return (nodeP == iter.nodeP);
    }

    /*! Inequality operator. */
    bool operator!= (const iterator& iter) const
    {
      return (nodeP != iter.nodeP);
    }

    /*! Increment operator (prefix notation). */
    iterator& operator++ ()
    {
      CGAL_multiset_precondition (nodeP != NULL);

      nodeP = nodeP->successor();
      return (*this);
    }

    /*! Increment operator (postfix notation). */
    iterator operator++ (int )
    {
      CGAL_multiset_precondition (nodeP != NULL);

      iterator temp = *this;

      nodeP = nodeP->successor();
      return (temp);
    }

    /*! Decrement operator (prefix notation). */
    iterator& operator-- ()
    {
      CGAL_multiset_precondition (nodeP != NULL);

      nodeP = nodeP->predecessor();
      return (*this);
    }

    /*! Decrement operator (postfix notation). */
    iterator operator-- (int )
    {
      CGAL_multiset_precondition (nodeP != NULL);

      iterator temp = *this;

      nodeP = nodeP->predecessor();
      return (temp);
    }

    /*!
     * Get the object pointed by the iterator.
     */
    reference operator* () const
    {
      CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());

      return (nodeP->object);
    }

    /*!
     * Get the a pointer object pointed by the iterator.
     */
    pointer operator-> () const
    {
      CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());

      return (&(nodeP->object));
    }

  };
  friend class iterator;

  /*! \class
   * An const iterator for the red black tree.
   * The iterator also servers as a const handle to a tree nodes.
   */
  class const_iterator
  {
    // Give the red-black tree class template access to the iterator's members.
    friend class Multiset<Type, Compare, Allocator>;

  public:

    // Type definitions:
    typedef std::bidirectional_iterator_tag  iterator_category;
    typedef Type                             value_type;
    typedef std::ptrdiff_t         difference_type;
    typedef size_t                           size_type;
    typedef const value_type&                reference;
    typedef const value_type*                pointer;

  private:

    const Node    *nodeP;     // Points to a tree node.

    /*! Private constructor. */
    const_iterator (const Node *_nodeP) :
      nodeP (_nodeP)
    {}

  public:

    /*! Deafult constructor. */
    const_iterator () :
      nodeP (NULL)
    {}

    /*! Constructor from a mutable iterator. */
    const_iterator (const iterator& iter) :
      nodeP (iter.nodeP)
    {}

    /*! Equality operator. */
    bool operator== (const const_iterator& iter) const
    {
      return (nodeP == iter.nodeP);
    }

    /*! Inequality operator. */
    bool operator!= (const const_iterator& iter) const
    {
      return (nodeP != iter.nodeP);
    }

    /*! Increment operator (prefix notation). */
    const_iterator& operator++ ()
    {
      CGAL_multiset_precondition (nodeP != NULL);

      nodeP = nodeP->successor();
      return (*this);
    }

    /*! Increment operator (postfix notation). */
    const_iterator operator++ (int )
    {
      CGAL_multiset_precondition (nodeP != NULL);

      const_iterator temp = *this;

      nodeP = nodeP->successor();
      return (temp);
    }

    /*! Decrement operator (prefix notation). */
    const_iterator& operator-- ()
    {
      CGAL_multiset_precondition (nodeP != NULL);

      nodeP = nodeP->predecessor();
      return (*this);
    }

    /*! Decrement operator (postfix notation). */
    const_iterator operator-- (int )
    {
      CGAL_multiset_precondition (nodeP != NULL);

      const_iterator temp = *this;

      nodeP = nodeP->predecessor();
      return (temp);
    }

    /*!
     * Get the object pointed by the iterator.
     */
    reference operator* () const
    {
      CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());

      return (nodeP->object);
    }

    /*!
     * Get the a pointer object pointed by the iterator.
     */
    pointer operator-> () const
    {
      CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());

      return (&(nodeP->object));
    }

  };
  friend class const_iterator;

  // Define the reverse iterators:
  typedef std::reverse_iterator<iterator>         reverse_iterator;
  typedef std::reverse_iterator<const_iterator>   const_reverse_iterator;

protected:

  // Data members:
  Node            *rootP;        // Pointer to the tree root.
  size_t           iSize;        // Number of objects stored in the tree.
  size_t           iBlackHeight; // The black-height of the tree (the number
                                 // of black nodes from the root to each leaf).
  Compare          comp_f;       // A comparison functor.
  Node_allocator   node_alloc;   // Allocator for the tree nodes.
  Node             beginNode;    // A fictitious before-the-minimum node.
                                 // Its parent is the leftmost tree node.
  Node             endNode;      // A fictitious past-the-maximum node.
                                 // Its parent is the rightmost tree node.

public:

  /// \name Construction and destruction functions.
  //@{

  /*!
   * Default constructor. [takes O(1) operations]
   */
  Multiset ();

  /*!
   * Constructor with a comparison object. [takes O(1) operations]
   * \param comp A comparison object to be used by the tree.
   */
  Multiset (const Compare& comp);

  /*!
   * Copy constructor. [takes O(n) operations]
   * \param tree The copied tree.
   */
  Multiset (const Self& tree);

  /*!
   * Construct a tree that contains all objects in the given range.
   * [takes O(n log n) operations]
   * \param first An iterator for the first object in the range.
   * \param last A past-the-end iterator for the range.
   */
  template <class InputIterator>
  Multiset (InputIterator first, InputIterator last,
            const Compare& comp = Compare()) :
    rootP (NULL),
    iSize (0),
    iBlackHeight (0),
    comp_f (comp)
  {
    // Mark the two fictitious nodes as dummies.
    beginNode.color = Node::DUMMY_BEGIN;
    endNode.color = Node::DUMMY_END;

    // Insert all objects to the tree.
    while (first != last)
    {
      insert (*first);
      ++first;
    }
  }

  /*!
   * Destructor. [takes O(n) operations]
   */
  virtual ~Multiset ();

  /*!
   * Assignment operator. [takes O(n) operations]
   * \param tree The copied tree.
   */
  Self& operator= (const Self& tree);

  /*!
   * Swap two trees. [takes O(1) operations]
   * \param tree The copied tree.
   */
  void swap (Self& tree);
  //@}

  /// \name Comparison operations.
  //@{
  
  /*!
   * Test two trees for equality. [takes O(n) operations]
   * \param tree The compared tree.
   */
  bool operator== (const Self& tree) const;

  /*!
   * Check if our tree is lexicographically smaller. [takes O(n) operations]
   * \param tree The compared tree.
   */
  bool operator< (const Self& tree) const;
  //@}

  /// \name Access functions.
  //@{

  /*!
   * Get the comparsion object used by the tree (non-const version).
   */
  inline Compare& key_comp ()
  {
    return (comp_f);
  }

  /*!
   * Get the comparsion object used by the tree (non-const version).
   */
  inline Compare& value_comp ()
  {
    return (comp_f);
  }


  /*!
   * Get the comparsion object used by the tree (const version).
   */
  inline const Compare& key_comp () const
  {
    return (comp_f);
  }

  /*!
   * Get the comparsion object used by the tree (const version).
   */
  inline const Compare& value_comp () const
  {
    return (comp_f);
  }

  /*!
   * Get an iterator for the minimum object in the tree (non-const version).
   */
  inline iterator begin ();

  /*!
   * Get a past-the-end iterator for the tree objects (non-const version).
   */
  inline iterator end ();

  /*!
   * Get an iterator for the minimum object in the tree (const version).
   */
  inline const_iterator begin () const;

  /*!
   * Get a past-the-end iterator for the tree objects (const version).
   */
  inline const_iterator end () const;

  /*!
   * Get a reverse iterator for the maxnimum object in the tree
   * (non-const version).
   */
  inline reverse_iterator rbegin ();

  /*!
   * Get a pre-the-begin reverse iterator for the tree objects
   * (non-const version).
   */
  inline reverse_iterator rend ();

  /*!
   * Get a reverse iterator for the maximum object in the tree (const version).
   */
  inline const_reverse_iterator rbegin () const;

  /*!
   * Get a pre-the-begin reverse iterator for the tree objects (const version).
   */
  inline const_reverse_iterator rend () const;

  /*!
   * Check whether the tree is empty.
   */
  inline bool empty () const
  {
    return (rootP == NULL);
  }

  /*!
   * Get the size of the tree. [takes O(1) operations, unless the tree
   * was involved in a split operation, then it may take O(n) time.]
   * \return The number of objects stored in the tree.
   */
  size_t size () const;

  /*!
   * Get the maximal possible size (equivalent to size()).
   */
  size_t max_size () const
  {
    return (size());
  }
  //@}

  /// \name Insertion functions.

  /*!
   * Insert an object into the tree. [takes O(log n) operations]
   * \param object The object to be inserted.
   * \return An iterator pointing to the inserted object.
   */
  iterator insert (const Type& object);

  /*!
   * Insert a range of k objects into the tree. [takes O(k log n) operations]
   * \param first An iterator for the first object in the range.
   * \param last A past-the-end iterator for the range.
   */
  template <class InputIterator>
  void insert (InputIterator first, InputIterator last)
  {
    // Insert all objects to the tree.
    while (first != last)
    {
      insert (*first);
      ++first;
    }

    return;
  }

  /*!
   * Insert an object to the tree, with a given hint to its position.
   * [takes O(log n) operations at worst-case, but only O(1) amortized]
   * \param position A hint for the position of the object.
   * \param object The object to be inserted.
   * \return An iterator pointing to the inserted object.
   */
  iterator insert (iterator position,
                   const Type& object);

  /*!
   * Insert an object to the tree, as the successor the given object.
   * [takes O(log n) operations at worst-case, but only O(1) amortized]
   * \param position Points to the object after which the new object should
   *                 be inserted (or an invalid iterator to insert the object
   *                 as the tree minimum).
   * \param object The object to be inserted.
   * \pre The operation does not violate the tree properties.
   * \return An iterator pointing to the inserted object.
   */
  iterator insert_after (iterator position,
                         const Type& object);

  /*!
   * Insert an object to the tree, as the predecessor the given object.
   * [takes O(log n) operations at worst-case, but only O(1) amortized]
   * \param position Points to the object before which the new object should
   *                 be inserted (or an invalid iterator to insert the object 
   *                 as the tree maximum).
   * \param object The object to be inserted.
   * \pre The operation does not violate the tree properties.
   * \return An iterator pointing to the inserted object.
   */
  iterator insert_before (iterator position,
                          const Type& object);
  //@}

  /// \name Erasing functions.
  //@{

  /*!
   * Erase objects from the tree. [takes O(log n) operations]
   * \param object The object to be removed.
   * \return The number of objects removed from the tree.
   *          Note that all iterators to the erased objects become invalid.
   */
  size_t erase (const Type& object);

  /*!
   * Remove the object pointed by the given iterator. 
   * [takes O(log n) operations at worst-case, but only O(1) amortized]
   * \param position An iterator pointing the object to be erased.
   * \pre The iterator must be a valid.
   *      Note that all iterators to the erased object become invalid.
   */
  void erase (iterator position);

  /*!
   * Clear the contents of the tree. [takes O(n) operations]
   */
  void clear ();
  
  //@}

  /// \name Search functions.
  //@{

  /*!
   * Search the tree for the given key (non-const version).
   * [takes O(log n) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return A iterator pointing to the first equivalent object in the tree,
   *         or end() if no such object is found in the tree.
   */
  iterator find (const Type& object)
  {
    return (find (object, comp_f));
  }

  template <class Key, class CompareKey>
  iterator find (const Key& key,
                 const CompareKey& comp_key)
  {
    bool    is_equal;
    Node   *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);

    if (_is_valid(nodeP) && is_equal)
      return (iterator (nodeP));
    else
      return (iterator (&endNode));
  }

  /*!
   * Search the tree for the given key (const version).
   * [takes O(log n) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return A iterator pointing to the first equivalent object in the tree,
   *         or end() if no such object is found in the tree.
   */
  const_iterator find (const Type& object) const
  {
    return (find (object, comp_f));
  }

  template <class Key, class CompareKey>
  const_iterator find (const Key& key,
                       const CompareKey& comp_key) const
  {
    bool          is_equal;
    const Node   *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);

    if (_is_valid (nodeP) && is_equal)
      return (const_iterator (nodeP));
    else
      return (const_iterator (&endNode));
  }

  /*!
   * Count the number of object in the tree equivalent to a given key.
   * [takes O(log n + d) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return The number of equivalent objects.
   */
  size_type count (const Type& object) const
  {
    return (count (object, comp_f));
  }

  template <class Key, class CompareKey>
  size_type count (const Key& key,
                   const CompareKey& comp_key) const
  {
    // Get the first equivalent object (if any).
    size_t      n_objects = 0;
    bool        is_equal;
    const Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);

    if (! is_equal)
      return (0);

    while (_is_valid (nodeP) &&
           comp_key (key, nodeP->object) == EQUAL)
    {
      n_objects++;

      // Proceed to the successor.
      nodeP = nodeP->successor();
    }

    return (n_objects);
  }

  /*!
   * Get the first element whose key is not less than a given key
   * (non-const version). [takes O(log n) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return The lower bound of the key, or end() if the key is not found
   *         in the tree.
   */
  iterator lower_bound (const Type& object)
  {
    return (lower_bound (object, comp_f));
  }

  template <class Key, class CompareKey>
  iterator lower_bound (const Key& key,
                        const CompareKey& comp_key)
  {
    bool    is_equal;
    Node   *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);

    if (_is_valid (nodeP))
      return (iterator (nodeP));
    else
      return (iterator (&endNode));
  }

  /*!
   * Get the first element whose key is not less than a given key
   * (non-const version). [takes O(log n) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return The lower bound of the key, along with a flag indicating whether
   *         the bound equals the given key.
   */
  std::pair<iterator, bool> find_lower (const Type& object)
  {
    return (find_lower (object, comp_f));
  }

  template <class Key, class CompareKey>
  std::pair<iterator, bool> find_lower (const Key& key,
					const CompareKey& comp_key)
  {
    bool    is_equal;
    Node   *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);

    if (_is_valid (nodeP))
      return (std::make_pair (iterator (nodeP), is_equal));
    else
      return (std::make_pair (iterator (&endNode), false));
  }

  /*!
   * Get the first element whose key is greater than a given key
   * (non-const version). [takes O(log n) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return The upper bound of the key, or end() if the key is not found
   *         in the tree.
   */
  iterator upper_bound (const Type& object)
  {
    return (upper_bound (object, comp_f));
  }

  template <class Key, class CompareKey>
  iterator upper_bound (const Key& key,
                        const CompareKey& comp_key)
  {
    bool    is_equal;
    Node   *nodeP = _bound (UPPER_BOUND, key, comp_key, is_equal);

    if (_is_valid (nodeP))
      return (iterator (nodeP));
    else
      return (iterator (&endNode));
  }

  /*!
   * Get the first element whose key is not less than a given key
   * (const version). [takes O(log n) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return The lower bound of the key, or end() if the key is not found
   *         in the tree.
   */
  const_iterator lower_bound (const Type& object) const
  {
    return (lower_bound (object, comp_f));
  }

  template <class Key, class CompareKey>
  const_iterator lower_bound (const Key& key,
                              const CompareKey& comp_key) const
  {
    bool          is_equal;
    const Node   *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);

    if (_is_valid (nodeP))
      return (const_iterator (nodeP));
    else
      return (const_iterator (&endNode));
  }

  /*!
   * Get the first element whose key is not less than a given key
   * (const version). [takes O(log n) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return The lower bound of the key, along with a flag indicating whether
   *         the bound equals the given key.
   */
  std::pair<const_iterator, bool> find_lower (const Type& object) const
  {
    return (find_lower (object, comp_f));
  }

  template <class Key, class CompareKey>
  std::pair<const_iterator, bool> find_lower (const Key& key,
					      const CompareKey& comp_key) const
  {
    bool          is_equal;
    const Node   *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);

    if (_is_valid (nodeP))
      return (std::make_pair (const_iterator (nodeP), is_equal));
    else
      return (std::make_pair (const_iterator (&endNode), false));
  }

  /*!
   * Get the first element whose key is greater than a given key
   * (const version). [takes O(log n) operations]
   * \param object The query object.
   * \return The upper bound of the key, or end() if the key is not found
   *         in the tree.
   */
  const_iterator upper_bound (const Type& object) const
  {
    return (upper_bound (object, comp_f));
  }

  template <class Key, class CompareKey>
  const_iterator upper_bound (const Key& key,
                              const CompareKey& comp_key) const
  {
    bool          is_equal;
    const Node   *nodeP = _bound (UPPER_BOUND, key, comp_key, is_equal);

    if (_is_valid (nodeP))
      return (const_iterator (nodeP));
    else
      return (const_iterator (&endNode));
  }

  /*!
   * Get the range of objects in the tree that are equivalent to a given key
   * (non-const version). [takes O(log n + d) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return A pair of (lower_bound(key), upper_bound(key)).
   */  
  std::pair<iterator, iterator> equal_range (const Type& object)
  {
    return (equal_range (object, comp_f));
  }

  template <class Key, class CompareKey>
  std::pair<iterator, iterator>
  equal_range (const Key& key,
               const CompareKey& comp_key)
  {
    // Get the first equivalent object (if any).
    const size_t   max_steps = static_cast<size_t> (1.5 * iBlackHeight);
    bool           is_equal;
    Node          *lowerP = _bound (LOWER_BOUND, key, comp_key, is_equal);
    Node          *upperP = lowerP;
    size_t         n_objects = 0;

    if (is_equal)
    {
      while (_is_valid (upperP) &&
             comp_key (key, upperP->object) == EQUAL)
      {
        n_objects++;
        if (n_objects >= max_steps)
        {
          // If we have more than log(n) objects in the range, locate the
          // upper bound directly.
          upperP = _bound (UPPER_BOUND, key, comp_key, is_equal);
          break;
        }

        // Proceed to the successor.
        upperP = upperP->successor();
      }
    }

    return (std::pair<iterator, iterator>
      ((_is_valid (lowerP)) ? iterator (lowerP) : iterator (&endNode),
       (_is_valid (upperP)) ? iterator (upperP) : iterator (&endNode)));
  }

  /*!
   * Get the range of objects in the tree that are equivalent to a given key
   * (const version). [takes O(log n + d) operations]
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \return A pair of (lower_bound(key), upper_bound(key)).
   */
  std::pair<const_iterator, const_iterator>
  equal_range (const Type& object) const
  {
    return (equal_range (object, comp_f));
  }

  template <class Key, class CompareKey>
  std::pair<const_iterator, const_iterator>
  equal_range (const Key& key,
               const CompareKey& comp_key) const
  {
    // Get the first equivalent object (if any).
    const size_t   max_steps = static_cast<size_t> (1.5 * iBlackHeight);
    bool           is_equal;
    const Node    *lowerP = _bound (LOWER_BOUND, key, comp_key, is_equal);
    const Node    *upperP = lowerP;
    size_t         n_objects = 0;

    if (is_equal)
    {
      while (_is_valid (upperP) &&
             comp_key (key, upperP->object) == EQUAL)
      {
        n_objects++;
        if (n_objects >= max_steps)
        {
          // If we have more than log(n) objects in the range, locate the
          // upper bound directly.
          upperP = _bound (UPPER_BOUND, key, comp_key, is_equal);
          break;
        }

        // Proceed to the successor.
        upperP = upperP->successor();
      }
    }

    return (std::pair<const_iterator, const_iterator>
      ((_is_valid (lowerP)) ? const_iterator(lowerP) :
                              const_iterator(&endNode),
       (_is_valid (upperP)) ? const_iterator(upperP) :
                              const_iterator(&endNode)));
  }
  //@}

  /// \name Special functions.
  //@{

  /*!
   * Replace the object pointed by a given iterator with another object.
   * [takes O(1) operations]
   * \param position An iterator pointing the object to be replaced.
   * \param object The new object.
   * \pre The given iterator is valid.
   *      The operation does not violate the tree properties.
   */
  void replace (iterator position,
                const Type& object);

  /*!
   * Swap the location two objects in the tree, given by their positions.
   * [takes O(1) operations]
   * \param pos1 An iterator pointing to the first object.
   * \param pos1 An iterator pointing to the second object.
   * \pre The two iterators are valid.
   *      The operation does not violate the tree properties.
   */
  void swap (iterator pos1, iterator pos2);

  /*!
   * Catenate the tree with a given tree, whose minimal object is not less
   * than the maximal object of this tree. [takes O(log n) operations]
   * The function clears the other given tree, but all its iterators remain
   * valid and can be used with the catenated tree.
   * \param tree The tree to catenate to out tree.
   * \pre The minimal object in the given tree is not less than the maximal
   *      objects.
   */
  void catenate (Self& tree);

  /*!
   * Split the tree such that all remaining objects are less than a given
   * key, and all objects greater then (or equal to) this key form
   * a new output tree. [takes O(log n) operations]
   * \param key The split key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \param tree Output: The tree that will eventually contain all objects
   *                     greater than the split object.
   * \pre The output tree is initially empty.
   */
  void split (const Type& object, Self& tree)
  {
    split (object, comp_f, tree);
    return;
  }

  template <class Key, class CompareKey>
  void split (const Key& key, const CompareKey& comp_key,
              Self& tree)
  {
    split (lower_bound (key, comp_key), tree);
    return;
  }

  /*!
   * Split the tree at a given position, such that it contains all objects
   * in the range [begin, position) and all objects in the range
   * [position, end) form a new output tree. [takes O(log n) operations]
   * \param position An iterator pointing at the split position.
   * \param tree Output: The output tree.
   * \pre The output tree is initially empty.
   */
  void split (iterator position, Self& tree);

  //@}

  /// \name Debugging utilities.
  //@{

  /*!
   * Check validation of the tree. [takes o(n) operations]
   * \return true iff the tree is valid.
   *
   */
  bool is_valid() const;

  /*!
   * Get the height of the tree. [takes O(n) operations]
   * \return The length of the longest path from the root to a leaf node.
   */
  size_t height () const;

  /*!
   * Get the black-height of the tree. [takes O(1) operations]
   * \return The number of black nodes from the root to each leaf node.
   */
  inline size_t black_height () const
  {
    return (iBlackHeight);
  }
  //@}

protected:

  /// \name Auxiliary predicates.
  //@{

  /*! Check whether a node is valid. */
  inline bool _is_valid (const Node *nodeP) const
  {
    return (nodeP != NULL && nodeP->is_valid());
  }

  /*! Check whether a node is red. */
  inline bool _is_red (const Node *nodeP) const
  {
    return (nodeP != NULL && nodeP->color == Node::RED);
  }

  /*! Check whether a node is black. */
  inline bool _is_black (const Node *nodeP) const
  {
    // Note that invalid nodes are considered ro be black as well.
    return (nodeP == NULL || nodeP->color != Node::RED);
  }
  //@}

  /// \name Auxiliary operations.
  //@{

  /*!
   * Move the contents of one tree to another without actually duplicating
   * the nodes. This operation also clears the copied tree.
   * \param tree The tree to be copied (and eventuallu cleared).
   */
  void _shallow_assign (Self& tree);

  /*!
   * Clear the properties of the tree, without actually deallocating its 
   * nodes.
   */
  void _shallow_clear ();

  /*!
   * Return the pointer to the node containing the first object that is not
   * less than (or greater than) the given key.
   * \param type The bound type (lower or upper).
   * \param key The query key.
   * \param comp_key A comparison functor for comparing keys and objects.
   * \param is_equal Output: In case of a lower bound, indicates whether the
   *                         returned node contains an object equivalent to
   *                         the given key.
   * \return A node that contains the first object that is not less than the
   *         given key (if type is LOWER_BOUND), or anode that contains the
   *         first object that is greater than the given key (if type is
   *         UPPER_BOUND) - or a NULL node if no such nodes exist.
   */
  enum Bound_type {LOWER_BOUND, UPPER_BOUND};

  template <class Key, class CompareKey>
  Node* _bound (Bound_type type,
                const Key& key,
                const CompareKey& comp_key,
                bool& is_equal) const
  {
    // Initially mark that the key is not found in the tree.
    is_equal = false;

    if (rootP == NULL)
      // The tree is empty:
      return (NULL);

    Node                      *currentP = rootP;
    Node                      *prevP = currentP;
    Comparison_result          comp_res = EQUAL;

    while (_is_valid (currentP))
    {
      comp_res = comp_key (key, currentP->object);

      if (comp_res == EQUAL)
      {
        // The key is found in the tree:
        if (type == LOWER_BOUND)
        {
          is_equal = true;

          // Lower bound computation:
          // Go backward as long as we find equivalent objects.
          prevP = currentP->predecessor();
          while (_is_valid (prevP))
          {
            if (comp_key (key, prevP->object) != EQUAL)
              break;
            currentP = prevP;
            prevP = currentP->predecessor();
          }
        }
        else
        {
          // Upper bound computation:
          // Go backward until we encounter a non-equivalent objects.
          do
          {
            currentP = currentP->successor();
          } while (_is_valid (currentP) &&
                   comp_key (key, currentP->object) == EQUAL);
        }

        return (currentP);
      }
      else if (comp_res == SMALLER)
      {
        prevP = currentP;

        // Go down to the left child.
        currentP = currentP->leftP;
      }
      else // comp_res == LARGER
      {
        prevP = currentP;

        // Go down to the right child.
        currentP = currentP->rightP;
      }
    }

    // If we reached here, the object is not found in the tree. We check if the
    // last node we visited (given by prevP) contains an object greater than
    // the query object. If not, we return its successor.
    if (comp_res == SMALLER)
      return (prevP);
    else
      return (prevP->successor());
  }

  /*!
   * Remove the object stored in the given tree node.
   * \param nodeP The node storing the object to be removed from the tree.
   */
  void _remove_at (Node* nodeP);

  /*!
   * Swap the location two nodes in the tree.
   * \param node1_P The first node.
   * \param node2_P The second node.
   */
  void _swap (Node* node1_P, Node* node2_P);

  /*!
   * Swap the location two sibling nodes in the tree.
   * \param node1_P The first node.
   * \param node2_P The second node.
   * \pre The two nodes have a common parent.
   */
  void _swap_siblings (Node* node1_P, Node* node2_P);

  /*!
   * Calculate the height of the sub-tree spanned by the given node.
   * \param nodeP The sub-tree root.
   * \return The height of the sub-tree.
   */
  size_t _sub_height (const Node* nodeP) const;

  /*!
   * Check whether a sub-tree is valid.
   * \param nodeP The sub-tree root.
   * \param sub_size Output: The size of the sub-tree.
   * \param sub_bh Output: The black height of the sub-tree.
   */
  bool _sub_is_valid (const Node* nodeP,
                      size_t& sub_size,
                      size_t& sub_bh) const;

  /*!
   * Get the leftmost node in the sub-tree spanned by the given node.
   * \param nodeP The sub-tree root.
   * \return The sub-tree minimum.
   */
  Node* _sub_minimum (Node* nodeP) const;

  /*!
   * Get the rightmost node in the sub-tree spanned by the given node.
   * \param nodeP The sub-tree root.
   * \return The sub-tree maximum.
   */
  Node* _sub_maximum (Node* nodeP) const;

  /*!
   * Left-rotate the sub-tree spanned by the given node.
   * \param nodeP The sub-tree root.
   */
  void _rotate_left (Node* nodeP);

  /*!
   * Right-rotate the sub-tree spanned by the given node.
   * \param nodeP The sub-tree root.
   */
  void _rotate_right (Node* nodeP);

  /*!
   * Duplicate the entire sub-tree rooted at the given node.
   * \param nodeP The sub-tree root.
   * \return A pointer to the duplicated sub-tree root.
   */
  Node* _duplicate (const Node* nodeP);

  /*!
   * Destroy the entire sub-tree rooted at the given node.
   * \param nodeP The sub-tree root.
   */
  void _destroy (Node* nodeP);

  /*!
   * Fix-up the red-black tree properties after an insertion operation.
   * \param nodeP The node that has just been inserted to the tree.
   */
  void _insert_fixup (Node* nodeP);

  /*!
   * Fix-up the red-black tree properties after a removal operation.
   * \param nodeP The child of the node that has just been removed from
   *              the tree (may be a NULL node).
   * \param parentP The parent node of nodeP (as nodeP may be a NULL node,
   *                we have to specify its parent explicitly).
   */
  void _remove_fixup (Node* nodeP, Node* parentP);

  /*!
   * Allocate and initialize new tree node.
   * \param object The object stored in the node.
   * \param color The node color.
   * \return A pointer to the newly created node.
   */
  Node* _allocate_node (const Type& object,
                        typename Node::Node_color color)
#ifdef CGAL_CFG_OUTOFLINE_MEMBER_DEFINITION_BUG
  {
      CGAL_multiset_assertion (color != Node::DUMMY_BEGIN && 
	      color != Node::DUMMY_END);

      Node* new_node = node_alloc.allocate(1);

      node_alloc.construct(new_node, beginNode);
      new_node->init(object, color);
      return (new_node);
  }
#else
  ;
#endif

  /*!
   * De-allocate a tree node.
   * \param nodeP The object node to be deallocated.
   */
  void _deallocate_node (Node* nodeP);
  //@}
};

//---------------------------------------------------------
// Default constructor.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::Multiset () :
  rootP (NULL),
  iSize (0),
  iBlackHeight (0),
  comp_f ()
{
  // Mark the two fictitious nodes as dummies.
  beginNode.color = Node::DUMMY_BEGIN;
  endNode.color = Node::DUMMY_END;
}

//---------------------------------------------------------
// Constructor with a pointer to comparison object.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::Multiset (const Compare& comp) :
  rootP (NULL),
  iSize (0),
  iBlackHeight (0),
  comp_f (comp)
{
  // Mark the two fictitious nodes as dummies.
  beginNode.color = Node::DUMMY_BEGIN;
  endNode.color = Node::DUMMY_END;
}

//---------------------------------------------------------
// Copy constructor.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::Multiset (const Self& tree) :
  rootP (NULL),
  iSize (tree.iSize),
  iBlackHeight (tree.iBlackHeight),
  comp_f (tree.comp_f)
{
  // Mark the two fictitious nodes as dummies.
  beginNode.color = Node::DUMMY_BEGIN;
  endNode.color = Node::DUMMY_END;

  // Copy all the copied tree's nodes recursively.
  if (tree.rootP != NULL)
  {
    rootP = _duplicate (tree.rootP);

    // Set the dummy nodes.
    beginNode.parentP = _sub_minimum (rootP);
    beginNode.parentP->leftP = &beginNode;
    endNode.parentP = _sub_maximum (rootP);
    endNode.parentP->rightP = &endNode;
  }
  else
  {
    beginNode.parentP = NULL;
    endNode.parentP = NULL;
  }
}

//---------------------------------------------------------
// Destructor.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::~Multiset ()
{
  // Delete the entire tree recursively.
  if (rootP != NULL)
    _destroy (rootP);

  rootP = NULL;
  beginNode.parentP = NULL;
  endNode.parentP = NULL;
}

//---------------------------------------------------------
// Assignment operator.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>&
Multiset<Type, Compare, Allocator>::operator= (const Self& tree)
{
  // Avoid self-assignment.
  if (this == &tree)
    return (*this);
  
  // Free all objects currently stored in the tree.
  clear();

  // Update the number of objects stored in the tree.
  iSize = tree.iSize;
  iBlackHeight = tree.iBlackHeight;

  // Copy all the copied tree's nodes recursively.
  if (tree.rootP != NULL)
  {
    rootP = _duplicate (tree.rootP);

    // Set the dummy nodes.
    beginNode.parentP = _sub_minimum (rootP);
    beginNode.parentP->leftP = &beginNode;
    endNode.parentP = _sub_maximum (rootP);
    endNode.parentP->rightP = &endNode;
  }
  else
  {
    beginNode.parentP = NULL;
    endNode.parentP = NULL;
  }

  return (*this);
}

//---------------------------------------------------------
// Swap two trees (replace their contents).
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::swap (Self& tree)
{
  // Avoid self-swapping.
  if (this == &tree)
    return;

  // Replace the contents of the trees.
  Node            *tempP = rootP; 
  rootP = tree.rootP;
  tree.rootP = tempP;

  size_t           iTemp = iSize;
  iSize = tree.iSize;
  tree.iSize = iTemp;

  iTemp = iBlackHeight;
  iBlackHeight = tree.iBlackHeight;
  tree.iBlackHeight = iTemp;
  
  // Update the fictitious begin and end nodes.
  tempP = beginNode.parentP;
  beginNode.parentP = tree.beginNode.parentP;
  if (beginNode.parentP != NULL)
    beginNode.parentP->leftP = &beginNode;
  tree.beginNode.parentP = tempP;
  if (tree.beginNode.parentP != NULL)
    tree.beginNode.parentP->leftP = &(tree.beginNode);

  tempP = endNode.parentP;
  endNode.parentP = tree.endNode.parentP;
  if (endNode.parentP != NULL)
    endNode.parentP->rightP = &endNode;
  tree.endNode.parentP = tempP;
  if (tree.endNode.parentP != NULL)
    tree.endNode.parentP->rightP = &(tree.endNode);

  return;
}

//---------------------------------------------------------
// Test two trees for equality.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type,Compare,Allocator>::operator== (const Self& tree) const
{
  // The sizes of the two trees must be the same.
  if (size() != tree.size())
    return (false);

  // Go over all elements in both tree and compare them pairwise.
  const_iterator   it1 = this->begin();
  const_iterator   it2 = tree.begin();

  while (it1 != this->end() && it2 != tree.end())
  {
    if (comp_f (*it1, *it2) != EQUAL)
      return (false);

    ++it1;
    ++it2;
  }

  // If we reached here, the two trees are equal.
  return (true);
}

//---------------------------------------------------------
// Check if our tree is lexicographically smaller that a given tree.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type,Compare,Allocator>::operator< (const Self& tree) const
{
  // Go over all elements in both tree and compare them pairwise.
  const_iterator   it1 = this->begin();
  const_iterator   it2 = tree.begin();

  while (it1 != this->end() && it2 != tree.end())
  {
    const Comparison_result   res = comp_f (*it1, *it2);

    if (res == SMALLER)
      return (true);
    if (res == LARGER)
      return (false);

    ++it1;
    ++it2;
  }

  // If we reached here, one tree is the prefix of the other tree. We now
  // check which tree contains more elements.
  if (it1 != this->end())
  {
    // Our tree contains the other tree as a prefix, so it is not smaller.
    return (false);
  }
  else if (it2 != tree.end())
  {
    // The other tree contains our tree as a prefix, so our tree is smaller.
    return (true);
  }

  // The two trees are equal:
  return (false);
}

//---------------------------------------------------------
// Get an iterator for the minimum object in the tree (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::iterator 
Multiset<Type, Compare, Allocator>::begin ()
{
  if (beginNode.parentP != NULL)
    return (iterator (beginNode.parentP));
  else
    return (iterator (&endNode));
}

//---------------------------------------------------------
// Get a past-the-end iterator for the tree objects (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type, Compare,Allocator>::iterator 
Multiset<Type, Compare, Allocator>::end ()
{
  return (iterator (&endNode));
}

//---------------------------------------------------------
// Get an iterator for the minimum object in the tree (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_iterator
Multiset<Type, Compare, Allocator>::begin () const
{
  if (beginNode.parentP != NULL)
    return (const_iterator (beginNode.parentP));
  else
    return (const_iterator (&endNode));
}

//---------------------------------------------------------
// Get a past-the-end iterator for the tree objects (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_iterator
Multiset<Type, Compare, Allocator>::end () const
{
  return (const_iterator (&endNode));
}

//---------------------------------------------------------
// Get a reverse iterator for the maxnimum object in the tree
// (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::reverse_iterator
Multiset<Type, Compare, Allocator>::rbegin ()
{
  return (reverse_iterator (end()));
}

//---------------------------------------------------------
// Get a pre-the-begin reverse iterator for the tree objects
// (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::reverse_iterator
Multiset<Type, Compare, Allocator>::rend ()
{
  return (reverse_iterator (begin()));
}

//---------------------------------------------------------
// Get a reverse iterator for the maximum object in the tree (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_reverse_iterator
Multiset<Type, Compare, Allocator>::rbegin () const
{
  return (const_reverse_iterator (end()));
}

//---------------------------------------------------------
// Get a pre-the-begin reverse iterator for the tree objects (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_reverse_iterator
Multiset<Type, Compare, Allocator>::rend () const
{
  return (const_reverse_iterator (begin()));
}

//---------------------------------------------------------
// Get the size of the tree.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::size () const
{
  if (rootP == NULL)
    // The tree is empty:
    return (0);
  else if (iSize > 0)
    return (iSize);

  // If we reached here, the tree is the result of a split operation and its
  // size is not known - compute it now.
  const Node    *nodeP = beginNode.parentP;
  size_t         iComputedSize = 0;

  while (nodeP != &endNode)
  {
    nodeP = nodeP->successor();
    iComputedSize++;
  }

  // Assign the computed size.
  Self  *myThis = const_cast<Self*> (this);
  myThis->iSize = iComputedSize;

  return (iComputedSize);
}

//---------------------------------------------------------
// Insert a new object to the tree.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert (const Type& object)
{
  if (rootP == NULL)
  {
    // In case the tree is empty, assign a new rootP.
    // Notice that the root is always black.
    rootP = _allocate_node (object, Node::BLACK);
    
    iSize = 1;
    iBlackHeight = 1;

    // As the tree now contains a single node, it is both the tree
    // maximum and minimum.
    beginNode.parentP = rootP;
    rootP->leftP = &beginNode;
    endNode.parentP = rootP;
    rootP->rightP = &endNode;

    return (iterator (rootP));
  }

  // Find a place for the new object, and insert it as a red leaf.
  Node                      *currentP = rootP;
  Node                      *newNodeP = _allocate_node (object, Node::RED);

  Comparison_result         comp_res;
  bool                      is_leftmost = true;
  bool                      is_rightmost = true;

  while (_is_valid (currentP))
  {
    // Compare the inserted object with the object stored in the current node.
    comp_res = comp_f (object, currentP->object);

    if (comp_res == SMALLER)
    {
      is_rightmost = false;

      if (! _is_valid (currentP->leftP))
      {
        // Insert the new leaf as the left child of the current node.
        currentP->leftP = newNodeP;
        newNodeP->parentP = currentP;
        currentP = NULL;        // In order to terminate the while loop.

        if (is_leftmost)
        {
          // Assign a new tree minimum.
          beginNode.parentP = newNodeP;
          newNodeP->leftP = &beginNode;
        }
      }
      else
      {
        // Go to the left sub-tree.
        currentP = currentP->leftP;
      }
    }
    else
    {
      is_leftmost = false;

      if (! _is_valid (currentP->rightP))
      {
        // Insert the new leaf as the right child of the current node.
        currentP->rightP = newNodeP;
        newNodeP->parentP = currentP;
        currentP = NULL;        // In order to terminate the while loop.

        if (is_rightmost)
        {
          // Assign a new tree maximum.
          endNode.parentP = newNodeP;
          newNodeP->rightP = &endNode;
        }
      }
      else
      {
        // Go to the right sub-tree.
        currentP = currentP->rightP;
      }
    }
  }

  // Mark that a new node was added.
  if (iSize > 0)
    iSize++;

  // Fix up the tree properties.
  _insert_fixup (newNodeP);

  return (iterator(newNodeP));
}

//---------------------------------------------------------
// Insert an object to the tree, with a given hint to its position.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert (iterator position,
                                            const Type& object)
{
  Node  *nodeP = position.nodeP;

  CGAL_multiset_precondition (_is_valid (nodeP));

  // Compare the object to the one stored at the given node in order to decide
  // in which direction to proceed.
  const size_t       max_steps = static_cast<size_t> (1.5 * iBlackHeight);
  Comparison_result  res = comp_f(object, nodeP->object);
  bool               found_pos = true;
  size_t             k = 0;

  if (res == EQUAL)
    return (insert_after (position, object));

  if (res == SMALLER)
  {
    // Go back until locating an object not greater than the inserted one.
    Node  *predP = nodeP->predecessor();

    while (_is_valid (predP) &&
           comp_f (object, predP->object) == SMALLER)
    {
      k++;
      if (k > max_steps)
      {
        // In case the given position is too far away (more than log(n) steps)
        // from the true poisition of the object, break the loop.
        found_pos = false;
        break;
      }

      nodeP = predP;
      predP = nodeP->predecessor();
    }

    if (found_pos)
      return (insert_before (iterator (nodeP), object));
  }
  else
  {
    // Go forward until locating an object not less than the inserted one.
    Node  *succP = nodeP->successor();

    while (_is_valid (succP) &&
           comp_f (object, succP->object) == LARGER)
    {
      k++;
      if (k > max_steps)
      {
        // In case the given position is too far away (more than log(n) steps)
        // from the true poisition of the object, break the loop.
        found_pos = false;
        break;
      }

      nodeP = succP;
      succP = nodeP->successor();
    }

    if (found_pos)
      return (insert_after (iterator (nodeP), object));
  }

  // If the hint was too far than the actual position, perform a normal
  // insertion:
  return (insert (object));
}

//---------------------------------------------------------
// Insert a new object to the tree as the a successor of a given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert_after (iterator position,
                                                  const Type& object)
{
  Node  *nodeP = position.nodeP;

  // In case we are given a NULL node, object should be the tree minimum.
  CGAL_multiset_assertion (nodeP != &endNode);

  if (nodeP == &beginNode)
    nodeP = NULL;

  if (rootP == NULL)
  {
    // In case the tree is empty, make sure that we did not recieve a valid
    // iterator.
    CGAL_multiset_precondition (nodeP == NULL);

    // Assign a new root node. Notice that the root is always black.
    rootP = _allocate_node (object, Node::BLACK);

    iSize = 1;
    iBlackHeight = 1;
    
    // As the tree now contains a single node, it is both the tree
    // maximum and minimum:
    beginNode.parentP = rootP;
    rootP->leftP = &beginNode;
    endNode.parentP = rootP;
    rootP->rightP = &endNode;

    return (iterator (rootP));
  }

  // Insert the new object as a red leaf, being the successor of nodeP.
  Node        *parentP;
  Node        *newNodeP = _allocate_node (object, Node::RED);

  if (nodeP == NULL)
  {
    // The new node should become the tree minimum: Place is as the left
    // child of the current minimal leaf.
    parentP = beginNode.parentP;

    CGAL_multiset_precondition (comp_f(object, parentP->object) != LARGER);

    parentP->leftP = newNodeP;

    // As we inserted a new tree minimum:
    beginNode.parentP = newNodeP;
    newNodeP->leftP = &beginNode;
  }
  else
  {
    // Make sure the insertion does not violate the tree order.
    CGAL_multiset_precondition_code (Node *_succP = nodeP->successor());
    CGAL_multiset_precondition (comp_f(object, nodeP->object) != SMALLER);
    CGAL_multiset_precondition (! _succP->is_valid() ||
                                comp_f(object, _succP->object) != LARGER);

    // In case given node has no right child, place the new node as its 
    // right child. Otherwise, place it at the leftmost position at the
    // sub-tree rooted at its right side.
    if (! _is_valid (nodeP->rightP))
    {
      parentP = nodeP;
      parentP->rightP = newNodeP;
    }
    else
    {
      parentP = _sub_minimum (nodeP->rightP);
      parentP->leftP = newNodeP;
    }

    if (nodeP == endNode.parentP)
    {
      // As we inserted a new tree maximum:
      endNode.parentP = newNodeP;
      newNodeP->rightP = &endNode;
    }
  }

  newNodeP->parentP = parentP;

  // Mark that a new node was added.
  if (iSize > 0)
    iSize++;

  // Fix up the tree properties.
  _insert_fixup (newNodeP);  

  return (iterator (newNodeP));
}

//---------------------------------------------------------
// Insert a new object to the tree as the a predecessor of a given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert_before (iterator position,
                                                   const Type& object)
{
  Node  *nodeP = position.nodeP;

  // In case we are given a NULL node, object should be the tree maximum.
  CGAL_multiset_assertion (nodeP != &beginNode);

  if (nodeP == &endNode)
    nodeP = NULL;

  if (rootP == NULL)
  {
    // In case the tree is empty, make sure that we did not recieve a valid
    // iterator.
    CGAL_multiset_precondition (nodeP == NULL);

    // Assign a new root node. Notice that the root is always black.
    rootP = _allocate_node(object, Node::BLACK);

    iSize = 1;
    iBlackHeight = 1;
    
    // As the tree now contains a single node, it is both the tree
    // maximum and minimum:
    beginNode.parentP = rootP;
    rootP->leftP = &beginNode;
    endNode.parentP = rootP;
    rootP->rightP = &endNode;

    return (iterator (rootP));
  }

  // Insert the new object as a red leaf, being the predecessor of nodeP.
  Node        *parentP;
  Node        *newNodeP = _allocate_node (object, Node::RED);

  if (nodeP == NULL)
  {
    // The new node should become the tree maximum: Place is as the right
    // child of the current maximal leaf.
    parentP = endNode.parentP;

    CGAL_multiset_precondition (comp_f(object, parentP->object) != SMALLER);

    parentP->rightP = newNodeP;

    // As we inserted a new tree maximum:
    endNode.parentP = newNodeP;
    newNodeP->rightP = &endNode;
  }
  else
  {
    // Make sure the insertion does not violate the tree order.
    CGAL_multiset_precondition_code (Node *_predP = nodeP->predecessor());
    CGAL_multiset_precondition (comp_f(object, nodeP->object) != LARGER);
    CGAL_multiset_precondition (! _predP->is_valid() ||
                                comp_f(object, _predP->object) != SMALLER);

    // In case given node has no left child, place the new node as its
    // left child. Otherwise, place it at the rightmost position at the
    // sub-tree rooted at its left side.
    if (! _is_valid (nodeP->leftP))
    {
      parentP = nodeP;
      parentP->leftP = newNodeP;
    }
    else
    {
      parentP = _sub_maximum (nodeP->leftP);
      parentP->rightP = newNodeP;
    }

    if (nodeP == beginNode.parentP)
    {
      // As we inserted a new tree minimum:
      beginNode.parentP = newNodeP;
      newNodeP->leftP = &beginNode;
    }
  }

  newNodeP->parentP = parentP;

  // Mark that a new node was added.
  if (iSize > 0)
    iSize++;

  // Fix up the tree properties.
  _insert_fixup (newNodeP);  

  return (iterator (newNodeP));
}

//---------------------------------------------------------
// Remove an object from the tree.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::erase (const Type& object)
{
  // Find the first node containing an object not less than the object to
  // be erased and from there look for objects equivalent to the given object.
  size_t      n_removed = 0;
  bool        is_equal;
  Node       *nodeP = _bound (LOWER_BOUND, object, comp_f, is_equal);
  Node       *succP;

  if (! is_equal)
    return (n_removed);
    
  while (_is_valid (nodeP) && comp_f (object, nodeP->object) == EQUAL)
  {
    // Keep a pointer to the successor node.
    succP = nodeP->successor();

    // Remove the current node.
    _remove_at (nodeP);
    n_removed++;

    // Proceed to the successor.
    nodeP = succP;
  }

  return (n_removed);
}

//---------------------------------------------------------
// Remove the object pointed by the given iterator.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::erase (iterator position)
{
  Node  *nodeP = position.nodeP;

  CGAL_multiset_precondition (_is_valid (nodeP));

  _remove_at (nodeP);
  return;
}

//---------------------------------------------------------
// Remove all objects from the tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::clear ()
{
  // Delete all the tree nodes recursively.
  if (rootP != NULL)
    _destroy (rootP);

  rootP = NULL;
  beginNode.parentP = NULL;
  endNode.parentP = NULL;

  // Mark that there are no more objects in the tree.
  iSize = 0;
  iBlackHeight = 0;
  
  return;
}

//---------------------------------------------------------
// Replace the object pointed by a given iterator with another object.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::replace (iterator position,
                                                  const Type& object)
{
  Node  *nodeP = position.nodeP;

  CGAL_multiset_precondition (_is_valid (nodeP));

  // Make sure the replacement does not violate the tree order.
  CGAL_multiset_precondition_code (Node *_succP = nodeP->successor());
  CGAL_multiset_precondition (_succP == NULL || 
                              _succP->color == Node::DUMMY_END ||
                              comp_f(object, _succP->object) != LARGER);

  CGAL_multiset_precondition_code (Node *_predP = nodeP->predecessor());
  CGAL_multiset_precondition (_predP == NULL || 
                              _predP->color == Node::DUMMY_BEGIN ||
                              comp_f(object, _predP->object) != SMALLER);
  
  // Replace the object at nodeP.
  nodeP->object = object;

  return;
}
     
//---------------------------------------------------------
// Swap the location two objects in the tree, given by their positions.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::swap (iterator pos1,
                                               iterator pos2)
{
  Node        *node1_P = pos1.nodeP;
  Node        *node2_P = pos2.nodeP;

  CGAL_multiset_precondition (_is_valid (node1_P));
  CGAL_multiset_precondition (_is_valid (node2_P));

  if (node1_P == node2_P)
    return;

  // Make sure the swap does not violate the tree order.
  CGAL_multiset_precondition_code (Node *_succ1_P = node1_P->successor());
  CGAL_multiset_precondition (! _is_valid (_succ1_P) ||
                              comp_f (node2_P->object, 
                                      _succ1_P->object) != LARGER);

  CGAL_multiset_precondition_code (Node *_pred1_P = node1_P->predecessor());
  CGAL_multiset_precondition (! _is_valid (_pred1_P) ||
                              comp_f (node2_P->object, 
                                      _pred1_P->object) != SMALLER);

  CGAL_multiset_precondition_code (Node *_succ2_P = node2_P->successor());
  CGAL_multiset_precondition (! _is_valid (_succ2_P) ||
                              comp_f (node1_P->object, 
                                      _succ2_P->object) != LARGER);

  CGAL_multiset_precondition_code (Node *_pred2_P = node2_P->predecessor());
  CGAL_multiset_precondition (! _is_valid (_pred2_P) ||
                              comp_f (node1_P->object, 
                                      _pred2_P->object) != SMALLER);

  // Perform the swap.
  if (node1_P->parentP == node2_P->parentP)
    _swap_siblings (node1_P, node2_P);
  else
    _swap (node1_P, node2_P);

  return;
}

//---------------------------------------------------------
// Check if the tree is a valid one.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type, Compare, Allocator>::is_valid () const
{
  if (rootP == NULL)
  {
    // If there is no root, make sure that the tree is empty.
    if (iSize != 0 || iBlackHeight != 0)
      return (false);

    if (beginNode.parentP != NULL || endNode.parentP != NULL)
      return (false);

    return (true);
  }

  // Check the validity of the fictitious nodes.
  if (beginNode.parentP == NULL || beginNode.parentP->leftP != &beginNode)
    return (false);

  if (endNode.parentP == NULL || endNode.parentP->rightP != &endNode)
    return (false);

  // Check recursively whether the tree is valid.
  size_t           iComputedSize;
  size_t           iComputedBHeight;

  if (! _sub_is_valid (rootP, iComputedSize, iComputedBHeight))
    return (false);

  // Make sure the tree properties are correct.
  if (iSize != 0)
  {
    if (iSize != iComputedSize)
      return (false);
  }
  else
  {
    // Assign the computed size.
    Self  *myThis = const_cast<Self*> (this);
    myThis->iSize = iComputedSize;
  }

  if (iBlackHeight != iComputedBHeight)
    return (false);

  // If we reached here, the entire tree is valid.
  return (true);
}

//---------------------------------------------------------
// Get the height of the tree.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::height () const
{
  if (rootP == NULL)
    // Empty tree.
    return (0);

  // Return the height of the root's sub-tree (the entire tree).
  return (_sub_height (rootP));
}

//---------------------------------------------------------
// Catenate the tree with another given tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::catenate (Self& tree)
{
  // Get the maximal node in our tree and the minimal node in the other tree.
  Node    *max1_P = endNode.parentP;
  Node    *min2_P = tree.beginNode.parentP;

  if (min2_P == NULL)
  {
    // The other tree is empty - nothing to do.
    CGAL_multiset_assertion (tree.rootP == NULL);
    return;
  }
  else if (max1_P == NULL)
  {
    // Our tree is empty: Copy all other tree properties to our tree.
    CGAL_multiset_assertion (rootP == NULL);

    _shallow_assign (tree);
    return;
  }

  // Make sure that the minimal object in the other tree is not less than the
  // maximal object in our tree.
  CGAL_multiset_precondition (comp_f (max1_P->object, 
                                      min2_P->object) != LARGER);

  // Make sure both tree roots black.
  CGAL_multiset_assertion (_is_black (rootP));
  CGAL_multiset_assertion (_is_black (tree.rootP));

  // Splice max1_P (or min2_P) from its tree, but without deleting it.
  Node*   auxP = NULL;

  if (max1_P != rootP)
  {
    // Splice max1_P from its current poisition in our tree.
    // We know it is has no right child, so we just have to connect its
    // left child with its parent.
    max1_P->parentP->rightP = max1_P->leftP;

    if (_is_valid (max1_P->leftP))
      max1_P->leftP->parentP = max1_P->parentP;

    // If max1_P is a black node, we have to fixup our tree.
    if (max1_P->color == Node::BLACK)
      _remove_fixup (max1_P->leftP, max1_P->parentP);

    auxP = max1_P;
  }
  else if (min2_P != tree.rootP)
  {
    // Splice min2_P from its current poisition in the other tree.
    // We know it is has no left child, so we just have to connect its
    // right child with its parent.
    if (min2_P->parentP != NULL)
    {
      min2_P->parentP->leftP = min2_P->rightP;

      if (_is_valid (min2_P->rightP))
        min2_P->rightP->parentP = min2_P->parentP;

      // If min2_P is a black node, we have to fixup the other tree.
      if (min2_P->color == Node::BLACK)
        tree._remove_fixup (min2_P->rightP, min2_P->parentP);
    }

    auxP = min2_P;
  }
  else
  {
    // Both nodes are root nodes: Assign min2_P as the right child of the
    // root and color it red.
    rootP->rightP = min2_P;
    min2_P->parentP = rootP;
    min2_P->color = Node::RED;
    min2_P->leftP = NULL;

    if (! _is_valid (min2_P->rightP))
    {
      // The other tree is of size 1 - set min2_P as the tree maximum.
      min2_P->rightP = &endNode;
      endNode.parentP = min2_P;
    }
    else
    {
      // The other tree is of size 2 - fixup from min2_P's right child and set
      // it as the tree maximum.
      _insert_fixup (min2_P->rightP);
      min2_P->rightP->rightP = &endNode;
      endNode.parentP = min2_P->rightP;
    }

    if (iSize > 0 && tree.iSize > 0)
      iSize += tree.iSize;
    else
      iSize = 0;

    // Clear the other tree (without actually deallocating the nodes).
    tree._shallow_clear();

    return;
  }

  // Mark that the maximal node in our tree is no longer the maximum.
  if (endNode.parentP != NULL)
    endNode.parentP->rightP = NULL;

  // Mark that the minimal node in the other tree is no longer the minimum.
  if (tree.beginNode.parentP != NULL)
    tree.beginNode.parentP->leftP = NULL;

  // Locate node1_P along the rightmost path in our tree and node2_P along the
  // leftmost path in the other tree, both having the same black-height.
  Node    *node1_P = rootP;
  Node    *node2_P = tree.rootP;
  size_t   iCurrBHeight;

  if (iBlackHeight <= tree.iBlackHeight)
  {
    // The other tree is taller (or both trees have the same height):
    // Go down the leftmost path of the other tree and locate node2_P.
    node2_P = tree.rootP;
    iCurrBHeight = tree.iBlackHeight;
    while (iCurrBHeight > iBlackHeight)
    {
      if (node2_P->color == Node::BLACK)
        iCurrBHeight--;
      node2_P = node2_P->leftP;
    }

    if (_is_red (node2_P))
      node2_P = node2_P->leftP;
    CGAL_multiset_assertion (_is_valid (node2_P));
  }
  else
  {
    // Our tree is taller:
    // Go down the rightmost path of our tree and locate node1_P.
    node1_P = rootP;
    iCurrBHeight = iBlackHeight;
    while (iCurrBHeight > tree.iBlackHeight)
    {
      if (node1_P->color == Node::BLACK)
        iCurrBHeight--;
      node1_P = node1_P->rightP;
    }

    if (_is_red (node1_P))
      node1_P = node1_P->rightP;
    CGAL_multiset_assertion (_is_valid (node2_P));
  }

  // Check which one of the tree roots have we reached.
  Node    *newRootP = NULL;
  Node    *parentP;

  if (node1_P == rootP)
  {
    // We know that node2_P has the same number of black roots from it to
    // the minimal tree node as the number of black nodes from our tree root
    // to any of its leaves. We make rootP and node2_P siblings by moving
    // auxP to be their parent.
    parentP = node2_P->parentP;

    if (parentP == NULL)
    {
      // Make auxP the root of the catenated tree.
      newRootP = auxP;
    }
    else
    {
      // The catenated tree will be rooted at the other tree's root.
      newRootP = tree.rootP;

      // Move auxP as the left child of parentP.
      parentP->leftP = auxP;
    }
  }
  else
  {
    // We know that node1_P has the same number of black roots from it to
    // the maximal tree node as the number of black nodes from the other tree
    // root to any of its leaves. We make tree.rootP and node1_P siblings by
    // moving auxP to be their parent.
    parentP = node1_P->parentP;

    CGAL_multiset_assertion (parentP != NULL);

    // The catenated tree will be rooted at the current root of our tree.
    newRootP = rootP;

    // Move auxP as the right child of parentP.
    parentP->rightP = auxP;
  }

  // Move node1_P to be the left child of auxP, and node2_P to be its
  // right child. We also color this node red.
  auxP->parentP = parentP;
  auxP->color = Node::RED;
  auxP->leftP = node1_P;
  auxP->rightP = node2_P;

  node1_P->parentP = auxP;
  node2_P->parentP = auxP;

  // Set the catenated tree properties.
  if (rootP != newRootP)
  {
    // Take the black-height of the other tree.
    iBlackHeight = tree.iBlackHeight;
    rootP = newRootP;
  }

  if (iSize > 0 && tree.iSize > 0)
    iSize += tree.iSize;
  else
    iSize = 0;

  // Set the new maximal node in the tree (the minimal node remains unchanged).
  endNode.parentP = tree.endNode.parentP;
  endNode.parentP->rightP = &endNode;

  // Clear the other tree (without actually deallocating the nodes).
  tree._shallow_clear();

  // Perform a fixup of the tree invariants. This fixup will also take care
  // of updating the black-height of our catenated tree.
  _insert_fixup (auxP);

  return;
}

//---------------------------------------------------------
// Split the tree at a given position, such that it contains all objects
// in the range [begin, position) and all objects in the range
// [position, end) form a new output tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::split (iterator position,
                                                Self& tree)
{
  CGAL_multiset_precondition (tree.empty());

  // Check the extremal cases.
  if (position == begin())
  {
    // The tree should be copied to the output tree.
    tree._shallow_assign (*this);
    return;
  }
  else if (position == end())
  {
    // Nothing to do - all objects should remain in our tree.
    return;
  }

  // Prepare a vector describing the path from the given node to the tree
  // root (where SMALLER designates a left turn and LARGER designates a
  // right turn). Note that the length of this path (the depth of nodeP)
  // is at most twice the black-height of the tree.
  Node    *nodeP = position.nodeP;

  CGAL_multiset_precondition (_is_valid (nodeP));

  Node              *currP = nodeP;
  Comparison_result *path = new Comparison_result [2 * iBlackHeight];
  int                depth = 0;

  path[depth] = EQUAL;
  while (currP->parentP != NULL)
  {
    depth++;
    if (currP == currP->parentP->leftP)
      path[depth] = SMALLER;
    else
      path[depth] = LARGER;

    currP = currP->parentP;
  }
  CGAL_multiset_assertion (currP == rootP);

  // Now go down the path and split the tree accordingly. We also keep
  // track of the black-height of the current node.
  size_t  iCurrBHeight = iBlackHeight;
  Self    leftTree;
  size_t  iLeftBHeight = 0;
  Node   *spineLeftP = NULL;
  Node   *auxLeftP = NULL;
  Self    rightTree;
  size_t  iRightBHeight = 0;
  Node   *spineRightP = NULL;
  Node   *auxRightP = NULL;
  Node   *childP = NULL;
  Node   *nextP = NULL;

  while (depth >= 0)
  {
    CGAL_multiset_assertion (_is_valid (currP));

    // If we encounter a black node, the black-height of both its left and
    // right subtrees is decremented.
    if (_is_black (currP))
      iCurrBHeight--;

    // Check in which direction we have to go.
    if (path[depth] != LARGER)
    {
      // We go left, so currP and its entire right sub-tree (T_r) should be
      // included in the right split tree.
      //
      //              (.) currP           .
      //              / \                 .
      //             /   \                .
      //           (.)    T_r             .
      //
      // This also covers that case where currP is the split node (nodeP).
      childP = currP->rightP;
      nextP = currP->leftP;

      if (_is_valid (childP) && rightTree.rootP == NULL)
      {
        // Assing T_r to rightTree.
        rightTree.rootP = childP;
        rightTree.iBlackHeight = iCurrBHeight;

        // Make sure the root of rightTree is black.
        rightTree.rootP->parentP = NULL;
        if (_is_red (rightTree.rootP))
        {
          rightTree.rootP->color = Node::BLACK;
          rightTree.iBlackHeight++;
        }

        // We store a black node along the leftmost spine of rightTree whose
        // black-hieght is exactly iRightBHeight.
        iRightBHeight = rightTree.iBlackHeight;
        spineRightP = rightTree.rootP;
      }
      else if (_is_valid (childP))
      {
        // Catenate T_r with the current rightTree.
        CGAL_multiset_assertion (_is_valid (spineRightP) && 
                                 _is_valid(auxRightP));

        // Make sure the root of T_r is black.
        size_t    iCurrRightBHeight = iCurrBHeight;

        if (_is_red (childP))
        {
          childP->color = Node::BLACK;
          iCurrRightBHeight++;
        }

        // Go down the leftmost path of rightTree until locating a black
        // node whose black height is exactly iCurrRightBHeight.
        CGAL_multiset_assertion (iRightBHeight >= iCurrRightBHeight);

        while (iRightBHeight > iCurrRightBHeight)
        {
          if (spineRightP->color == Node::BLACK)
            iRightBHeight--;
          spineRightP = spineRightP->leftP;
        }

        if (_is_red (spineRightP))
          spineRightP = spineRightP->leftP;
        CGAL_multiset_assertion (_is_valid (spineRightP));

        // Use the auxiliary node and make it the parent of T_r (which
        // becomes its left sub-tree) and spineRightP (which becomes its
        // right child). We color the auxiliary node red, as both its
        // children are black.
        auxRightP->parentP = spineRightP->parentP;
        auxRightP->color = Node::RED;
        auxRightP->leftP = childP;
        auxRightP->rightP = spineRightP;

        if (auxRightP->parentP != NULL)
          auxRightP->parentP->leftP = auxRightP;
        else
          rightTree.rootP = auxRightP;

        childP->parentP = auxRightP;
        spineRightP->parentP = auxRightP;

        // Perform a fixup on the right tree.
        rightTree._insert_fixup (auxRightP);
        auxRightP = NULL;

        // Note that childP is now located on the leftmost spine of
        // rightTree and its black-height is exactly iCurrRightBHeight.
        iRightBHeight = iCurrRightBHeight;
        spineRightP = childP;
      }

      // In case we have an auxiliary right node that has not been inserted
      // into the right tree, insert it now.
      if (auxRightP != NULL)
      {
        if (rightTree.rootP != NULL)
        {
          // The right tree is not empty. Traverse its leftmost spine to
          // locate the parent of auxRightP.
          while (_is_valid (spineRightP->leftP))
            spineRightP = spineRightP->leftP;

          auxRightP->parentP = spineRightP;
          auxRightP->color = Node::RED;
          auxRightP->rightP = NULL;
          auxRightP->leftP = NULL;

          spineRightP->leftP = auxRightP;

          // Perform a fixup on the right tree, following the insertion of
          // the auxiliary right node.
          rightTree._insert_fixup (auxRightP);
        }
        else
        {
          // auxRightP is the only node in the current right tree.
          rightTree.rootP = auxRightP;
          rightTree.iBlackHeight = 1;

          auxRightP->parentP = NULL;
          auxRightP->color = Node::BLACK;
          auxRightP->rightP = NULL;
          auxRightP->leftP = NULL;
        }

        // Assign spineRightP to be the auxiliary node.
        spineRightP = auxRightP;
        iRightBHeight = (_is_black (spineRightP)) ? 1 : 0;
        auxRightP = NULL;
      }

      // Mark currP as the auxiliary right node.
      auxRightP = currP;
    }
    
    if (path[depth] != SMALLER)
    {
      // We go right, so currP and its entire left sub-tree (T_l) should be
      // included in the left split tree.
      //
      //              (.) currP           .
      //              / \                 .
      //             /   \                .
      //          T_l    (.)              .
      //
      // An exception to this rule is when currP is the split node (nodeP),
      // so it should not be included in the left tree.
      childP = currP->leftP;
      nextP = currP->rightP;

      if (_is_valid (childP) && leftTree.rootP == NULL)
      {
        // Assing T_l to leftTree.
        leftTree.rootP = childP;
        leftTree.iBlackHeight = iCurrBHeight;

        // Make sure the root of leftTree is black.
        leftTree.rootP->parentP = NULL;
        if (_is_red (leftTree.rootP))
        {
          leftTree.rootP->color = Node::BLACK;
          leftTree.iBlackHeight++;
        }

        // We store a black node along the rightmost spine of leftTree whose
        // black-hieght is exactly iLeftBHeight.
        iLeftBHeight = leftTree.iBlackHeight;
        spineLeftP = leftTree.rootP;
      }
      else if (_is_valid (childP))
      {
        // Catenate T_l with the current leftTree.
        CGAL_multiset_assertion (_is_valid (spineLeftP) && 
                                 _is_valid(auxLeftP));

        // Make sure the root of T_l is black.
        size_t    iCurrLeftBHeight = iCurrBHeight;

        if (_is_red (childP))
        {
          childP->color = Node::BLACK;
          iCurrLeftBHeight++;
        }

        // Go down the rightmost path of leftTree until locating a black
        // node whose black height is exactly iCurrLeftBHeight.
        CGAL_multiset_assertion (iLeftBHeight >= iCurrLeftBHeight);

        while (iLeftBHeight > iCurrLeftBHeight)
        {
          if (spineLeftP->color == Node::BLACK)
            iLeftBHeight--;
          spineLeftP = spineLeftP->rightP;
        }

        if (_is_red (spineLeftP))
          spineLeftP = spineLeftP->rightP;
        CGAL_multiset_assertion (_is_valid (spineLeftP));

        // Use the auxiliary node and make it the parent of T_l (which
        // becomes its right sub-tree) and spineLeftP (which becomes its
        // left child). We color the auxiliary node red, as both its
        // children are black.
        auxLeftP->parentP = spineLeftP->parentP;
        auxLeftP->color = Node::RED;
        auxLeftP->leftP = spineLeftP;
        auxLeftP->rightP = childP;

        if (auxLeftP->parentP != NULL)
          auxLeftP->parentP->rightP = auxLeftP;
        else
          leftTree.rootP = auxLeftP;

        childP->parentP = auxLeftP;
        spineLeftP->parentP = auxLeftP;

        // Perform a fixup on the left tree.
        leftTree._insert_fixup (auxLeftP);
        auxLeftP = NULL;

        // Note that childP is now located on the rightmost spine of
        // leftTree and its black-height is exactly iCurrLeftBHeight.
        iLeftBHeight = iCurrLeftBHeight;
        spineLeftP = childP;
      }

      // In case we have an auxiliary left node that has not been inserted
      // into the left tree, insert it now.
      if (auxLeftP != NULL)
      {
        if (leftTree.rootP != NULL)
        {
          // The left tree is not empty. Traverse its rightmost spine to
          // locate the parent of auxLeftP.
          while (_is_valid (spineLeftP->rightP))
            spineLeftP = spineLeftP->rightP;

          auxLeftP->parentP = spineLeftP;
          auxLeftP->color = Node::RED;
          auxLeftP->rightP = NULL;
          auxLeftP->leftP = NULL;

          spineLeftP->rightP = auxLeftP;

          // Perform a fixup on the left tree, following the insertion of
          // the auxiliary left node.
          leftTree._insert_fixup (auxLeftP);
        }
        else
        {
          // auxLeftP is the only node in the left tree.
          leftTree.rootP = auxLeftP;
          leftTree.iBlackHeight = 1;

          auxLeftP->parentP = NULL;
          auxLeftP->color = Node::BLACK;
          auxLeftP->rightP = NULL;
          auxLeftP->leftP = NULL;
        }

        // Assign spineLeftP to be the auxiliary node.
        spineLeftP = auxLeftP;
        iLeftBHeight = (_is_black (spineLeftP)) ? 1 : 0;
        auxLeftP = NULL;
      }

      // Mark currP as the auxiliary right node.
      if (depth > 0)
        auxLeftP = currP;
    }

    // Proceed to the next step in the path.
    currP = nextP;
    depth--;
  }

  // It is now possible to free the path.
  delete[] path;

  CGAL_multiset_assertion (auxLeftP == NULL && auxRightP == nodeP);

  // Fix the properties of the left tree: We know its minimal node is the
  // same as the current minimum.
  leftTree.beginNode.parentP = beginNode.parentP;
  leftTree.beginNode.parentP->leftP = &(leftTree.beginNode);

  // Traverse the rightmost path of the left tree to find the its maximum.
  CGAL_multiset_assertion (_is_valid (spineLeftP));

  while (_is_valid (spineLeftP->rightP))
    spineLeftP = spineLeftP->rightP;

  leftTree.endNode.parentP = spineLeftP;
  spineLeftP->rightP = &(leftTree.endNode);

  // Fix the properties of the right tree: We know its maximal node is the
  // same as the current maximum.
  rightTree.endNode.parentP = endNode.parentP;
  rightTree.endNode.parentP->rightP = &(rightTree.endNode);

  // We still have to insert the split node as the minimum node of the right
  // tree (we can traverse its leftmost path to find its parent).
  if (rightTree.rootP != NULL)
  {
    while (_is_valid (spineRightP->leftP))
      spineRightP = spineRightP->leftP;

    nodeP->parentP = spineRightP;
    nodeP->color = Node::RED;
    nodeP->rightP = NULL;
    nodeP->leftP = NULL;

    spineRightP->leftP = nodeP;

    // Perform a fixup on the right tree, following the insertion of the
    // leftmost node.
    rightTree._insert_fixup (nodeP);
  }
  else
  {
    // nodeP is the only node in the right tree.
    rightTree.rootP = nodeP;
    rightTree.iBlackHeight = 1;

    nodeP->parentP = NULL;
    nodeP->color = Node::BLACK;
    nodeP->rightP = NULL;
    nodeP->leftP = NULL;

    // In this case we also know the tree sizes:
    leftTree.iSize = iSize - 1;
    rightTree.iSize = 1;
  }

  // Set nodeP as the minimal node is the right tree.
  rightTree.beginNode.parentP = nodeP;
  nodeP->leftP = &(rightTree.beginNode);

  // Assign leftTree to (*this) and rightTree to the output tree.
  _shallow_assign (leftTree);

  tree.clear();
  tree._shallow_assign (rightTree);

  return;
}

//---------------------------------------------------------
// Move the contents of one tree to another without actually duplicating
// the nodes. This operation also clears the copied tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_shallow_assign (Self& tree)
{
  // Copy the assigned tree properties.
  rootP = tree.rootP;
  iSize = tree.iSize;
  iBlackHeight = tree.iBlackHeight;

  // Properly mark the minimal and maximal tree nodes.
  beginNode.parentP = tree.beginNode.parentP;
  
  if (beginNode.parentP != NULL)
    beginNode.parentP->leftP = &beginNode;
    
  endNode.parentP = tree.endNode.parentP;
  
  if (endNode.parentP != NULL)
    endNode.parentP->rightP = &endNode;

  // Clear the other tree (without actually deallocating the nodes).
  tree._shallow_clear();

  return;
}

//---------------------------------------------------------
// Clear the properties of the tree, without actually deallocating its nodes.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_shallow_clear ()
{
  rootP = NULL;
  iSize = 0;
  iBlackHeight = 0;
  beginNode.parentP = NULL;
  endNode.parentP = NULL;

  return;
}

//---------------------------------------------------------
// Remove the given tree node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_remove_at (Node* nodeP)
{
  CGAL_multiset_precondition (_is_valid (nodeP));

  if (nodeP == rootP && 
      ! _is_valid (rootP->leftP) && ! _is_valid (rootP->rightP))
  {
    // In case of deleting the single object stored in the tree, free the root,
    // thus emptying the tree.
    _deallocate_node (rootP);

    rootP = NULL;
    beginNode.parentP = NULL;
    endNode.parentP = NULL;
    iSize = 0;
    iBlackHeight = 0;
    
    return;
  }

  // Remove the given node from the tree.
  if (_is_valid (nodeP->leftP) && _is_valid (nodeP->rightP))
  {
    // If the node we want to remove has two children, find its successor,
    // which is the leftmost child in its right sub-tree and has at most
    // one child (it may have a right child).
    Node    *succP = _sub_minimum (nodeP->rightP);
    CGAL_multiset_assertion (_is_valid (succP));

    // Now physically swap nodeP and its successor. Notice this may temporarily
    // violate the tree properties, but we are going to remove nodeP anyway.
    // This way we have moved nodeP to a position were it is more convinient
    // to delete it.
    _swap (nodeP, succP);
  }

  // At this stage, the node we are going to remove has at most one child.
  Node        *childP = NULL;

  if (_is_valid (nodeP->leftP))
  {
    CGAL_multiset_assertion (! _is_valid (nodeP->rightP));
    childP = nodeP->leftP;
  }
  else
  {
    childP = nodeP->rightP;
  }

  // Splice out the node to be removed, by linking its parent straight to the
  // removed node's single child.
  if (_is_valid (childP))
    childP->parentP = nodeP->parentP;

  if (nodeP->parentP == NULL)
  {
    // If we are deleting the root, make the child the new tree node.
    rootP = childP;

    // If the deleted root is black, decrement the black height of the tree.
    if (nodeP->color == Node::BLACK)
      iBlackHeight--;
  }
  else
  {
    // Link the removed node parent to its child.
    if (nodeP == nodeP->parentP->leftP)
    {
      nodeP->parentP->leftP = childP;
    }
    else
    {
      nodeP->parentP->rightP = childP;
    }
  }

  // Fix-up the red-black properties that may have been damaged: If we have
  // just removed a black node, the black-height property is no longer valid.
  if (nodeP->color == Node::BLACK)
    _remove_fixup (childP, nodeP->parentP);

  // In case we delete the tree minimum of maximum, update the relevant
  // pointers.
  if (nodeP == beginNode.parentP)
  {
    beginNode.parentP = nodeP->successor();

    if (_is_valid (beginNode.parentP))
      beginNode.parentP->leftP = &beginNode;
    else
      beginNode.parentP = NULL;
  }
  else if (nodeP == endNode.parentP)
  {
    endNode.parentP = nodeP->predecessor();

    if (_is_valid (endNode.parentP))
      endNode.parentP->rightP = &endNode;
    else
      endNode.parentP = NULL;
  }

  // Delete the unnecessary node.
  _deallocate_node (nodeP);

  // Decrement the number of objects in the tree.
  if (iSize > 0)
    iSize--;

  return;
}

//---------------------------------------------------------
// Swap the location two nodes in the tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_swap (Node* node1_P,
                                                Node* node2_P)
{
  CGAL_multiset_assertion (_is_valid (node1_P));
  CGAL_multiset_assertion (_is_valid (node2_P));

  // Store the properties of the first node.
  typename Node::Node_color   color1 = node1_P->color;
  Node        *parent1_P = node1_P->parentP;
  Node        *right1_P = node1_P->rightP;
  Node        *left1_P = node1_P->leftP;
  
  // Copy the properties of the second node to the first node.
  node1_P->color = node2_P->color;

  if (node1_P != node2_P->parentP)
  {
    if (node2_P->parentP == NULL)
    {
      rootP = node1_P;
    }
    else
    {
      if (node2_P->parentP->leftP == node2_P)
        node2_P->parentP->leftP = node1_P;
      else
        node2_P->parentP->rightP = node1_P;
    }

    node1_P->parentP = node2_P->parentP;
  }
  else
  {
    node1_P->parentP = node2_P;
  }

  if (node1_P != node2_P->rightP)
  {
    if (_is_valid (node2_P->rightP))
      node2_P->rightP->parentP = node1_P;

    node1_P->rightP = node2_P->rightP;
  }
  else
  {
    node1_P->rightP = node2_P;
  }

  if (node1_P != node2_P->leftP)
  {
    if (_is_valid (node2_P->leftP))
      node2_P->leftP->parentP = node1_P;

    node1_P->leftP = node2_P->leftP;
  }
  else
  {
    node1_P->leftP = node2_P;
  }

  // Copy the stored properties of the first node to the second node.
  node2_P->color = color1;

  if (node2_P != parent1_P)
  {
    if (parent1_P == NULL)
    {
      rootP = node2_P;
    }
    else
    {
      if (parent1_P->leftP == node1_P)
        parent1_P->leftP = node2_P;
      else
        parent1_P->rightP = node2_P;
    }

    node2_P->parentP = parent1_P;
  }
  else
  {
    node2_P->parentP = node1_P;
  }

  if (node2_P != right1_P)
  {
    if (_is_valid (right1_P))
      right1_P->parentP = node2_P;

    node2_P->rightP = right1_P;
  }
  else
  {
    node2_P->rightP = node1_P;
  }

  if (node2_P != left1_P)
  {
    if (_is_valid (left1_P))
      left1_P->parentP = node2_P;

    node2_P->leftP = left1_P;
  }
  else
  {
    node2_P->leftP = node1_P;
  }

  // If one of the swapped nodes used to be the tree minimum, update
  // the properties of the fictitious before-the-begin node.
  if (beginNode.parentP == node1_P)
  {
    beginNode.parentP = node2_P;
    node2_P->leftP = &beginNode;
  }
  else if (beginNode.parentP == node2_P)
  {
    beginNode.parentP = node1_P;
    node1_P->leftP = &beginNode;
  }

  // If one of the swapped nodes used to be the tree maximum, update
  // the properties of the fictitious past-the-end node.
  if (endNode.parentP == node1_P)
  {
    endNode.parentP = node2_P;
    node2_P->rightP = &endNode;
  }
  else if (endNode.parentP == node2_P)
  {
    endNode.parentP = node1_P;
    node1_P->rightP = &endNode;
  }

  return;
}

//---------------------------------------------------------
// Swap the location two sibling nodes in the tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_swap_siblings (Node* node1_P,
                                                         Node* node2_P)
{
  CGAL_multiset_assertion (_is_valid (node1_P));
  CGAL_multiset_assertion (_is_valid (node2_P));

  // Store the properties of the first node.
  typename Node::Node_color   color1 = node1_P->color;
  Node        *right1_P = node1_P->rightP;
  Node        *left1_P = node1_P->leftP;
  
  // Copy the properties of the second node to the first node.
  node1_P->color = node2_P->color;

  node1_P->rightP = node2_P->rightP;
  if (_is_valid (node1_P->rightP))
    node1_P->rightP->parentP = node1_P;

  node1_P->leftP = node2_P->leftP;
  if (_is_valid (node1_P->leftP))
    node1_P->leftP->parentP = node1_P;

  // Copy the stored properties of the first node to the second node.
  node2_P->color = color1;

  node2_P->rightP = right1_P;
  if (_is_valid (node2_P->rightP))
    node2_P->rightP->parentP = node2_P;

  node2_P->leftP = left1_P;
  if (_is_valid (node2_P->leftP))
    node2_P->leftP->parentP = node2_P;

  // Swap the children of the common parent node.
  Node        *parent_P = node1_P->parentP;
  Node        *temp;

  CGAL_multiset_assertion (parent_P == node2_P->parentP);

  temp = parent_P->leftP;
  parent_P->leftP = parent_P->rightP;
  parent_P->rightP = temp;

  // If one of the swapped nodes used to be the tree minimum, update
  // the properties of the fictitious before-the-begin node.
  if (beginNode.parentP == node1_P)
  {
    beginNode.parentP = node2_P;
    node2_P->leftP = &beginNode;
  }
  else if (beginNode.parentP == node2_P)
  {
    beginNode.parentP = node1_P;
    node1_P->leftP = &beginNode;
  }

  // If one of the swapped nodes used to be the tree maximum, update
  // the properties of the fictitious past-the-end node.
  if (endNode.parentP == node1_P)
  {
    endNode.parentP = node2_P;
    node2_P->rightP = &endNode;
  }
  else if (endNode.parentP == node2_P)
  {
    endNode.parentP = node1_P;
    node1_P->rightP = &endNode;
  }

  return;
}

//---------------------------------------------------------
// Calculate the height of the subtree spanned by a given node.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::_sub_height
    (const Node* nodeP) const
{
  CGAL_multiset_assertion (_is_valid (nodeP));

  // Recursively calculate the heights of the left and right sub-trees.
  size_t   iRightHeight = 0;
  size_t   iLeftHeight = 0;

  if (_is_valid (nodeP->rightP))
    iRightHeight = _sub_height (nodeP->rightP);

  if (_is_valid (nodeP->leftP))
    iLeftHeight = _sub_height (nodeP->leftP);

  // Return the maximal child sub-height + 1 (the current node).
  return ((iRightHeight > iLeftHeight) ? (iRightHeight + 1) :
                                         (iLeftHeight + 1));
}

//---------------------------------------------------------
// Calculate the height of the subtree spanned by a given node.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type, Compare, Allocator>::_sub_is_valid
    (const Node* nodeP,
     size_t& sub_size,
     size_t& sub_bh) const
{
  // Make sure that the node is valid.
  if (! _is_valid (nodeP))
    return (false);

  // If the node is red, make sure that both it children are black (note that
  // NULL nodes are also considered to be black).
  if (_is_red (nodeP) &&
      (! _is_black (nodeP->rightP) || ! _is_black (nodeP->leftP)))
  {
    return (false);
  }

  // Recursively calculate the black heights of the left and right sub-trees.
  size_t   iBlack = ((nodeP->color == Node::BLACK) ? 1 : 0);
  size_t   iLeftSize = 0;
  size_t   iLeftBHeight = 0;
  size_t   iRightSize = 0;
  size_t   iRightBHeight = 0;

  if (_is_valid (nodeP->leftP))
  {
    // Make sure that the object stored at nodeP is not smaller than the one
    // stored at its left child.
    if (comp_f (nodeP->object, nodeP->leftP->object) == SMALLER)
      return (false);

    // Recursively check that the left sub-tree is valid.
    if (! _sub_is_valid (nodeP->leftP, iLeftSize, iLeftBHeight))
      return (false);
  }

  if (_is_valid (nodeP->rightP))
  {
    // Make sure that the object stored at nodeP is not larger than the one
    // stored at its right child.
    if (comp_f (nodeP->object, nodeP->rightP->object) == LARGER)
      return (false);

    // Recursively check that the right sub-tree is valid.
    if (! _sub_is_valid (nodeP->rightP, iRightSize, iRightBHeight))
      return (false);
  }

  // Compute the size of the entire sub-tree.
  sub_size = iRightSize + iLeftSize + 1;

  // Make sure that the black heights of both sub-trees are equal.
  if (iRightBHeight != iLeftBHeight)
    return (false);
  sub_bh = iRightBHeight + iBlack;

  // If we reached here, the subtree is valid.
  return (true);
}

//---------------------------------------------------------
// Get the leftmost node in the sub-tree spanned by the given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node* 
Multiset<Type, Compare, Allocator>::_sub_minimum (Node* nodeP) const
{
  CGAL_multiset_assertion (_is_valid (nodeP));

  Node    *minP = nodeP;

  while (_is_valid (minP->leftP))
    minP = minP->leftP;
  return (minP);
}

//---------------------------------------------------------
// Get the rightmost node in the sub-tree spanned by the given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node*
Multiset<Type, Compare, Allocator>::_sub_maximum (Node* nodeP) const
{
  CGAL_multiset_assertion (_is_valid (nodeP));

  Node    *maxP = nodeP;

  while (_is_valid (maxP->rightP))
    maxP = maxP->rightP;
  return (maxP);
}

//---------------------------------------------------------
// Left-rotate the sub-tree spanned by the given node:
//
//          |          RoateRight(y)            |
//          y         -------------->           x
//        /   \                               /   \       .
//       x     T3       RoatateLeft(x)       T1    y      .
//     /   \          <--------------            /   \    .
//    T1    T2                                  T2    T3
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_rotate_left (Node* xNodeP)
{
  // Get the right child of the node.
  Node        *yNodeP = xNodeP->rightP;

  CGAL_multiset_assertion (_is_valid (yNodeP));

  // Change its left subtree (T2) to x's right subtree.
  xNodeP->rightP = yNodeP->leftP;

  // Link T2 to its new parent x.
  if (_is_valid (yNodeP->leftP))
    yNodeP->leftP->parentP = xNodeP;
    
  // Assign x's parent to be y's parent.
  yNodeP->parentP = xNodeP->parentP;

  if (xNodeP->parentP == NULL)
  {
    // Make y the new tree root.
    rootP = yNodeP;
  }
  else 
  {
    // Assign a pointer to y from x's parent.
    if (xNodeP == xNodeP->parentP->leftP)
    {
      xNodeP->parentP->leftP = yNodeP;
    }
    else
    {
      xNodeP->parentP->rightP = yNodeP;
    }
  }

  // Assign x to be y's left child.
  yNodeP->leftP = xNodeP;
  xNodeP->parentP = yNodeP;

  return;
}

//---------------------------------------------------------
// Right-rotate the sub-tree spanned by the given node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_rotate_right (Node* yNodeP)
{
  // Get the left child of the node.
  Node        *xNodeP = yNodeP->leftP;

  CGAL_multiset_assertion (_is_valid (xNodeP));

  // Change its right subtree (T2) to y's left subtree.
  yNodeP->leftP = xNodeP->rightP;

  // Link T2 to its new parent y.
  if (_is_valid (xNodeP->rightP))
    xNodeP->rightP->parentP = yNodeP;
    
  // Assign y's parent to be x's parent.
  xNodeP->parentP = yNodeP->parentP;

  if (yNodeP->parentP == NULL)
  {
    // Make x the new tree root.
    rootP = xNodeP;
  }
  else 
  {
    // Assign a pointer to x from y's parent.
    if (yNodeP == yNodeP->parentP->leftP)
    {
      yNodeP->parentP->leftP = xNodeP;
    }
    else
    {
      yNodeP->parentP->rightP = xNodeP;
    }
  }

  // Assign y to be x's right child.
  xNodeP->rightP = yNodeP;
  yNodeP->parentP = xNodeP;

  return;
}

//---------------------------------------------------------
// Duplicate the entire sub-tree rooted at the given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node* 
Multiset<Type, Compare, Allocator>::_duplicate (const Node* nodeP)
{
  CGAL_multiset_assertion (_is_valid (nodeP));

  // Create a node of the same color, containing the same object.
  Node   *dupNodeP = _allocate_node(nodeP->object, nodeP->color);
    
  // Duplicate the children recursively.
  if (_is_valid (nodeP->rightP))
  {
    dupNodeP->rightP = _duplicate (nodeP->rightP);
    dupNodeP->rightP->parentP = dupNodeP;
  }

  if (_is_valid (nodeP->leftP))
  {
    dupNodeP->leftP = _duplicate (nodeP->leftP);
    dupNodeP->leftP->parentP = dupNodeP;
  }

  // Return the duplicated node.
  return (dupNodeP);
}

//---------------------------------------------------------
// Destroy the entire sub-tree rooted at the given node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_destroy (Node* nodeP)
{
  CGAL_multiset_assertion (_is_valid (nodeP));
  
  // Destroy the children recursively.
  if (_is_valid (nodeP->rightP))
    _destroy (nodeP->rightP);
  nodeP->rightP = NULL;

  if (_is_valid (nodeP->leftP))
    _destroy (nodeP->leftP);
  nodeP->leftP = NULL;

  // Free the subtree root node.
  _deallocate_node (nodeP);

  return;
}

//---------------------------------------------------------
// Fix-up the tree so it maintains the red-black properties after insertion.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_insert_fixup (Node* nodeP)
{
  CGAL_multiset_precondition (_is_red (nodeP));
  
  // Fix the red-black propreties: we may have inserted a red leaf as the 
  // child of a red parent - so we have to fix the coloring of the parent 
  // recursively.
  Node        *currP = nodeP;
  Node        *grandparentP;
  Node        *uncleP;

  while (currP != rootP && _is_red (currP->parentP))
  {
    // Get a pointer to the current node's grandparent (notice the root is 
    // always black, so the red parent must have a parent).
    grandparentP = currP->parentP->parentP;
    CGAL_multiset_precondition (grandparentP != NULL);

    if (currP->parentP == grandparentP->leftP)
    {
      // If the red parent is a left child, the uncle is the right child of
      // the grandparent.
      uncleP = grandparentP->rightP;

      if (_is_red (uncleP))
      {
        // If both parent and uncle are red, color them black and color the
        // grandparent red.
        // In case of a NULL uncle, we treat it as a black node.
        currP->parentP->color = Node::BLACK;
        uncleP->color = Node::BLACK;
        grandparentP->color = Node::RED;

        // Move to the grandparent.
        currP = grandparentP;
      }
      else
      {
        // Make sure the current node is a left child. If not, left-rotate
        // the parent's sub-tree so the parent becomes the left child of the
        // current node (see _rotate_left).
        if (currP == currP->parentP->rightP)
        {
          currP = currP->parentP;
          _rotate_left (currP);
        }

        // Color the parent black and the grandparent red.
        currP->parentP->color = Node::BLACK;
        CGAL_multiset_assertion (grandparentP == currP->parentP->parentP);
        grandparentP->color = Node::RED;

        // Right-rotate the grandparent's sub-tree
        _rotate_right (grandparentP);
      }
    }
    else
    {
      // If the red parent is a right child, the uncle is the left child of
      // the grandparent.
      uncleP = grandparentP->leftP;

      if (_is_red (uncleP))
      {
        // If both parent and uncle are red, color them black and color the 
        // grandparent red.
        // In case of a NULL uncle, we treat it as a black node.
        currP->parentP->color = Node::BLACK;
        uncleP->color = Node::BLACK;
        grandparentP->color = Node::RED;

        // Move to the grandparent.
        currP = grandparentP;
      }
      else
      {
        // Make sure the current node is a right child. If not, right-rotate 
        // the parent's sub-tree so the parent becomes the right child of the 
        // current node.
        if (currP == currP->parentP->leftP)
        {
          currP = currP->parentP;
          _rotate_right (currP);
        }

        // Color the parent black and the grandparent red.
        currP->parentP->color = Node::BLACK;
        CGAL_multiset_assertion(grandparentP == currP->parentP->parentP);
        grandparentP->color = Node::RED;

        // Left-rotate the grandparent's sub-tree
        _rotate_left (grandparentP);
      }
    }
  }

  // Make sure that the root is black.
  if (_is_red (rootP))
  {
    // In case we color a red root black, we should increment the black
    // height of the tree.
    rootP->color = Node::BLACK;
    iBlackHeight++;
  }
  
  return;
}

//---------------------------------------------------------
// Fix-up the tree so it maintains the red-black properties after removal.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_remove_fixup (Node* nodeP,
                                                        Node* parentP)
{
  Node        *currP = nodeP;
  Node        *currParentP = parentP;
  Node        *siblingP;

  while (currP != rootP && _is_black (currP))
  {
    // Get a pointer to the current node's sibling (notice that the node's
    // parent must exist, since the node is not the rootP).
    if (currP == currParentP->leftP)
    {
      // If the current node is a left child, its sibling is the right
      // child of the parent.
      siblingP = currParentP->rightP;

      // Check the sibling's color. Notice that NULL nodes are treated
      // as if they are colored black.
      if (_is_red (siblingP))
      {
        // In case the sibling is red, color it black and rotate.
        // Then color the parent red (and the grandparent is now black).
        siblingP->color = Node::BLACK;
        currParentP->color = Node::RED;
        _rotate_left (currParentP);
        siblingP = currParentP->rightP;
      }

      CGAL_multiset_assertion (_is_valid (siblingP));

      if (_is_black (siblingP->leftP) && _is_black (siblingP->rightP))
      {
        // If the sibling has two black children, color it red.
        siblingP->color = Node::RED;

        // The black-height of the entire sub-tree rooted at the parent is
        // now too small - fix it up recursively.
        currP = currParentP;
        currParentP = currParentP->parentP;

        // In case the current node is the tree root, we have just decreased
        // the black height of the entire tree.
        if (currP == rootP)
        {
          CGAL_multiset_assertion (currParentP == NULL);
          iBlackHeight--;
        }
      }
      else
      {
        // In this case, at least one of the sibling's children is red.
        // It is therfore obvious that the sibling itself is black.
        if (_is_black (siblingP->rightP))
        {
          // The left child is red: Color it black, and color the sibling red.
          siblingP->leftP->color = Node::BLACK;
          siblingP->color = Node::RED;

          _rotate_right (siblingP);
          siblingP = currParentP->rightP;
        }

        // Color the parent black (it is now safe to color the sibling with
	// the same color the parent used to have) and rotate left around it.
        siblingP->color = currParentP->color;
        currParentP->color = Node::BLACK;
        if (_is_valid (siblingP->rightP))
          siblingP->rightP->color = Node::BLACK;
        _rotate_left (currParentP);

        // We set currP to be the root node in order to terminate the loop.
        currP = rootP;
      }
    }
    else
    {
      // If the current node is a right child, its sibling is the left
      // child of the parent.
      siblingP = currParentP->leftP;

      // Check the sibling's color. Notice that NULL nodes are treated
      // as if they are colored black.
      if (_is_red (siblingP))
      {
        // In case the sibling is red, color it black and rotate.
        // Then color the parent red (and the grandparent is now black).
        siblingP->color = Node::BLACK;
        currParentP->color = Node::RED;
        _rotate_right (currParentP);

        siblingP = currParentP->leftP;
      }

      CGAL_multiset_assertion (_is_valid (siblingP));

      if (_is_black (siblingP->leftP) && _is_black (siblingP->rightP))
      {
        // If the sibling has two black children, color it red.
        siblingP->color = Node::RED;

        // The black-height of the entire sub-tree rooted at the parent is
        // now too small - fix it up recursively.
        currP = currParentP;
        currParentP = currParentP->parentP;

        // In case the current node is the tree root, we have just decreased
        // the black height of the entire tree.
        if (currP == rootP)
        {
          CGAL_multiset_assertion (currParentP == NULL);
          iBlackHeight--;
        }
      }
      else
      {
        // In this case, at least one of the sibling's children is red.
        // It is therfore obvious that the sibling itself is black.
        if (_is_black (siblingP->leftP))
        {
          // The right child is red: Color it black, and color the sibling red.
          siblingP->rightP->color = Node::BLACK;
          siblingP->color = Node::RED;

          _rotate_left (siblingP);
          siblingP = currParentP->leftP;
        }

        // Color the parent black (it is now safe to color the sibling with
	// the same color the parent used to have) and rotate right around it.
        siblingP->color = currParentP->color;
        currParentP->color = Node::BLACK;
        if (_is_valid (siblingP->leftP))
          siblingP->leftP->color = Node::BLACK;
        _rotate_right (currParentP);

        // We set currP to be the root node in order to terminate the loop.
        currP = rootP;
      }
    }
  }

  // Make sure the current node is black.
  if (_is_red (currP))
  {
    currP->color = Node::BLACK;

    if (currP == rootP)    
    {
      // In case we color a red root black, we should increment the black
      // height of the tree.
      iBlackHeight++;
    }
  }

  return;
}

//---------------------------------------------------------
// Allocate and initialize new tree node.
//
#ifndef CGAL_CFG_OUTOFLINE_MEMBER_DEFINITION_BUG
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node*
Multiset<Type, Compare, Allocator>::_allocate_node
        (const Type& object,
         typename Node::Node_color color)
{
  CGAL_multiset_assertion (color != Node::DUMMY_BEGIN && 
                           color != Node::DUMMY_END);

  Node* new_node = node_alloc.allocate(1);
  
  node_alloc.construct(new_node, beginNode);
  new_node->init(object, color);
  return (new_node);
}
#endif

//---------------------------------------------------------
// De-allocate a tree node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_deallocate_node (Node* nodeP)
{
  node_alloc.destroy (nodeP); 
  node_alloc.deallocate (nodeP, 1);

  return;
}

} //namespace CGAL

#endif