/usr/include/CGAL/Polynomial/Monomial_representation.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | // Copyright (c) 2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
//
// ============================================================================
#ifndef CGAL_POLYNOMIAL_MONOMIAL_REPRESENTAION_H
#define CGAL_POLYNOMIAL_MONOMIAL_REPRESENTAION_H
#include <CGAL/Exponent_vector.h>
#include <CGAL/Polynomial/misc.h>
namespace CGAL {
namespace internal{
template <typename Polynomial> struct Monomial_representation;
// Polynomial muss be at least univariate !
template <typename Coeff_ >
struct Monomial_representation<Polynomial<Coeff_> >{
private:
typedef typename Innermost_coefficient_type<Polynomial<Coeff_> >::Type
Innermost_coefficient;
// Polynomial is univariate
// final creation of pair<Exponent_vector,Innermost_coefficient>
template <typename Polynomial, typename OutputIterator>
OutputIterator
create_mrep(const Polynomial& p, OutputIterator oit , Exponent_vector& ivec, Tag_true) const {
int degree = 0;
for(typename Polynomial::const_iterator it = p.begin(); it != p.end(); it++){
ivec[0] = degree;
if(!CGAL::is_zero(*it))
*oit++ = std::make_pair(ivec,*it);
degree++;
}
ivec[0]=0;
return oit;
}
// polynomial is multivariate
// define correct exponent for dimension and recurse
template <typename Polynomial, typename OutputIterator>
OutputIterator
create_mrep(const Polynomial& p, OutputIterator oit , Exponent_vector& ivec, Tag_false) const {
if(CGAL::is_zero(p)) return oit;
static const int dim = Dimension<Polynomial>::value ;
int degree = 0;
for(typename Polynomial::const_iterator it = p.begin(); it != p.end(); it++){
ivec[dim-1] = degree;
oit = create_mrep(*it,oit,ivec,CGAL::Boolean_tag<1 == dim-1>());
degree++;
}
ivec[dim-1] = 0;
return oit;
}
public:
template <typename OutputIterator>
OutputIterator operator()(const Polynomial<Coeff_>& p, OutputIterator oit) const {
typedef Polynomial<Coeff_> Polynomial;
typedef CGAL::Boolean_tag<1 == Dimension<Polynomial>::value> Is_univariate;
CGAL::Exponent_vector ivec((std::vector<int>)(Dimension<Polynomial>::value));
if(p.is_zero()){
*oit++ = std::make_pair(ivec,Innermost_coefficient(0));
return oit;
}
return create_mrep(p, oit, ivec, Is_univariate());
}
};
} // namespace internal
} //namespace CGAL
#endif //CGAL_POLYNOMIAL_MONOMIAL_REPRESENTAION_H
|