This file is indexed.

/usr/include/CGAL/OpenNL/linear_solver.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
// Copyright (c) 2005-2008  Inria Loria (France).
/*
 * author:  Bruno Levy, INRIA, project ALICE
 * website: http://www.loria.fr/~levy/software
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Scientific work that use this software can reference the website and
 * the following publication:
 *
 * @INPROCEEDINGS {levy:NMDGP:05,
 *    AUTHOR = Bruno Levy,
 *    TITLE  = Numerical Methods for Digital Geometry Processing,
 *    BOOKTITLE =Israel Korea Bi-National Conference,
 *    YEAR=November 2005,
 *    URL=http://www.loria.fr/~levy/php/article.php?pub=../publications/papers/2005/Numerics
 * }
 *
 *  Laurent Saboret 2005-2006: Changes for CGAL:
 *      - Added OpenNL namespace
 *      - DefaultLinearSolverTraits is now a model of the SparseLinearAlgebraTraits_d concept
 *      - Added SymmetricLinearSolverTraits
 *      - copied Jacobi preconditioner from Graphite 1.9 code
 */


#ifndef __OPENNL_LINEAR_SOLVER__
#define __OPENNL_LINEAR_SOLVER__

#include <CGAL/OpenNL/conjugate_gradient.h>
#include <CGAL/OpenNL/bicgstab.h>
#include <CGAL/OpenNL/preconditioner.h>
#include <CGAL/OpenNL/sparse_matrix.h>
#include <CGAL/OpenNL/full_vector.h>

#include <vector>
#include <iostream>
#include <cstdlib>

#include <CGAL/use.h>

namespace OpenNL {



// Class DefaultLinearSolverTraits
// is a traits class for solving general sparse linear systems.
// It uses BICGSTAB solver with Jacobi preconditioner.
//
// Concept: Model of the SparseLinearAlgebraTraits_d concept.

template
<
    class COEFFTYPE,                        // type of matrix and vector coefficients
    class MATRIX = SparseMatrix<COEFFTYPE>, // model of SparseLinearSolverTraits_d::Matrix
    class VECTOR = FullVector<COEFFTYPE>    // model of SparseLinearSolverTraits_d::Vector
>
class DefaultLinearSolverTraits
{
// Public types
public:
    typedef COEFFTYPE                       CoeffType ;
    typedef COEFFTYPE                       NT;
    typedef MATRIX                          Matrix ;
    typedef VECTOR                          Vector ;

// Private types
private:
    typedef Jacobi_Preconditioner<NT>       Preconditioner ;
    typedef Solver_preconditioned_BICGSTAB<Matrix, Preconditioner, Vector>
                                            Preconditioned_solver ;
    typedef Solver_BICGSTAB<Matrix, Vector> Solver ;

// Public operations
public:
    // Default contructor, copy constructor, operator=() and destructor are fine

    // Solve the sparse linear system "A*X = B"
    // Return true on success. The solution is then (1/D) * X.
    //
    // Preconditions:
    // - A.row_dimension()    == B.dimension()
    // - A.column_dimension() == X.dimension()
    bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
    {
        D = 1;              // OpenNL does not support homogeneous coordinates

        // Solve using BICGSTAB solver with preconditioner
        Preconditioned_solver preconditioned_solver ;
        NT omega = 1.5;
        Preconditioner C(A, omega);
        X = B;
        if (preconditioned_solver.solve(A, C, B, X))
            return true;

        // On error, solve using BICGSTAB solver without preconditioner
#ifdef DEBUG_TRACE
        std::cerr << "  Failure of BICGSTAB solver with Jacobi preconditioner. "
                  << "Trying BICGSTAB." << std::endl;
#endif
        Solver solver ;
        X = B;
        return solver.solve(A, B, X) ;
    }
} ;

// Class SymmetricLinearSolverTraits
// is a traits class for solving symmetric positive definite sparse linear systems.
// It uses Conjugate Gradient solver with Jacobi preconditioner.
//
// Concept: Model of the SparseLinearAlgebraTraits_d concept.

template
<
    class COEFFTYPE,                        // type of matrix and vector coefficients
    class MATRIX = SparseMatrix<COEFFTYPE>, // model of SparseLinearSolverTraits_d::Matrix
    class VECTOR = FullVector<COEFFTYPE>    // model of SparseLinearSolverTraits_d::Vector
>
class SymmetricLinearSolverTraits
{
// Public types
public:
    typedef COEFFTYPE                       CoeffType ;
    typedef COEFFTYPE                       NT;
    typedef MATRIX                          Matrix ;
    typedef VECTOR                          Vector ;

// Private types
private:
    typedef Jacobi_Preconditioner<NT>       Preconditioner ;
    typedef Solver_preconditioned_CG<Matrix, Preconditioner, Vector>
                                            Preconditioned_solver ;
    typedef Solver_CG<Matrix, Vector>       Solver ;

// Public operations
public:
    // Default contructor, copy constructor, operator=() and destructor are fine

    // Solve the sparse linear system "A*X = B"
    // Return true on success. The solution is then (1/D) * X.
    //
    // Preconditions:
    // - A.row_dimension()    == B.dimension()
    // - A.column_dimension() == X.dimension()
    bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
    {
        D = 1;              // OpenNL does not support homogeneous coordinates

        // Solve using Conjugate Gradient solver with preconditioner
        Preconditioned_solver preconditioned_solver ;
        NT omega = 1.5;
        Preconditioner C(A, omega);
        X = B;
        if (preconditioned_solver.solve(A, C, B, X))
            return true;

        // On error, solve using Conjugate Gradient solver without preconditioner
#ifdef DEBUG_TRACE
        std::cerr << "  Failure of Conjugate Gradient solver with Jacobi preconditioner. "
                  << "Trying Conjugate Gradient." << std::endl;
#endif
        Solver solver ;
        X = B;
        return solver.solve(A, B, X) ;
    }
};


/*
 * Solves a linear system or minimizes a quadratic form.
 *
 * Requirements for its traits class: must be a model of SparseLinearSolverTraits_d concept
 */
template <class TRAITS>
class LinearSolver
{
protected:
    enum State {
        INITIAL, IN_SYSTEM, IN_ROW, CONSTRUCTED, SOLVED
    } ;

public:
    typedef TRAITS Traits ;
    typedef typename Traits::Matrix Matrix ;
    typedef typename Traits::Vector Vector ;
    typedef typename Traits::NT CoeffType ;

    class Variable {
    public:
        Variable() : x_(0), index_(-1), locked_(false) { }
        double value() const { return x_; }
        void set_value(double x_in) { x_ = x_in ; }
        void lock()   { locked_ = true ; }
        void unlock() { locked_ = false ; }
        bool is_locked() const { return locked_ ; }
        unsigned int index() const {
            CGAL_assertion(index_ != -1) ;
            return (unsigned int)(index_) ;
        }
        void set_index(unsigned int index_in) {
            index_ = index_in ;
        }
    private:
        CoeffType x_ ;
        int index_ ;
        bool locked_ ;
    }  ;


    LinearSolver(unsigned int nb_variables) {
        state_ = INITIAL ;
        least_squares_ = false ;
        nb_variables_ = nb_variables ;
        variable_ = new Variable[nb_variables] ;
        A_ = NULL ;
        x_ = NULL ;
        b_ = NULL ;
    }

    ~LinearSolver() {
        delete[] variable_ ;
        delete A_ ;
        delete x_ ;
        delete b_ ;
    }

    // __________________ Parameters ________________________

    void set_least_squares(bool x) { least_squares_ = x ; }

    // __________________ Access ____________________________

    int nb_variables() const { return nb_variables_ ; }

    Variable& variable(unsigned int idx) {
        CGAL_assertion(idx < nb_variables_) ;
        return variable_[idx] ;
    }

    const Variable& variable(unsigned int idx) const {
        CGAL_assertion(idx < nb_variables_) ;
        return variable_[idx] ;
    }

    // _________________ Construction _______________________

    void begin_system() {
        current_row_ = 0 ;
        transition(INITIAL, IN_SYSTEM) ;
        // Enumerate free variables.
        unsigned int index = 0 ;
        for(int ii=0; ii < nb_variables() ; ii++) {
            Variable& v = variable(ii) ;
            if(!v.is_locked()) {
                v.set_index(index) ;
                index++ ;
            }
        }
        unsigned int n = index ;
        A_ = new Matrix(n) ;
        x_ = new Vector(n) ;
        b_ = new Vector(n) ;
        for(unsigned int i=0; i<n; i++) {
            (*x_)[i] = 0 ;
            (*b_)[i] = 0 ;
        }
        variables_to_vector() ;
    }

    void begin_row() {
        transition(IN_SYSTEM, IN_ROW) ;
        af_.clear() ;
        if_.clear() ;
        al_.clear() ;
        xl_.clear() ;
        bk_ = 0 ;
    }

    void set_right_hand_side(double b) {
        check_state(IN_ROW) ;
        bk_ = b ;
    }

    void add_coefficient(unsigned int iv, double a) {
        check_state(IN_ROW) ;
        Variable& v = variable(iv) ;
        if(v.is_locked()) {
            al_.push_back(a) ;
            xl_.push_back(v.value()) ;
        } else {
            af_.push_back(a) ;
            if_.push_back(v.index()) ;
        }
    }

    void normalize_row(CoeffType weight = 1) {
        check_state(IN_ROW) ;
        CoeffType norm = 0.0 ;
        unsigned int nf = af_.size() ;
        for(unsigned int i=0; i<nf; i++) {
            norm += af_[i] * af_[i] ;
        }
        unsigned int nl = al_.size() ;
        for(unsigned int i=0; i<nl; i++) {
            norm += al_[i] * al_[i] ;
        }
        norm = sqrt(norm) ;
        CGAL_assertion( fabs(norm)>1e-40 );
        scale_row(weight / norm) ;
    }

    void scale_row(CoeffType s) {
        check_state(IN_ROW) ;
        unsigned int nf = af_.size() ;
         for(unsigned int i=0; i<nf; i++) {
             af_[i] *= s ;
         }
         unsigned int nl = al_.size() ;
         for(unsigned int i=0; i<nl; i++) {
             al_[i] *= s ;
         }
         bk_ *= s ;
    }

    void end_row() {
        if(least_squares_) {
            unsigned int nf = af_.size() ;
            unsigned int nl = al_.size() ;
            for(unsigned int i=0; i<nf; i++) {
                for(unsigned int j=0; j<nf; j++) {
                    A_->add_coef(if_[i], if_[j], af_[i] * af_[j]) ;
                }
            }
            CoeffType S = - bk_ ;
            for(unsigned int j=0; j<nl; j++) {
                S += al_[j] * xl_[j] ;
            }
            for(unsigned int i=0; i<nf; i++) {
                (*b_)[if_[i]] -= af_[i] * S ;
            }
        } else {
            unsigned int nf = af_.size() ;
            unsigned int nl = al_.size() ;
            for(unsigned int i=0; i<nf; i++) {
                A_->add_coef(current_row_, if_[i], af_[i]) ;
            }
            (*b_)[current_row_] = bk_ ;
            for(unsigned int i=0; i<nl; i++) {
                (*b_)[current_row_] -= al_[i] * xl_[i] ;
            }
        }
        current_row_++ ;
        transition(IN_ROW, IN_SYSTEM) ;
    }

    void end_system() {
        transition(IN_SYSTEM, CONSTRUCTED) ;
    }

    // ----------------------------- Solver -------------------------------

    // Solves a linear system or minimizes a quadratic form.
    // Return true on success.
    // (modified for SparseLinearAlgebraTraits_d concept)
    bool solve()
    {
        check_state(CONSTRUCTED) ;

        // Solve the sparse linear system "A*X = B". On success, the solution is (1/D) * X.
        Traits solver_traits;
        CoeffType D;
        bool success = solver_traits.linear_solver(*A_, *b_, *x_, D) ;
        CGAL_assertion(D == 1.0);   // WARNING: this library does not support homogeneous coordinates!

        vector_to_variables() ;

        transition(CONSTRUCTED, SOLVED) ;

        delete A_ ; A_ = NULL ;
        delete b_ ; b_ = NULL ;
        delete x_ ; x_ = NULL ;

        return success;
    }

protected:

    // ----------- Converting between user representation and the internal representation -----

    void vector_to_variables() {
        for(int ii=0; ii < nb_variables(); ii++) {
            Variable& v = variable(ii) ;
            if(!v.is_locked()) {
                v.set_value( (*x_)[v.index()] ) ;
            }
        }
    }

    void variables_to_vector() {
        for(int ii=0; ii < nb_variables(); ii++) {
            Variable& v = variable(ii) ;
            if(!v.is_locked()) {
                (*x_)[v.index()] = v.value() ;
            }
        }
    }

    // ----------- Finite state automaton (checks that calling sequence is respected) ---------

    std::string state_to_string(State s) {
            switch(s) {
            case INITIAL:
                return "initial" ;
            case IN_SYSTEM:
                return "in system" ;
            case IN_ROW:
                return "in row" ;
            case CONSTRUCTED:
                return "constructed" ;
            case SOLVED:
                return "solved" ;
            }
            // Should not go there.
            CGAL_error();
            return "undefined" ;
    }

    void check_state(State s) {
            CGAL_USE(s);
            CGAL_assertion(state_ == s) ;
    }

    void transition(State from, State to) {
            check_state(from) ;
            state_ = to ;
    }

private:

    // --------------- parameters --------------------------
    bool least_squares_ ;

    // --------------- user representation --------------
    unsigned int nb_variables_ ;
    Variable* variable_ ;

    // --------------- construction -----------------------
    State state_ ;
    unsigned int current_row_ ;
    std::vector<CoeffType> af_ ;
    std::vector<unsigned int> if_ ;
    std::vector<CoeffType> al_ ;
    std::vector<CoeffType> xl_ ;
    double bk_ ;

    // --------------- internal representation ---------
    Matrix* A_ ;
    Vector* x_ ;
    Vector* b_ ;

} ;


} // namespace OpenNL

#endif