/usr/include/CGAL/Nef_polyhedron_3.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 | // Copyright (c) 1997-2002,2005 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
// Miguel Granados <granados@mpi-sb.mpg.de>
// Susan Hert <hert@mpi-sb.mpg.de>
// Lutz Kettner <kettner@mpi-sb.mpg.de>
// Ralf Osbild <osbild@mpi-sb.mpg.de>
// Peter Hachenberger <hachenberger@mpi-sb.mpg.de>
#ifndef CGAL_NEF_POLYHEDRON_3_H
#define CGAL_NEF_POLYHEDRON_3_H
#include <CGAL/basic.h>
#include <CGAL/Handle_for.h>
#include <CGAL/Nef_3/Default_items.h>
#include <CGAL/Nef_3/SNC_structure.h>
#include <CGAL/Nef_3/SNC_decorator.h>
#include <CGAL/Nef_3/SNC_const_decorator.h>
#include <CGAL/Nef_3/SNC_constructor.h>
#include <CGAL/Nef_3/SNC_external_structure.h>
#include <CGAL/Nef_3/Combine_with_halfspace.h>
#ifdef CGAL_NEF_VISUAL_HULL
#include <CGAL/Nef_3/Binary_operation_vs.h>
#else
#include <CGAL/Nef_3/Binary_operation.h>
#endif
#include <CGAL/Nef_S2/SM_decorator.h>
#include <CGAL/Nef_S2/SM_const_decorator.h>
#include <CGAL/Nef_3/SNC_SM_overlayer.h>
#include <CGAL/Nef_S2/SM_point_locator.h>
#include <CGAL/Nef_3/SNC_SM_explorer.h>
#include <CGAL/Nef_polyhedron_S2.h>
#include <CGAL/Modifier_base.h>
#include <CGAL/Nef_3/Mark_bounded_volumes.h>
#ifdef CGAL_NEF3_POINT_LOCATOR_NAIVE
#include <CGAL/Nef_3/SNC_ray_shooter.h>
#endif
#ifdef CGAL_NEF3_CGAL_NEF3_SM_VISUALIZOR
#include <CGAL/Nef_3/SNC_SM_visualizor.h>
#endif // CGAL_NEF3_SM_VISUALIZOR
#ifdef CGAL_NEF3_OLD_VISUALIZATION
#include <CGAL/Nef_3/Visualizor_OpenGL_3.h>
#endif // CGAL_NEF3_OLD_VISUALIZATION
#include <CGAL/IO/Verbose_ostream.h>
#include <CGAL/Nef_3/polyhedron_3_to_nef_3.h>
#include <CGAL/Nef_3/shell_to_nef_3.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Nef_3/SNC_point_locator.h>
#include <CGAL/assertions.h>
#include <CGAL/Constrained_triangulation_2.h>
#include <CGAL/Triangulation_data_structure_2.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/Projection_traits_yz_3.h>
#include <CGAL/Projection_traits_xz_3.h>
#include <CGAL/Constrained_triangulation_face_base_2.h>
#include <list>
// RO: includes for "vertex cycle to Nef" constructor
#include <CGAL/Nef_3/vertex_cycle_to_nef_3.h>
#include <CGAL/Vector_3.h>
#include <CGAL/normal_vector_newell_3.h>
#ifdef CGAL_NEF_VISUAL_HULL
#include <CGAL/Nef_3/Modifying_binary_operation_vs.h>
#endif
#undef CGAL_NEF_DEBUG
#define CGAL_NEF_DEBUG 11
#include <CGAL/Nef_2/debug.h>
namespace CGAL {
template <typename K, typename I, typename M> class Nef_polyhedron_3;
template <typename K, typename I, typename M> class Nef_polyhedron_3_rep;
template <typename K, typename I, typename M>
std::ostream& operator<<(std::ostream& os, Nef_polyhedron_3<K,I,M>& NP);
template <typename K, typename I, typename M>
std::istream& operator>>(std::istream& os, Nef_polyhedron_3<K,I,M>& NP);
template <typename K, typename I, typename M>
class Nef_polyhedron_3_rep
{
typedef Nef_polyhedron_3_rep<K,I,M> Self;
friend class Nef_polyhedron_3<K,I,M>;
public:
typedef CGAL::SNC_structure<K,I,M> SNC_structure;
typedef CGAL::SNC_decorator<SNC_structure> SNC_decorator;
typedef CGAL::SNC_const_decorator<SNC_structure> SNC_const_decorator;
typedef CGAL::Binary_operation<SNC_structure> Binary_operation;
typedef CGAL::SNC_constructor<I, SNC_structure> SNC_constructor;
typedef CGAL::SNC_external_structure<I, SNC_structure> SNC_external_structure;
typedef CGAL::SNC_point_locator<SNC_decorator> SNC_point_locator;
typedef CGAL::SNC_simplify<I, SNC_structure> SNC_simplify;
#ifdef CGAL_NEF3_POINT_LOCATOR_NAIVE
typedef CGAL::SNC_point_locator_naive<SNC_decorator> SNC_point_locator_default;
#else
typedef CGAL::SNC_point_locator_by_spatial_subdivision<SNC_decorator> SNC_point_locator_default;
#endif
typedef typename SNC_structure::Sphere_map Sphere_map;
typedef CGAL::SM_decorator<Sphere_map> SM_decorator;
typedef CGAL::SM_const_decorator<Sphere_map> SM_const_decorator;
typedef CGAL::SNC_SM_overlayer<I, SM_decorator> SM_overlayer;
typedef CGAL::SM_point_locator<SNC_structure> SM_point_locator;
#ifdef CGAL_NEF3_SM_VISUALIZOR
typedef CGAL::SNC_SM_visualizor<SNC_structure> SM_visualizor;
#endif // CGAL_NEF3_SM_VISUALIZOR
private:
SNC_structure snc_;
SNC_point_locator* pl_;
public:
Nef_polyhedron_3_rep() : snc_(), pl_() {}
~Nef_polyhedron_3_rep() {
CGAL_NEF_TRACEN( "Nef_polyhedron_3_rep: destroying SNC structure "<<&snc_<<
", point locator "<<pl_);
snc_.clear();
delete pl_;
}
};
/*{\Manpage {Nef_polyhedron_3} {T} {Nef Polyhedra in Space}{N}}*/
/*{\Mdefinition
An instance of data type |\Mname| is a subset of 3-space which is the
result of forming complements and intersections starting from a set |H| of
halfspaces. |\Mtype| is closed under all binary set opertions |intersection|,
|union|, |difference|, |complement| and under the topological operations
|boundary|, |closure|, and |interior|.}*/
template <typename Kernel_, typename Items_ = typename CGAL::Default_items<Kernel_>::Items, typename Mark_ = bool>
class Nef_polyhedron_3 : public CGAL::Handle_for< Nef_polyhedron_3_rep<Kernel_, Items_, Mark_> >,
public SNC_const_decorator<SNC_structure<Kernel_,Items_,Mark_> >
{
public:
/*{\Mtypes 7}*/
typedef Kernel_ Kernel;
typedef Kernel_ Traits;
typedef Items_ Items;
typedef Mark_ Mark;
typedef Nef_polyhedron_3<Kernel, Items, Mark> Self;
typedef Nef_polyhedron_3<Kernel, Items, Mark> Nef_polyhedron;
typedef Handle_for< Nef_polyhedron_3_rep<Kernel, Items, Mark> > Base;
typedef typename Kernel::Point_3 Point_3;
typedef typename Kernel::Plane_3 Plane_3;
typedef typename Kernel::Vector_3 Vector_3;
typedef typename Kernel::Segment_3 Segment_3;
typedef typename Kernel::Aff_transformation_3 Aff_transformation_3;
#ifndef _MSC_VER
// VC++ has a problem to digest the following typedef,
// and does not need the using statements -- AF
// The left and right part of these typedefs have the same name. It is
// very important to qualify the left part with the CGAL:: namespace, no
// to confuse g++. -- Laurent Rineau, 2010/09/13
typedef CGAL::SNC_structure<Kernel,Items,Mark> SNC_structure;
typedef CGAL::SNC_const_decorator<SNC_structure> SNC_const_decorator;
using SNC_const_decorator::set_snc;
using SNC_const_decorator::is_standard;
using SNC_const_decorator::is_bounded;
#endif
struct Polylines_tag {};
enum Boundary { EXCLUDED=0, INCLUDED=1 };
/*{\Menum construction selection.}*/
typedef enum { EMPTY=0, COMPLETE=1 } Content;
/*{\Menum construction selection}*/
typedef enum { DEFAULT, NAIVE, WALKING, SPATIAL_SUBDIVISION } Location_mode;
/*{\Menum selection flag for the point location mode.}*/
protected:
struct AND { Mark operator()(const Mark& b1, const Mark& b2, bool /* inverted */ =false) const { return b1&&b2; } };
struct OR { Mark operator()(const Mark& b1, const Mark& b2, bool /* inverted */ =false) const { return b1||b2; } };
struct DIFF { Mark operator()(const Mark& b1, const Mark& b2, bool inverted=false) const {
if(inverted) return !b1&&b2; return b1&&!b2; } };
struct XOR { Mark operator()(const Mark& b1, const Mark& b2, bool /* inverted */ =false) const
{ return (b1&&!b2)||(!b1&&b2); } };
public:
typedef Nef_polyhedron_3_rep<Kernel,Items, Mark> Nef_rep;
typedef typename Nef_rep::SM_decorator SM_decorator;
typedef typename Nef_rep::SM_const_decorator SM_const_decorator;
protected:
typedef typename Nef_rep::SNC_decorator SNC_decorator;
typedef typename Nef_rep::SNC_constructor SNC_constructor;
typedef typename Nef_rep::SNC_external_structure SNC_external_structure;
typedef typename Nef_rep::Binary_operation Binary_operation;
typedef typename Nef_rep::SNC_point_locator SNC_point_locator;
typedef typename Nef_rep::SNC_point_locator_default
SNC_point_locator_default;
typedef CGAL::Combine_with_halfspace<SNC_structure, SNC_point_locator>
Combine_with_halfspace;
public:
enum Intersection_mode {
CLOSED_HALFSPACE = Combine_with_halfspace::CLOSED_HALFSPACE,
OPEN_HALFSPACE = Combine_with_halfspace::OPEN_HALFSPACE,
PLANE_ONLY = Combine_with_halfspace::PLANE_ONLY};
protected:
typedef typename Nef_rep::SM_overlayer SM_overlayer;
typedef typename Nef_rep::SM_point_locator SM_point_locator;
typedef typename Nef_rep::SNC_simplify SNC_simplify;
#ifdef CGAL_NEF3_SM_VISUALIZOR
typedef typename Nef_rep::SM_visualizor SM_visualizor;
#endif // CGAL_NEF3_SM_VISUALIZOR
#ifdef CGAL_NEF3_OLD_VISUALIZATION
typedef CGAL::Nef_Visualizor_OpenGL_3<Nef_polyhedron_3> Visualizor;
#endif // CGAL_NEF3_OLD_VISUALIZATION
typedef typename Nef_rep::Sphere_map Sphere_map;
public:
typedef CGAL::Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map> Nef_polyhedron_S2;
protected:
SNC_structure& snc() { return this->ptr()->snc_; }
const SNC_structure& snc() const { return this->ptr()->snc_; }
SNC_point_locator*& pl() { return this->ptr()->pl_; }
const SNC_point_locator* pl() const { return this->ptr()->pl_; }
friend std::ostream& operator<< <>
(std::ostream& os, Nef_polyhedron_3<Kernel,Items, Mark>& NP);
friend std::istream& operator>> <>
(std::istream& is, Nef_polyhedron_3<Kernel,Items, Mark>& NP);
typedef typename SNC_decorator::Vertex_handle Vertex_handle;
typedef typename SNC_decorator::Halfedge_handle Halfedge_handle;
typedef typename SNC_decorator::Halffacet_handle
Halffacet_handle;
typedef typename SNC_decorator::Volume_handle Volume_handle;
public:
typedef typename SNC_structure::Sphere_point Sphere_point;
typedef typename SNC_structure::Sphere_segment Sphere_segment;
typedef typename SNC_structure::Sphere_circle Sphere_circle;
typedef typename SNC_structure::Vertex_base Vertex;
typedef typename SNC_structure::Halfedge_base Halfedge;
typedef typename SNC_structure::Halffacet_base Halffacet;
typedef typename SNC_structure::Volume_base Volume;
typedef typename SNC_structure::Vertex_const_handle Vertex_const_handle;
typedef typename SNC_structure::Halfedge_const_handle Halfedge_const_handle;
typedef typename SNC_structure::Halffacet_const_handle Halffacet_const_handle;
typedef typename SNC_structure::Volume_const_handle Volume_const_handle;
typedef typename SNC_structure::SHalfedge_around_svertex_circulator
SHalfedge_around_svertex_circulator;
typedef typename SNC_structure::SHalfedge_around_svertex_const_circulator
SHalfedge_around_svertex_const_circulator;
typedef typename SNC_structure::SHalfedge_around_facet_circulator
SHalfedge_around_facet_circulator;
typedef typename SNC_structure::SHalfedge_around_facet_const_circulator
SHalfedge_around_facet_const_circulator;
typedef typename SNC_structure::SHalfedge_around_sface_const_circulator
SHalfedge_around_sface_const_circulator;
typedef typename SNC_structure::Halffacet_cycle_const_iterator
Halffacet_cycle_const_iterator;
typedef typename SNC_structure::Halffacet_cycle_iterator
Halffacet_cycle_iterator;
typedef typename SNC_structure::Infi_box Infi_box;
typedef typename SNC_structure::Size_type Size_type;
typedef Size_type size_type;
typedef typename Kernel::RT RT;
public:
typedef typename SM_decorator::SVertex_handle SVertex_handle;
typedef typename SM_decorator::SHalfedge_handle SHalfedge_handle;
typedef typename SM_decorator::SFace_handle SFace_handle;
typedef typename SM_decorator::SVertex_const_handle
SVertex_const_handle;
typedef typename SM_decorator::SHalfedge_const_handle
SHalfedge_const_handle;
typedef typename SM_decorator::SHalfloop_const_handle
SHalfloop_const_handle;
typedef typename SM_decorator::SFace_const_handle
SFace_const_handle;
typedef typename SNC_decorator::Vertex_iterator Vertex_iterator;
typedef typename SNC_decorator::Halfedge_iterator
Halfedge_iterator;
typedef typename SNC_decorator::Halffacet_iterator
Halffacet_iterator;
typedef typename SNC_structure::Shell_entry_iterator
Shell_entry_iterator;
typedef typename SNC_decorator::Volume_iterator Volume_iterator;
typedef typename SNC_structure::Vertex_const_iterator
Vertex_const_iterator;
typedef typename SNC_structure::Halfedge_const_iterator
Halfedge_const_iterator;
typedef typename SNC_structure::Halffacet_const_iterator
Halffacet_const_iterator;
typedef typename SNC_structure::Volume_const_iterator
Volume_const_iterator;
typedef typename SNC_structure::Shell_entry_const_iterator
Shell_entry_const_iterator;
typedef typename SM_decorator::SVertex_iterator SVertex_iterator;
typedef typename SM_decorator::SHalfedge_iterator
SHalfedge_iterator;
typedef typename SM_decorator::SHalfloop_iterator
SHalfloop_iterator;
typedef typename SM_decorator::SFace_iterator SFace_iterator;
typedef typename SM_decorator::SVertex_const_iterator
SVertex_const_iterator;
typedef typename SM_decorator::SHalfedge_const_iterator
SHalfedge_const_iterator;
typedef typename SM_decorator::SHalfloop_const_iterator
SHalfloop_const_iterator;
typedef typename SM_decorator::SFace_const_iterator
SFace_const_iterator;
typedef typename SNC_decorator::SFace_cycle_const_iterator
SFace_cycle_const_iterator;
typedef typename SNC_decorator::Association Association;
protected:
void initialize_infibox_vertices(Content space) {
SNC_constructor C(snc());
Infi_box::initialize_infibox_vertices(C, space == COMPLETE);
}
void check_h_for_intersection_of_12_cube_edges_and_add_vertices
(const Plane_3& p);
void create_intersection_vertex_of_h_and_e();
void init_cube_vertices_depending_on_h(const Plane_3& p);
void add_h_to_local_view_of_v();
public:
void build_external_structure() {
SNC_external_structure es(snc(), pl());
es.build_external_structure();
}
public:
/*{\Mcreation 3}*/
Nef_polyhedron_3( Content space = EMPTY);
/*{\Mcreate creates an instance |\Mvar| of type |\Mname|
and initializes it to the empty set if |space == EMPTY|
and to the whole space if |space == COMPLETE|.}*/
explicit Nef_polyhedron_3(const Plane_3& p, Boundary b = INCLUDED);
/*{\Mcreate creates a Nef polyhedron |\Mvar| containing the
halfspace on the negative side of |p| including |p| if |b==INCLUDED|,
excluding |p| if |b==EXCLUDED|.}*/
Nef_polyhedron_3(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
: Base(N1) , SNC_const_decorator() {
set_snc(snc());
}
Nef_polyhedron_3& operator=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) {
Base::operator=(N1);
set_snc(snc());
return (*this);
}
~Nef_polyhedron_3() {
CGAL_NEF_TRACEN("~Nef_polyhedron_3: destructor called for snc "<<&snc()<<
", pl "<<pl());
}
// RO: "vertex cycle to Nef" constructor (main part)
// II input iterator; KN kernel of normal (may differ from Nef kernel)
template <class II, class KN>
Nef_polyhedron_3 (II v_first, II v_last,
const CGAL::Vector_3<KN> &normal, bool verb = false)
{ CGAL_NEF_TRACEN("construction from vertex cycle (main part)");
// project and triangulate vertices,
// convert result to Nef_polyhedron
CGAL_precondition (!CGAL::is_empty_range (v_first, v_last));
bool is_nef = vertex_cycle_to_nef_3<Nef_polyhedron> (snc(),
v_first, v_last, normal, verb);
if (is_nef)
{
// TO DO:
// Wie kann der eigene point_locator pl() eingebunden werden?
// Wie kann der Konstruktor umgangen werden?
typedef CGAL::SNC_point_locator_by_spatial_subdivision
<CGAL::SNC_decorator<SNC_structure> > Point_locator;
Point_locator Pl;
SNC_external_structure es(snc(), &Pl);
es.build_external_structure();
*this = Nef_polyhedron(snc(), &Pl);
}
else
{ *this = Nef_polyhedron();
}
set_snc (snc());
CGAL_expensive_postcondition (is_valid());
}
// RO: "vertex cycle to Nef" constructor (normal computation)
template <class II>
Nef_polyhedron_3 (II v_first, II v_last, bool verb = false)
{ CGAL_NEF_TRACEN("construction from vertex cycle (normal computation)");
// compute normal vector
CGAL_precondition (!CGAL::is_empty_range (v_first, v_last));
CGAL::Vector_3<typename II::value_type::R> normal;
normal_vector_newell_3 (v_first, v_last, normal);
// call "main" constructor
*this = Nef_polyhedron_3 (v_first, v_last, normal, verb);
set_snc (snc());
}
template<typename Items, typename SNC_structure>
class Sphere_map_creator {
typedef typename SNC_structure::SM_decorator SM_decorator;
typedef typename SNC_structure::Vertex_handle Vertex_handle;
typedef typename SNC_structure::SVertex_handle SVertex_handle;
typedef typename SNC_structure::SFace_handle SFace_handle;
typedef typename SNC_structure::Sphere_point Sphere_point;
public:
Sphere_map_creator() {}
template<typename point_iterator>
void create_end_sphere_map(SNC_structure& snc,
point_iterator cur,
point_iterator prev) {
Vertex_handle v(snc.new_vertex(*cur, true));
SM_decorator SM(&*v);
SVertex_handle sv(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
true));
SFace_handle sf(v->new_sface());
SM.link_as_isolated_vertex(sv,sf);
}
template<typename point_iterator>
void create_sphere_map(SNC_structure& snc,
point_iterator cur,
point_iterator prev,
point_iterator next) {
Vertex_handle v(snc.new_vertex(*cur, true));
SM_decorator SM(&*v);
SVertex_handle sv1(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
true));
SVertex_handle sv2(v->new_svertex(Sphere_point(ORIGIN+(*next-*cur)),
true));
SFace_handle sf(v->new_sface());
SM.link_as_isolated_vertex(sv1,sf);
SM.link_as_isolated_vertex(sv2,sf);
}
};
template<typename SNC_structure>
class Sphere_map_creator<CGAL::SNC_indexed_items, SNC_structure> {
typedef typename SNC_structure::SM_decorator SM_decorator;
typedef typename SNC_structure::Vertex_handle Vertex_handle;
typedef typename SNC_structure::SVertex_handle SVertex_handle;
typedef typename SNC_structure::SFace_handle SFace_handle;
typedef typename SNC_structure::Sphere_point Sphere_point;
bool first;
int index;
public:
Sphere_map_creator() : first(true), index(0) {}
template<typename point_iterator>
void create_end_sphere_map(SNC_structure& snc,
point_iterator cur,
point_iterator prev) {
Vertex_handle v(snc.new_vertex(*cur, true));
SM_decorator SM(&*v);
SVertex_handle sv(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
true));
SFace_handle sf(v->new_sface());
SM.link_as_isolated_vertex(sv,sf);
if(first) {
sv->set_index();
index = sv->get_index();
first = false;
} else
sv->set_index(index);
}
template<typename point_iterator>
void create_sphere_map(SNC_structure& snc,
point_iterator cur,
point_iterator prev,
point_iterator next) {
Vertex_handle v(snc.new_vertex(*cur, true));
SM_decorator SM(&*v);
SVertex_handle sv1(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
true));
SVertex_handle sv2(v->new_svertex(Sphere_point(ORIGIN+(*next-*cur)),
true));
SFace_handle sf(v->new_sface());
SM.link_as_isolated_vertex(sv1,sf);
SM.link_as_isolated_vertex(sv2,sf);
sv1->set_index(index);
sv2->set_index();
index = sv2->get_index();
}
};
template <typename InputIterator>
Nef_polyhedron_3(InputIterator begin, InputIterator end, Polylines_tag) {
typedef typename std::iterator_traits<InputIterator>::value_type
point_iterator_pair;
typedef typename point_iterator_pair::first_type
point_iterator;
empty_rep();
set_snc(snc());
initialize_infibox_vertices(EMPTY);
point_iterator pbegin, pend, pnext, pprev;
Sphere_map_creator<Items, SNC_structure> smc;
for(;begin != end; ++begin) {
pend = begin->second;
pprev = pnext = pbegin = begin->first;
++pnext;
CGAL_assertion(pnext != pend);
smc.create_end_sphere_map(snc(),pbegin,pnext);
for(++pbegin,++pnext; pnext!=pend; ++pbegin,++pprev,++pnext)
smc.create_sphere_map(snc(),pbegin,pprev,pnext);
smc.create_end_sphere_map(snc(),pbegin,pprev);
}
build_external_structure();
simplify();
}
template <class T1, class T2,
template <class T31, class T32, class T33>
class T3, class T4 >
Nef_polyhedron_3( CGAL::Polyhedron_3<T1,T2,T3,T4>& P) {
CGAL_NEF_TRACEN("construction from Polyhedron_3");
SNC_structure rsnc;
*this = Nef_polyhedron_3(rsnc, new SNC_point_locator_default, false);
initialize_infibox_vertices(EMPTY);
polyhedron_3_to_nef_3
<CGAL::Polyhedron_3<T1,T2,T3,T4>, SNC_structure>( P, snc());
build_external_structure();
simplify();
CGAL::Mark_bounded_volumes<Nef_polyhedron_3> mbv(true);
delegate(mbv);
set_snc(snc());
}
Nef_polyhedron_3(const Nef_polyhedron& N,
SFace_const_iterator sf)
{
SNC_structure rsnc;
*this = Nef_polyhedron_3(rsnc, new SNC_point_locator_default, false);
initialize_infibox_vertices(EMPTY);
shell_to_nef_3(N, sf, snc());
build_external_structure();
simplify();
CGAL::Mark_bounded_volumes<Nef_polyhedron_3> mbv(true);
delegate(mbv);
set_snc(snc());
}
protected:
template<typename Kernel>
class Triangulation_handler2 {
typedef typename CGAL::Triangulation_vertex_base_2<Kernel> Vb;
typedef typename CGAL::Constrained_triangulation_face_base_2<Kernel> Fb;
typedef typename CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef typename CGAL::Constrained_triangulation_2<Kernel,TDS> CT;
typedef typename CT::Face_handle Face_handle;
typedef typename CT::Vertex_handle CTVertex_handle;
typedef typename CT::Finite_faces_iterator Finite_face_iterator;
typedef typename CT::Edge Edge;
CT ct;
CGAL::Unique_hash_map<Face_handle, bool> visited;
CGAL::Unique_hash_map<CTVertex_handle, Vertex_const_handle> ctv2v;
Finite_face_iterator fi;
Plane_3 supporting_plane;
public:
Triangulation_handler2(Halffacet_const_handle f) :
visited(false), supporting_plane(f->plane()) {
Halffacet_cycle_const_iterator fci;
for(fci=f->facet_cycles_begin(); fci!=f->facet_cycles_end(); ++fci) {
if(fci.is_shalfedge()) {
SHalfedge_around_facet_const_circulator sfc(fci), send(sfc);
CGAL_For_all(sfc,send) {
CGAL_NEF_TRACEN(" insert point" << sfc->source()->source()->point());
CTVertex_handle ctv = ct.insert(sfc->source()->source()->point());
ctv2v[ctv] = sfc->source()->source();
}
}
}
for(fci=f->facet_cycles_begin(); fci!=f->facet_cycles_end(); ++fci) {
if(fci.is_shalfedge()) {
SHalfedge_around_facet_const_circulator sfc(fci), send(sfc);
CGAL_For_all(sfc,send) {
CGAL_NEF_TRACEN(" insert constraint" << sfc->source()->source()->point()
<< "->" << sfc->source()->twin()->source()->point());
ct.insert_constraint(sfc->source()->source()->point(),
sfc->source()->twin()->source()->point());
}
}
}
CGAL_assertion(ct.is_valid());
CGAL_NEF_TRACEN("number of finite triangles " << ct.number_of_faces());
typename CT::Face_handle infinite = ct.infinite_face();
typename CT::Vertex_handle ctv = infinite->vertex(1);
if(ct.is_infinite(ctv)) ctv = infinite->vertex(2);
CGAL_assertion(!ct.is_infinite(ctv));
typename CT::Face_handle opposite;
typename CT::Face_circulator vc(ctv,infinite);
do { opposite = vc++;
} while(!ct.is_constrained(typename CT::Edge(vc,vc->index(opposite))));
typename CT::Face_handle first = vc;
CGAL_assertion(!ct.is_infinite(first));
traverse_triangulation(first, first->index(opposite));
fi = ct.finite_faces_begin();
}
void traverse_triangulation(Face_handle f, int parent) {
visited[f] = true;
if(!ct.is_constrained(Edge(f,ct.cw(parent))) && !visited[f->neighbor(ct.cw(parent))]) {
Face_handle child(f->neighbor(ct.cw(parent)));
traverse_triangulation(child, child->index(f));
}
if(!ct.is_constrained(Edge(f,ct.ccw(parent))) && !visited[f->neighbor(ct.ccw(parent))]) {
Face_handle child(f->neighbor(ct.ccw(parent)));
traverse_triangulation(child, child->index(f));
}
}
template<typename Triangle_3>
bool get_next_triangle(Triangle_3& tr) {
while(fi != ct.finite_faces_end() && visited[fi] == false) ++fi;
if(fi == ct.finite_faces_end()) return false;
tr = Triangle_3(fi->vertex(0)->point(), fi->vertex(1)->point(), fi->vertex(2)->point());
++fi;
return true;
}
bool same_orientation(Plane_3 p1) const {
if(p1.a() != 0)
return CGAL::sign(p1.a()) == CGAL::sign(supporting_plane.a());
if(p1.b() != 0)
return CGAL::sign(p1.b()) == CGAL::sign(supporting_plane.b());
return CGAL::sign(p1.c()) == CGAL::sign(supporting_plane.c());
}
template<typename PIB, typename Index>
void handle_triangles(PIB& pib, Index& VI) {
while(fi != ct.finite_faces_end() && visited[fi] == false) ++fi;
while(fi != ct.finite_faces_end()) {
Plane_3 plane(fi->vertex(0)->point(),
fi->vertex(1)->point(),
fi->vertex(2)->point());
pib.begin_facet();
if(same_orientation(plane)) {
pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(0)]]);
pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(1)]]);
pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(2)]]);
} else {
pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(0)]]);
pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(2)]]);
pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(1)]]);
}
pib.end_facet();
do {
++fi;
} while(fi != ct.finite_faces_end() && visited[fi] == false);
}
}
};
template <class HDS>
class Build_polyhedron : public CGAL::Modifier_base<HDS> {
class Visitor {
typedef typename CGAL::Projection_traits_xy_3<Kernel> XY;
typedef typename CGAL::Projection_traits_yz_3<Kernel> YZ;
typedef typename CGAL::Projection_traits_xz_3<Kernel> XZ;
const Object_index<Vertex_const_iterator>& VI;
Polyhedron_incremental_builder_3<HDS>& B;
const SNC_const_decorator& D;
public:
Visitor(Polyhedron_incremental_builder_3<HDS>& BB,
const SNC_const_decorator& sd,
Object_index<Vertex_const_iterator>& vi) : VI(vi), B(BB), D(sd){}
void visit(Halffacet_const_handle opposite_facet) {
CGAL_NEF_TRACEN("Build_polyhedron: visit facet " << opposite_facet->plane());
CGAL_assertion(Infi_box::is_standard(opposite_facet->plane()));
SHalfedge_const_handle se;
Halffacet_cycle_const_iterator fc;
Halffacet_const_handle f = opposite_facet->twin();
SHalfedge_around_facet_const_circulator
sfc1(f->facet_cycles_begin()), sfc2(sfc1);
if(++f->facet_cycles_begin() != f->facet_cycles_end() ||
++(++(++sfc1)) != sfc2) {
Vector_3 orth = f->plane().orthogonal_vector();
int c = CGAL::abs(orth[0]) > CGAL::abs(orth[1]) ? 0 : 1;
c = CGAL::abs(orth[2]) > CGAL::abs(orth[c]) ? 2 : c;
if(c == 0) {
Triangulation_handler2<YZ> th(f);
th.handle_triangles(B, VI);
} else if(c == 1) {
Triangulation_handler2<XZ> th(f);
th.handle_triangles(B, VI);
} else if(c == 2) {
Triangulation_handler2<XY> th(f);
th.handle_triangles(B, VI);
} else
CGAL_error_msg( "wrong value");
} else {
B.begin_facet();
fc = f->facet_cycles_begin();
se = SHalfedge_const_handle(fc);
CGAL_assertion(se!=0);
SHalfedge_around_facet_const_circulator hc_start(se);
SHalfedge_around_facet_const_circulator hc_end(hc_start);
CGAL_For_all(hc_start,hc_end) {
CGAL_NEF_TRACEN(" add vertex " << hc_start->source()->center_vertex()->point());
B.add_vertex_to_facet(VI[hc_start->source()->center_vertex()]);
}
B.end_facet();
}
}
void visit(SFace_const_handle) {}
void visit(Halfedge_const_handle) {}
void visit(Vertex_const_handle) {}
void visit(SHalfedge_const_handle) {}
void visit(SHalfloop_const_handle) {}
};
public:
const SNC_const_decorator& scd;
Object_index<Vertex_const_iterator> VI;
Build_polyhedron(const SNC_const_decorator& s) :
scd(s), VI(s.vertices_begin(),s.vertices_end(),'V') {}
void operator()( HDS& hds) {
Polyhedron_incremental_builder_3<HDS> B(hds, true);
int skip_volumes;
if(Infi_box::extended_kernel()) {
B.begin_surface(scd.number_of_vertices()-8,
scd.number_of_facets()-6,
scd.number_of_edges()-12);
skip_volumes = 2;
}
else {
B.begin_surface(scd.number_of_vertices(),
2*scd.number_of_vertices()-4,
3*scd.number_of_vertices()-6);
skip_volumes = 1;
}
int vertex_index = 0;
Vertex_const_iterator v;
CGAL_forall_vertices(v,scd) {
if(Infi_box::is_standard(v->point())) {
VI[v]=vertex_index++;
B.add_vertex(v->point());
}
}
Visitor V(B,scd,VI);
Volume_const_handle c;
CGAL_forall_volumes(c,scd)
if(skip_volumes-- <= 0)
scd.visit_shell_objects(SFace_const_handle(c->shells_begin()),V);
B.end_surface();
if ( B.error() ) B.rollback();
}
};
template <class HDS>
class Build_polyhedron2 : public CGAL::Modifier_base<HDS> {
class Find_holes {
Unique_hash_map<Vertex_const_handle, bool>& omit_vertex;
int nov, nof;
public:
Find_holes(Unique_hash_map<Vertex_const_handle, bool>& omit_vertex_)
: omit_vertex(omit_vertex_), nov(0), nof(0) {}
void visit(Halffacet_const_handle f) {
++nof;
Halffacet_cycle_const_iterator fc = f->facet_cycles_begin();
for(++fc; fc != f->facet_cycles_end(); ++fc) {
if(fc.is_shalfedge()) {
--nof;
SHalfedge_around_facet_const_circulator
sfc(fc), send(sfc);
CGAL_For_all(sfc, send) {
omit_vertex[sfc->source()->source()] = true;
--nov;
}
} else if(fc.is_shalfloop()) {
SHalfloop_const_handle sl(fc);
omit_vertex[sl->incident_sface()->center_vertex()];
--nov;
} else
CGAL_error_msg( "wrong handle type");
}
}
void visit(Vertex_const_handle) { ++nov; }
void visit(SFace_const_handle) {}
void visit(Halfedge_const_handle) {}
void visit(SHalfedge_const_handle) {}
void visit(SHalfloop_const_handle) {}
int number_of_vertices() const {
return nov;
}
int number_of_facets() const {
return nof;
}
};
class Add_vertices {
Polyhedron_incremental_builder_3<HDS>& B;
Unique_hash_map<Vertex_const_handle, bool>& omit_vertex;
Object_index<Vertex_const_iterator>& VI;
int vertex_index;
public:
Add_vertices(Polyhedron_incremental_builder_3<HDS>& B_,
Unique_hash_map<Vertex_const_handle, bool>& omit_vertex_,
Object_index<Vertex_const_iterator>& VI_)
: B(B_), omit_vertex(omit_vertex_), VI(VI_), vertex_index(0) {}
void visit(Vertex_const_handle v) {
if(omit_vertex[v]) return;
VI[v]=vertex_index++;
B.add_vertex(v->point());
}
void visit(Halffacet_const_handle) {}
void visit(SFace_const_handle) {}
void visit(Halfedge_const_handle) {}
void visit(SHalfedge_const_handle) {}
void visit(SHalfloop_const_handle) {}
};
class Visitor {
const Object_index<Vertex_const_iterator>& VI;
Polyhedron_incremental_builder_3<HDS>& B;
const Unique_hash_map<Vertex_const_handle, bool>& omit_vertex;
SNC_const_decorator& D;
public:
Visitor(Polyhedron_incremental_builder_3<HDS>& BB,
const Unique_hash_map<Vertex_const_handle, bool>& omit_vertex_,
SNC_const_decorator& sd,
Object_index<Vertex_const_iterator>& vi)
: VI(vi), B(BB), omit_vertex(omit_vertex_), D(sd){}
void visit(Halffacet_const_handle opposite_facet) {
CGAL_NEF_TRACEN("Build_polyhedron: visit facet " << opposite_facet->plane());
CGAL_assertion(Infi_box::is_standard(opposite_facet->plane()));
SHalfedge_const_handle se;
Halffacet_cycle_const_iterator fc;
Halffacet_const_handle f = opposite_facet->twin();
fc = f->facet_cycles_begin();
se = SHalfedge_const_handle(fc);
CGAL_assertion(se!=0);
if(omit_vertex[se->source()->source()]) return;
B.begin_facet();
SHalfedge_around_facet_const_circulator hc_start(se);
SHalfedge_around_facet_const_circulator hc_end(hc_start);
CGAL_For_all(hc_start,hc_end) {
CGAL_NEF_TRACEN(" add vertex " << hc_start->source()->center_vertex()->point());
B.add_vertex_to_facet(VI[hc_start->source()->center_vertex()]);
}
B.end_facet();
}
void visit(SFace_const_handle) {}
void visit(Halfedge_const_handle) {}
void visit(Vertex_const_handle) {}
void visit(SHalfedge_const_handle) {}
void visit(SHalfloop_const_handle) {}
};
public:
SFace_const_handle sf;
SNC_const_decorator& scd;
Object_index<Vertex_const_iterator> VI;
Unique_hash_map<Vertex_const_handle, bool> omit_vertex;
Build_polyhedron2(SFace_const_handle sf_, SNC_const_decorator& s) :
sf(sf_), scd(s), VI(s.vertices_begin(),s.vertices_end(),'V'),
omit_vertex(false) {}
void operator()(HDS& hds) {
Polyhedron_incremental_builder_3<HDS> B(hds, true);
Find_holes F(omit_vertex);
scd.visit_shell_objects(sf, F);
B.begin_surface(F.number_of_vertices(),
F.number_of_facets(),
F.number_of_vertices()+F.number_of_facets()-2);
Add_vertices A(B,omit_vertex, VI);
scd.visit_shell_objects(sf, A);
Visitor V(B,omit_vertex, scd,VI);
scd.visit_shell_objects(sf, V);
B.end_surface();
if ( B.error() ) B.rollback();
}
};
public:
void delegate( Modifier_base<SNC_structure>& modifier,
bool compute_external = false,
bool do_simplify = true) {
// calls the `operator()' of the `modifier'. Precondition: The
// `modifier' returns a consistent representation.
if( this->is_shared()) clone_rep();
modifier(snc());
if(compute_external) {
SNC_external_structure es(snc());
es.clear_external_structure();
build_external_structure();
}
if(do_simplify)
simplify();
CGAL_expensive_postcondition( is_valid());
}
struct SNC_and_PL {
SNC_structure* sncp;
SNC_point_locator* pl;
SNC_and_PL(SNC_structure* s, SNC_point_locator* p) : sncp(s), pl(p) {}
};
void delegate( Modifier_base<SNC_and_PL>& modifier,
bool compute_external = false,
bool do_simplify = false) {
// calls the `operator()' of the `modifier'. Precondition: The
// `modifier' returns a consistent representation.
if( this->is_shared()) clone_rep();
SNC_and_PL sncpl(&snc(),pl());
modifier(sncpl);
pl() = sncpl.pl;
if(compute_external) {
SNC_external_structure es(snc());
es.clear_external_structure();
build_external_structure();
}
if(do_simplify)
simplify();
CGAL_expensive_postcondition( is_valid());
}
public:
template<typename Polyhedron>
void convert_to_Polyhedron(Polyhedron& P) const {
convert_to_polyhedron(P);
}
template<typename Polyhedron>
void convert_to_polyhedron(Polyhedron& P) const {
typedef typename Polyhedron::HalfedgeDS HalfedgeDS;
CGAL_precondition(is_simple());
P.clear();
Build_polyhedron<HalfedgeDS> bp(*this);
P.delegate(bp);
}
template<typename Polyhedron>
void convert_inner_shell_to_polyhedron(SFace_const_iterator sf, Polyhedron& P) {
typedef typename Polyhedron::HalfedgeDS HalfedgeDS;
P.clear();
Build_polyhedron2<HalfedgeDS> bp(sf, *this);
P.delegate(bp);
}
bool is_valid( bool verb = false, int level = 0) {
// checks the combinatorial consistency.
Verbose_ostream verr(verb);
verr << "begin CGAL::Nef_polyhedron_3<...>::is_valid( verb=true, "
"level = " << level << "):" << std::endl;
SNC_decorator D(snc());
bool valid = D.is_valid(verb, level);
verr << "end of CGAL::Nef_polyhedron_3<...>::is_valid(): structure is "
<< ( valid ? "valid." : "NOT VALID.") << std::endl;
return valid;
}
bool is_simple() const {
Halfedge_const_iterator e;
CGAL_forall_edges(e,snc())
if(!is_edge_2manifold(e))
return false;
CGAL_NEF_TRACEN("there is no edge with non-manifold situation");
Vertex_const_iterator v;
CGAL_forall_vertices(v,snc())
if(!is_vertex_2manifold(v))
return false;
CGAL_NEF_TRACEN("there is no vertex with non-manifold situation");
/*
Halffacet_iterator f;
CGAL_forall_halffacets(f,snc())
if(!is_facet_simple(f))
return false;
CGAL_NEF_TRACEN("there are no holes");
*/
return true;
}
bool is_convex() const {
Vertex_const_iterator v;
CGAL_forall_vertices(v, *this) {
SM_const_decorator SD(&*v);
if(std::distance(SD.sfaces_begin(),SD.sfaces_end())!=2)
return false;
if(!Infi_box::is_standard(v->point())) continue;
SFace_const_iterator sf;
CGAL_forall_sfaces(sf,SD) {
if(sf->volume() == Infi_box::getNirvana(snc())) continue;
if(std::distance(sf->sface_cycles_begin(),sf->sface_cycles_end())!=1)
return false;
SFace_cycle_const_iterator sfi(sf->sface_cycles_begin());
if(!sfi.is_shalfedge())
return false;
SHalfedge_const_handle se(sf->sface_cycles_begin());
SHalfedge_around_sface_const_circulator sec(se),send(sec);
CGAL_For_all(sec,send)
if(spherical_orientation(sec->source()->point(),
sec->snext()->source()->point(),
sec->snext()->snext()->source()->point())<0) {
std::cerr << "vertex at " << v->point() << " is not convex" << std::endl;
return false;
}
}
}
return true;
}
private:
bool is_edge_2manifold(const Halfedge_const_handle& e) const {
SM_decorator SD;
SHalfedge_around_svertex_const_circulator c(SD.first_out_edge(e)), c2(c);
if(c == 0) {
CGAL_assertion(circulator_size(c) !=2);
return false;
}
if(++c == c2){
CGAL_assertion(circulator_size(c) !=2);
return false;
}
if(++c != c2) {
CGAL_assertion(circulator_size(c) !=2);
return false;
}
CGAL_assertion(circulator_size(c) == 2);
return true;
}
bool is_vertex_2manifold(const Vertex_const_handle& v) const {
SFace_const_iterator sfi(v->sfaces_begin());
if (++sfi != v->sfaces_last())
return false;
return true;
}
bool is_facet_simple(const Halffacet_const_handle& f) const {
bool found_first = false;
Halffacet_cycle_const_iterator it;
CGAL_forall_facet_cycles_of(it,f)
if (found_first || !it.is_shalfedge())
return false;
else
found_first = true;
return true;
}
public:
#ifdef CGAL_NEF3_OLD_VISUALIZATION
void visualize() {
Visualizor sncv(*this);
sncv.draw();
//OGL::polyhedra_.back().debug();
OLDOGL::start_viewer();
}
#endif // CGAL_NEF3_OLD_VISUALIZATION
void clear(Content space = EMPTY)
{ *this = Nef_polyhedron_3(space); }
/*{\Mop makes |\Mvar| the empty set if |space == EMPTY| and the
full space if |space == COMPLETE|.}*/
bool is_empty() const {
/*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/
if(Infi_box::extended_kernel())
return this->number_of_vertices() == 8 &&
this->number_of_edges() == 12 &&
this->number_of_facets() == 6 &&
this->number_of_volumes() == 2 &&
(++this->volumes_begin())->mark() == false;
else
return this->number_of_vertices() == 0 &&
this->number_of_edges() == 0 &&
this->number_of_facets() == 0 &&
this->number_of_volumes() == 1 &&
(this->volumes_begin())->mark() == false;
}
bool is_space() const {
/*{\Mop returns true if |\Mvar| is the whole space, false otherwise.}*/
if(Infi_box::extended_kernel())
return this->number_of_vertices() == 8 &&
this->number_of_edges() == 12 &&
this->number_of_facets() == 6 &&
this->number_of_volumes() == 2 &&
(++this->volumes_begin())->mark() == true;
else
return this->number_of_vertices() == 0 &&
this->number_of_edges() == 0 &&
this->number_of_facets() == 0 &&
this->number_of_volumes() == 1 &&
(this->volumes_begin())->mark() == true;
}
/*{\Xtext \headerline{Destructive Operations}}*/
protected:
void clone_rep() { *this = Nef_polyhedron_3<Kernel,Items, Mark>(snc(), pl()); }
void empty_rep() {
SNC_structure rsnc;
delete pl();
*this = Nef_polyhedron_3<Kernel,Items, Mark>(rsnc, new SNC_point_locator_default,false);
}
public:
Nef_polyhedron_3( const SNC_structure& W,
SNC_point_locator* _pl = new SNC_point_locator_default,
bool clone_pl = true,
bool clone_snc = true);
/*{\Xcreate makes |\Mvar| a new object. If |cloneit==true| then the
underlying structure of |W| is copied into |\Mvar|.}*/
// TODO: granados: define behavior when clone=false
/*{\Moperations 4 3 }*/
void simplify() {
SNC_simplify simp(snc());
bool simplified = simp.simplify();
CGAL_NEF_TRACEN( "simplify(): structure simplified? "<<simplified);
if( simplified) {
#ifdef CGAL_NEF3_UPDATE_K3TREE_AFTER_SIMPLIFICATION
/*debug*/ snc().print_statistics();
Unique_hash_map<Vertex_handle, bool>
V(false, snc().number_of_vertices());
Unique_hash_map<Halfedge_handle, bool>
E(false, snc().number_of_halfedges());
Unique_hash_map<Halffacet_handle, bool>
F(false, snc().number_of_halffacets());
Vertex_iterator v;
Halfedge_iterator e;
Halffacet_iterator f;
CGAL_forall_vertices( v, snc()) V[Vertex_handle(v)] = true;
CGAL_forall_halfedges( e, snc()) E[Halfedge_handle(e)] = true;
CGAL_forall_halffacets( f, snc()) F[Halffacet_handle(f)] = true;
bool updated = pl()->update( V, E, F);
CGAL_NEF_TRACEN("simplify(): point locator structure updated? " << updated);
#else
SNC_point_locator* old_pl = pl();
pl() = pl()->clone();
pl()->initialize(&snc());
delete old_pl;
#endif
}
}
public:
Nef_polyhedron_S2 get_sphere_map(Vertex_const_handle v) const {
return Nef_polyhedron_S2(*v);
}
void extract_complement();
/*{\Xop converts |\Mvar| to its complement. }*/
void extract_interior();
/*{\Xop converts |\Mvar| to its interior. }*/
void extract_boundary();
/*{\Xop converts |\Mvar| to its boundary. }*/
void extract_closure()
/*{\Xop converts |\Mvar| to its closure. }*/
{ CGAL_NEF_TRACEN("extract closure");
if( this->is_shared()) clone_rep();
extract_complement();
extract_interior();
extract_complement();
}
void extract_regularization()
/*{\Xop converts |\Mvar| to its regularization. }*/
{ CGAL_NEF_TRACEN("extract regularization");
if( this->is_shared()) clone_rep();
extract_interior();
extract_closure();
}
/*{\Mtext \headerline{Constructive Operations}}*/
Nef_polyhedron_3<Kernel,Items, Mark> complement() const
/*{\Mop returns the complement of |\Mvar| in the plane. }*/
{ Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
res.extract_complement();
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark> interior() const
/*{\Mop returns the interior of |\Mvar|. }*/
{ Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
res.extract_interior();
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark> closure() const
/*{\Mop returns the closure of |\Mvar|. }*/
{ Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
res.extract_closure();
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark> boundary() const
/*{\Mop returns the boundary of |\Mvar|. }*/
{ Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
res.extract_boundary();
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark> regularization() const
/*{\Mop returns the regularized polyhedron (closure of
the interior).}*/
{ Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
res.extract_regularization();
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark>
intersection(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
/*{\Mop returns |\Mvar| $\cap$ |N1|. }*/ {
CGAL_NEF_TRACEN(" intersection between nef3 "<<&*this<<" and "<<&N1);
AND _and;
SNC_structure rsnc;
Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
Binary_operation bo( res.snc());
bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _and);
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark>
intersection(const Plane_3& plane,
Intersection_mode im) const {
AND _and;
SNC_structure rsnc;
Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
Combine_with_halfspace cwh(res.snc(), res.pl());
cwh.combine_with_halfspace(snc(), plane, _and,
static_cast<typename Combine_with_halfspace::Intersection_mode>(im));
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark>
join(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
/*{\Mop returns |\Mvar| $\cup$ |N1|. }*/ {
CGAL_NEF_TRACEN(" join between nef3 "<<&*this<<" and "<<&N1);
OR _or;
//CGAL::binop_intersection_tests_allpairs<SNC_decorator, OR> tests_impl;
SNC_structure rsnc;
Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
Binary_operation bo(res.snc());
bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _or);
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark>
difference(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
/*{\Mop returns |\Mvar| $-$ |N1|. }*/ {
CGAL_NEF_TRACEN(" difference between nef3 "<<&*this<<" and "<<&N1);
DIFF _diff;
//CGAL::binop_intersection_tests_allpairs<SNC_decorator, DIFF> tests_impl;
SNC_structure rsnc;
Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
Binary_operation bo(res.snc());
bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _diff);
return res;
}
Nef_polyhedron_3<Kernel,Items, Mark>
symmetric_difference(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
/*{\Mop returns the symmectric difference |\Mvar - T| $\cup$
|T - \Mvar|. }*/ {
CGAL_NEF_TRACEN(" symmetic difference between nef3 "<<&*this<<" and "<<&N1);
XOR _xor;
//CGAL::binop_intersection_tests_allpairs<SNC_decorator, XOR> tests_impl;
SNC_structure rsnc;
Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
Binary_operation bo(res.snc());
bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _xor);
return res;
}
/*{\Mtext Additionally there are operators |*,+,-,^,!| which
implement the binary operations \emph{intersection}, \emph{union},
\emph{difference}, \emph{symmetric difference}, and the unary
operation \emph{complement}. There are also the corresponding
modification operations |*=,+=,-=,^=|.}*/
Nef_polyhedron_3<Kernel,Items, Mark> operator*(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return intersection(N1); }
Nef_polyhedron_3<Kernel,Items, Mark> operator+(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return join(N1); }
Nef_polyhedron_3<Kernel,Items, Mark> operator-(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return difference(N1); }
Nef_polyhedron_3<Kernel,Items, Mark> operator^(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return symmetric_difference(N1); }
Nef_polyhedron_3<Kernel,Items, Mark> operator!() const
{ return complement(); }
Nef_polyhedron_3<Kernel,Items, Mark>& operator*=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
{
#ifdef CGAL_NEF_VISUAL_HULL
CGAL_NEF_SETDTHREAD(19*43*71);
std::cerr << "visual hull code " << std::endl;
std::cerr << *this << std::endl;
std::cerr << const_cast<Nef_polyhedron&>(N1) << std::endl;
AND _and;
typename CGAL::Modifying_binary_operation<SNC_structure>
mbo(this->snc());
mbo(const_cast<SNC_structure&>(N1.snc()), N1.pl(), pl(), _and);
return *this;
#else
*this = intersection(N1); return *this;
#endif
}
Nef_polyhedron_3<Kernel,Items, Mark>& operator+=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
{ *this = join(N1); return *this; }
Nef_polyhedron_3<Kernel,Items, Mark>& operator-=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
{ *this = difference(N1); return *this; }
Nef_polyhedron_3<Kernel,Items, Mark>& operator^=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
{ *this = symmetric_difference(N1); return *this; }
/*{\Mtext There are also comparison operations like |<,<=,>,>=,==,!=|
which implement the relations subset, subset or equal, superset, superset
or equal, equality, inequality.}*/
bool operator==(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ CGAL_NEF_TRACEN(" equality comparision between nef3 "<<&*this<<" and "<<&N1);
return symmetric_difference(N1).is_empty(); }
bool operator!=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ CGAL_NEF_TRACEN(" inequality comparision between nef3 "<<&*this<<" and "<<&N1);
return !operator==(N1); }
bool operator<(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return !N1.difference(*this).is_empty() && difference(N1).is_empty(); }
bool operator>(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return difference(*this).is_empty() && !difference(N1).is_empty(); }
bool operator<=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return difference(N1).is_empty(); }
bool operator>=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
{ return N1.difference(*this).is_empty(); }
bool is_90degree_rotation(const Aff_transformation_3& aff) const {
if(aff.hm(0,3) != 0) return false;
if(aff.hm(1,3) != 0) return false;
if(aff.hm(2,3) != 0) return false;
if(CGAL_NTS abs(aff.hm(0,0)) +
CGAL_NTS abs(aff.hm(0,1)) +
CGAL_NTS abs(aff.hm(0,2)) != aff.hm(3,3)) return false;
if(CGAL_NTS abs(aff.hm(1,0)) +
CGAL_NTS abs(aff.hm(1,1)) +
CGAL_NTS abs(aff.hm(1,2)) != aff.hm(3,3)) return false;
if(CGAL_NTS abs(aff.hm(2,0)) +
CGAL_NTS abs(aff.hm(2,1)) +
CGAL_NTS abs(aff.hm(2,2)) != aff.hm(3,3)) return false;
if(CGAL_NTS abs(aff.hm(0,0)) +
CGAL_NTS abs(aff.hm(1,0)) +
CGAL_NTS abs(aff.hm(2,0)) != aff.hm(3,3)) return false;
if(CGAL_NTS abs(aff.hm(0,1)) +
CGAL_NTS abs(aff.hm(1,1)) +
CGAL_NTS abs(aff.hm(2,1)) != aff.hm(3,3)) return false;
if(CGAL_NTS abs(aff.hm(0,2)) +
CGAL_NTS abs(aff.hm(1,2)) +
CGAL_NTS abs(aff.hm(2,2)) != aff.hm(3,3)) return false;
return true;
}
bool is_scaling(const Aff_transformation_3& aff) const {
if(aff.hm(0,3) != 0) return false;
if(aff.hm(1,3) != 0) return false;
if(aff.hm(2,3) != 0) return false;
if(aff.hm(0,1) != 0) return false;
if(aff.hm(0,2) != 0) return false;
if(aff.hm(1,0) != 0) return false;
if(aff.hm(1,2) != 0) return false;
if(aff.hm(2,0) != 0) return false;
if(aff.hm(2,1) != 0) return false;
if(aff.hm(0,0) != aff.hm(1,1)) return false;
if(aff.hm(0,0) != aff.hm(2,2)) return false;
return true;
}
void change_orientation(bool full = false) {
Halffacet_handle ftemp;
Volume_handle vtemp;
SVertex_handle svtemp;
SHalfedge_handle setemp;
SFace_handle sftemp;
SVertex_iterator sv;
CGAL_forall_svertices(sv, snc()) {
sv->out_sedge() = sv->out_sedge()->twin();
}
SHalfedge_iterator se;
CGAL_forall_shalfedges(se, snc()) {
if(se->is_twin()) {
svtemp = se->source();
se->source() = se->twin()->source();
se->twin()->source() = svtemp;
if(full) {
ftemp = se->facet();
se->facet() = se->twin()->facet();
se->twin()->facet() = ftemp;
}
// sftemp = se->incident_sface();
// se->incident_sface() = se->twin()->incident_sface();
// se->twin()->incident_sface() = sftemp;
}
setemp = se->sprev();
se->sprev() = se->snext();
se->snext() = setemp;
se->circle() = se->circle().opposite();
if(full) {
setemp = se->prev();
se->prev() = se->next();
se->next() = setemp;
}
}
if(full) {
Halffacet_iterator f;
CGAL_forall_facets(f, snc()) {
vtemp = f->incident_volume();
f->incident_volume() = f->twin()->incident_volume();
f->twin()->incident_volume() = vtemp;
Halffacet_cycle_iterator fc(f->facet_cycles_begin()),
fct(f->twin()->facet_cycles_begin());
while(fc!=f->facet_cycles_end()) {
CGAL_assertion(fct!=f->twin()->facet_cycles_end());
if(fc.is_shalfedge()) {
CGAL_assertion(fct.is_shalfedge());
setemp = fc;
*fc = *fct;
*fct = make_object(setemp);
}
++fc;
++fct;
}
}
CGAL_forall_halffacets(f, snc()) {
Halffacet_cycle_iterator fc(f->facet_cycles_begin());
for(;fc!=f->facet_cycles_end();++fc) {
if(fc.is_shalfedge()) {
setemp = fc;
SHalfedge_around_facet_circulator hfc(setemp),hend(hfc);
++hfc;
CGAL_For_all(hfc,hend) {
if ( CGAL::lexicographically_xyz_smaller(hfc->source()->source()->point(),
setemp->source()->source()->point()))
setemp = hfc;
}
*fc = make_object(setemp);
}
}
}
}
}
void transform( const Aff_transformation_3& aff) {
if( this->is_shared())
clone_rep();
// only linear transform for the origin-centered sphere maps
Aff_transformation_3 linear( aff.hm(0,0), aff.hm(0,1), aff.hm(0,2),
aff.hm(1,0), aff.hm(1,1), aff.hm(1,2),
aff.hm(2,0), aff.hm(2,1), aff.hm(2,2),
aff.hm(3,3));
SNC_constructor cstr(snc());
std::list<Vertex_handle> vertex_list;
std::list<Vertex_handle> corner_list;
std::list<Vertex_handle> delete_list;
typename std::list<Vertex_handle>::iterator li;
typename std::list<Vertex_handle>::iterator li2;
bool ninety = is_90degree_rotation(aff);
bool scale = is_scaling(aff);
Vertex_iterator vi;
CGAL_forall_vertices( vi, snc()) {
CGAL_NEF_TRACEN("transform vertex ");
if(scale) {
if(is_standard(vi))
vi->point() = vi->point().transform( aff);
else if(!Infi_box::is_infibox_corner(vi->point())) {
vi->point() = normalized(Infi_box::normalize_transformed_vertex(vi->point().transform(aff)));
}
} else if (!is_standard(vi) && !ninety) {
if(Infi_box::is_infibox_corner(vi->point()))
corner_list.push_back(vi);
vertex_list.push_back(vi);
} else {
vi->point() = vi->point().transform( aff);
SM_decorator sdeco(&*vi);
sdeco.transform( linear);
}
}
if(!this->is_bounded() && !ninety && !scale) {
Halffacet_iterator fi;
CGAL_forall_facets(fi, snc()) {
if(!is_standard(fi) || is_bounded(fi)) continue;
Plane_3 pt = fi->plane();
pt = pt.transform(aff);
std::list<Point_3> points(Infi_box::find_points_of_box_with_plane(cstr,pt));
std::list<Vertex_handle> newVertices;
newVertices = Infi_box::create_vertices_on_infibox(cstr,
pt, points, fi->mark(),
fi->twin()->incident_volume()->mark(),
fi->incident_volume()->mark());
for(li = newVertices.begin(); li != newVertices.end(); ++li) {
if(Infi_box::is_infibox_corner((*li)->point())) {
li2 = corner_list.begin();
while(li2 != corner_list.end() && (*li2)->point() != (*li)->point()) ++li2;
CGAL_assertion(li2 != corner_list.end());
delete_list.push_back(*li2);
*li2 = *li;
}
}
}
for(li = vertex_list.begin(); li != vertex_list.end();++li) {
SM_decorator SD(&**li);
if(Infi_box::is_complex_facet_infibox_intersection(**li)) {
Halffacet_handle hf[2];
int i=0;
SHalfedge_iterator sei;
CGAL_forall_sedges(sei,SD) {
if(!Infi_box::is_sedge_on_infibox(sei)) {
hf[i] = sei->facet();
if(hf[i]->is_twin()) hf[i] = hf[i]->twin();
++i;
}
if(i>1)
break;
}
}
}
Association A;
SNC_external_structure es(snc());
es.clear_external_structure();
for(li = vertex_list.begin(); li != vertex_list.end();++li){
if(Infi_box::is_complex_facet_infibox_intersection(**li)) {
Vertex_handle v2;
Vertex_handle v1 = cstr.create_for_infibox_overlay(*li);
v1->point() = normalized(Infi_box::normalize_transformed_vertex((*li)->point().transform(aff)));
SM_decorator sdeco(&*v1);
sdeco.transform(linear);
switch(Infi_box::type_of_infibox_point(v1->point())) {
case 1:
v2 = cstr.create_from_point_on_infibox_facet(v1->point());
break;
case 2:
v2 = cstr.create_from_point_on_infibox_edge(v1->point());
break;
case 3:
v2 = cstr.create_from_point_on_infibox_vertex(v1->point());
li2 = corner_list.begin();
while(li2 != corner_list.end() && (*li2)->point() != v2->point()) ++li2;
if(li2 != corner_list.end())
delete_list.push_back(*li2);
break;
default: CGAL_error_msg( "wrong value");
}
Vertex_handle v = snc().new_vertex(v1->point(), (*li)->mark());
SM_overlayer O(&*v);
O.subdivide(&*v1, &*v2, A);
AND _and;
O.select(_and);
O.simplify(A);
snc().delete_vertex(v1);
snc().delete_vertex(v2);
}
if(Infi_box::is_infibox_corner((*li)->point())) {
SM_decorator SD(&**li);
if(SD.number_of_svertices() < 4)
continue;
li2 = corner_list.begin();
while(li2 != corner_list.end() && (*li2)->point() != (*li)->point()) ++li2;
CGAL_assertion(li2 != corner_list.end());
if(*li == *li2) {
delete_list.push_back(*li2);
*li2 = cstr.create_from_point_on_infibox_vertex((*li)->point());
}
} else
snc().delete_vertex(*li);
}
for(li = delete_list.begin(); li != delete_list.end(); ++li)
snc().delete_vertex(*li);
if(!aff.is_even())
change_orientation();
while(cstr.erase_redundant_vertices()) ;
cstr.correct_infibox_sedge_marks();
build_external_structure();
cstr.correct_infibox_sface_marks();
// are the upcoming lines necessary?
SNC_point_locator* old_pl = pl();
pl() = pl()->clone();
pl()->initialize(&snc());
delete old_pl;
} else {
Halffacet_iterator fi;
CGAL_forall_halffacets(fi,snc()) {
if(is_standard(fi) || ninety) {
fi->plane() = fi->plane().transform( aff);
#ifdef CGAL_NEF3_FACET_WITH_BOX
typedef typename Halffacet::Box Box;
bool first = true;
Halffacet_cycle_iterator cycle_it = fi->facet_cycles_begin();
if( cycle_it.is_shalfedge() ) {
SHalfedge_iterator edge_it(cycle_it);
SHalfedge_around_facet_circulator
start( edge_it ), end( edge_it );
CGAL_For_all( start, end ) {
const Point_3& p = start->source()->source()->point();
typename Kernel::FT q[3];
q[0] = p.x();
q[1] = p.y();
q[2] = p.z();
if(first) {
fi->b = Box(q,q);
first = false;
} else
fi->b.extend(q);
}
} else
CGAL_error_msg( "is facet first cycle a SHalfloop?");
#endif
}
}
if(!aff.is_even())
change_orientation(true);
if(aff.homogeneous(0,1) != 0 ||
aff.homogeneous(0,2) != 0 ||
aff.homogeneous(1,0) != 0 ||
aff.homogeneous(1,2) != 0 ||
aff.homogeneous(2,0) != 0 ||
aff.homogeneous(2,1) != 0 ||
aff.homogeneous(0,0) != aff.homogeneous(1,1) ||
aff.homogeneous(0,0) != aff.homogeneous(2,2) ||
!this->is_bounded()) {
SNC_point_locator* old_pl = pl();
pl() = pl()->clone();
pl()->initialize(&snc());
delete old_pl;
}
else pl()->transform(aff);
}
SNC_constructor C(snc());
C.assign_indices();
}
/*{\Mtext \headerline{Exploration}
As Nef polyhedra are the result of forming complements
and intersections starting from a set |H| of halfspaces which are
defined by oriented planes in three space. The corresponding
structure is represented by an extended wuerzburg structure
$W = (V,E,F,C)$. For topological queries within |W| the following
types and operations allow exploration access to this structure.}*/
/*{\Mtypes 3}*/
typedef CGAL::SNC_SM_explorer<SM_const_decorator> SM_explorer;
SM_explorer SMexplorer(Vertex_const_handle v) const {
SM_const_decorator SMCD(&*v);
return SM_explorer(SMCD);
}
typedef typename SNC_structure::Object_list Object_list;
typedef typename SNC_structure::Object_handle Object_handle;
/*{\Mtypemember a generic handle to an object of the underlying
plane map. The kind of object |(vertex, halfedge, face)| can
be determined and the object can be assigned to a corresponding
handle by the three functions:\\
|bool assign(Vertex_const_handle& h, Object_handle)|\\
|bool assign(Edge_const_handle& h, Object_handle)|\\
|bool assign(Facet_const_handle& h, Object_handle)|\\
|bool assign(Volume_const_handle& h, Object_handle)|\\
where each function returns |true| iff the assignment to
|h| was done.}*/
/*{\Moperations 3 1 }*/
bool contains(Object_handle /*h*/) const
/*{\Mop returns true iff the object |h| is contained in the set
represented by |\Mvar|.}*/
// { SNC_point_locator PL(snc()); return PL.mark(h);}
{ CGAL_error_msg( "not implemented."); return false;}
bool contained_in_boundary(Object_handle h) const
/*{\Mop returns true iff the object |h| is contained in the $2$-skeleton
of |\Mvar|.}*/
{ Vertex_const_handle v;
Halfedge_const_handle e;
Halffacet_const_handle f;
return ( assign(v,h) || assign(e,h) || assign(f,h) );
}
Object_handle locate(const Point_3& p) const
/*{\Mop returns a generic handle |h| to an object (vertex, edge, facet,
volume) of the underlying SNC which contains the point |p| in its relative
interior. The point |p| is contained in the set represented by |\Mvar| if
|\Mvar.contains(h)| is true.}*/ {
CGAL_NEF_TRACEN( "locating point...");
CGAL_assertion( pl() != NULL);
Object_handle o = pl()->locate(p);
Vertex_handle v;
Halfedge_handle e;
Halffacet_handle f;
Volume_handle c;
if(assign(v,o)) return make_object(Vertex_const_handle(v));
if(assign(e,o)) return make_object(Halfedge_const_handle(e));
if(assign(f,o)) return make_object(Halffacet_const_handle(f));
if(assign(c,o)) return make_object(Volume_const_handle(c));
return Object_handle();
}
/*{\Mimplementation Nef polyhedra are implemented on top of an
extended Wuerzburg structure data structure (EWS) and use linear
space in the number of vertices, edges and facets. Operations like
empty take constant time. The operations clear, complement, interior,
closure, boundary, regularization, input and output take linear
time. All binary set operations and comparison operations take time
$O(N^2)$ where $N$ is the size of the output plus the size of the
input.
The point location operations run in linear query time without any
preprocessing.}*/
/*{\Mexample Nef polyhedra are parameterized by a so called extended
geometric kernel. There's currently only one such kernel based on a
homogeneous representation of extended points called
|Extended_homogeneous<NT>|. The kernel is parameterized by a
multiprecision integer type. The member types of |Nef_polyhedron_3<
Extended_homogeneous_3<NT> >| map to corresponding types of the CGAL
geometry kernel (e.g. |Nef_polyhedron::Plane_3| equals
|CGAL::Homogeneous<leda_integer>::Plane_3| in the example below).
\begin{Mverb}
#include <CGAL/basic.h>
#include <CGAL/leda_integer.h>
#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
using namespace CGAL;
typedef Extended_homogeneous<leda_integer> Extended_kernel;
typedef Nef_polyhedron_3<Extended_kernel> Nef_polyhedron;
typedef Nef_polyhedron::Plane_3 Plane_3;
int main()
{
Nef_polyhedron N1(Plane_3(1,0,0,0));
Nef_polyhedron N2(Plane_3(0,1,0,0), Nef_polyhedron::EXCLUDED);
Nef_polyhedron N3 = N1 * N2; // line (*)
return 0;
}
\end{Mverb}
After line (*) |N3| is the intersection of |N1| and |N2|.}*/
std::size_t bytes() {
// bytes used for the Nef_polyhedron_3.
return sizeof(Self) + (snc().bytes() - sizeof(SNC_structure));
}
std::size_t bytes_reduced() {
// bytes used for the Nef_polyhedron_3.
std::cout << sizeof(Self) + (snc().bytes_reduced2() - sizeof(SNC_structure)) << std::endl;
return sizeof(Self) + (snc().bytes_reduced() - sizeof(SNC_structure));
}
}; // end of Nef_polyhedron_3
template <typename Kernel, typename Items, typename Mark>
Nef_polyhedron_3<Kernel,Items, Mark>::
Nef_polyhedron_3( Content space) {
CGAL_NEF_TRACEN("construction from empty or space.");
empty_rep();
set_snc(snc());
if(Infi_box::extended_kernel()) {
initialize_infibox_vertices(space);
build_external_structure();
} else {
build_external_structure();
snc().volumes_begin()->mark() = (space == COMPLETE) ? 1 : 0;
}
}
template <typename Kernel, typename Items, typename Mark>
Nef_polyhedron_3<Kernel,Items, Mark>::
Nef_polyhedron_3(const Plane_3& h, Boundary b) {
CGAL_NEF_TRACEN("construction from plane "<<h);
empty_rep();
set_snc(snc());
SNC_constructor C(snc());
Infi_box::create_vertices_of_box_with_plane(C,h,(b==INCLUDED));
build_external_structure();
/*
if(Infi_box::extended_kernel()) {
SNC_structure snc1, snc2;
SNC_point_locator* pl1 = new SNC_point_locator_default;
SNC_point_locator* pl2 = new SNC_point_locator_default;
SNC_constructor c1(snc1);
Infi_box::initialize_infibox_vertices(c1, true);
SNC_external_structure es1(snc1, pl1);
es1.build_external_structure();
SNC_constructor c2(snc2);
c2.create_vertices_for_halfspace(h, b);
SNC_external_structure es2(snc2, pl2);
es2.pair_up_halfedges();
es2.link_shalfedges_to_facet_cycles();
c2.create_facets_and_volumes_of_halfspace(h);
pl2->initialize(&snc2);
AND _and;
Binary_operation bo(snc());
bo(pl(), snc1, pl1, snc2, pl2, _and);
delete pl1;
delete pl2;
} else
CGAL_error_msg
("Constructor is only available with extended kernels");
*/
}
template <typename Kernel, typename Items, typename Mark>
Nef_polyhedron_3<Kernel,Items, Mark>::
Nef_polyhedron_3( const SNC_structure& W, SNC_point_locator* _pl,
bool clone_pl,
bool clone_snc) {
CGAL_assertion( clone_snc == true || clone_pl == false);
// TODO: granados: define behavior when clone=false
// CGAL_NEF_TRACEN("construction from an existing SNC structure (clone="<<clone<<")");
this->copy_on_write();
if(clone_snc) {
snc() = W;
set_snc(snc());
}
if(clone_pl) {
pl() = _pl->clone();
pl()->initialize(&snc());
}
else
pl() = _pl;
}
template <typename Kernel, typename Items, typename Mark>
void
Nef_polyhedron_3<Kernel,Items, Mark>::
extract_complement() {
CGAL_NEF_TRACEN("extract complement");
if( this->is_shared()) clone_rep();
SNC_decorator D(snc());
Vertex_iterator v;
CGAL_forall_vertices(v,D){
v->mark() = !v->mark();
SM_decorator SM(&*v);
SM.extract_complement();
}
Halffacet_iterator f;
CGAL_forall_halffacets(f,D) f->mark() = !f->mark();
Volume_iterator c;
CGAL_forall_volumes(c,D)
// if(!(Infi_box::extended_kernel && c==D.volumes_begin()))
c->mark() = !c->mark();
}
template <typename Kernel, typename Items, typename Mark>
void
Nef_polyhedron_3<Kernel,Items, Mark>::
extract_interior() {
CGAL_NEF_TRACEN("extract interior");
if (this->is_shared()) clone_rep();
SNC_decorator D(snc());
Vertex_iterator v;
CGAL_forall_vertices(v,D){
v->mark() = false;
SM_decorator SM(&*v);
SM.extract_interior();
}
Halffacet_iterator f;
CGAL_forall_halffacets(f,D) f->mark() = false;
simplify();
}
template <typename Kernel, typename Items, typename Mark>
void
Nef_polyhedron_3<Kernel,Items, Mark>::
extract_boundary() {
CGAL_NEF_TRACEN("extract boundary");
if (this->is_shared()) clone_rep();
SNC_decorator D(snc());
Vertex_iterator v;
CGAL_forall_vertices(v,D) {
v->mark() = true;
SM_decorator SM(&*v);
SM.extract_boundary();
}
Halffacet_iterator f;
CGAL_forall_halffacets(f,D) f->mark() = true;
Volume_iterator c;
CGAL_forall_volumes(c,D) c->mark() = false;
simplify();
}
} //namespace CGAL
#endif //CGAL_NEF_POLYHEDRON_3_H
|