This file is indexed.

/usr/include/CGAL/Polynomial/determinant.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Michael Hemmer 
// ============================================================================

// TODO: The comments are all original EXACUS comments and aren't adapted. So
//         they may be wrong now.

#ifndef CGAL_POLYNOMIAL_DETERMINANT_H
#define CGAL_POLYNOMIAL_DETERMINANT_H

namespace CGAL {

#include <CGAL/basic.h>

namespace internal {
    
    // TODO: Own simple matrix and vector to avoid importing the whole matrix stuff 
    // from EXACUS.
    
    // This is to be replaced by a corresponding CGAL Matrix and Vector.
    template< class Coeff >
    struct Simple_matrix
        : public std::vector< std::vector< Coeff > > {
        
        typedef Coeff NT;    

        Simple_matrix() {
        }
                
        Simple_matrix( int m ) {
            initialize( m, m, Coeff(0) );
        }
                        
        Simple_matrix( int m, int n, Coeff x = Coeff(0) ) {
            initialize( m, n, x );
        }
        
        void swap_rows(int i, int j) {
            std::vector< Coeff > swap = this->operator[](i);
            this->operator[](i) = this->operator[](j);
            this->operator[](j) = swap;
        }

        void swap_columns(int i, int j) {
            for(int k = 0; k < m; k++) {
                Coeff swap = this->operator[](k).operator[](i);
                this->operator[](k).operator[](i)
                    = this->operator[](k).operator[](j);
                this->operator[](k).operator[](j) = swap;
            }
        }

        int row_dimension() const { return m; }
        int column_dimension() const { return n; } 
        
        private:
        
        void initialize( int m, int n, Coeff x ) {
            this->reserve( m );
            this->m = m;
            this->n = n;
            for( int i = 0; i < m; ++i ) {
                this->push_back( std::vector< Coeff >() );
                this->operator[](i).reserve(n);
                for( int j = 0; j < n; ++j ) {
                    this->operator[](i).push_back( x );
                }
            }            
        }
        
        int m,n;
    };
    
    template< class Coeff >
    struct Simple_vector
        : public std::vector< Coeff > {
        Simple_vector( int m ) {
        	this->reserve( m );
            for( int i = 0; i < m; ++i )
                this->push_back( Coeff(0) );
        }
        
        Coeff operator*( const Simple_vector<Coeff>& v2 ) const {
            CGAL_precondition( v2.size() == this->size() );
            Coeff result(0);
                        
            for( unsigned i = 0; i < this->size(); ++i )
                result += ( this->operator[](i) * v2[i] );
                
            return result;
        }
    };
    
    // call for auto-selection of best routine (exact NT)
    template <class M> inline
    typename M::NT determinant (const M& matrix,
                                int n,
                                Integral_domain_without_division_tag,
                                ::CGAL::Boolean_tag<true> )
    {
        return det_berkowitz(matrix, n);
    }
    
    // call for auto-selection of best routine (inexact NT)
    template <class M> inline
    typename M::NT determinant (const M& matrix,
                                int n,
                                Integral_domain_without_division_tag,
                                ::CGAL::Boolean_tag<false> )
    {
        typedef typename M::NT NT;
        NT type = NT(0);
        
        return inexact_determinant_select(matrix, n, type);
    }

    // (other datatypes)
    template <class M, class other> inline
    typename M::NT inexact_determinant_select (const M& matrix,
                                               int n,
                                               other /* type */)
    {
        return det_berkowitz(matrix, n);
    }

    /*! \ingroup CGAL_determinant
     *  \brief Will determine and execute a suitable determinant routine and
     *  return the determinant of \a A.
     *  (specialisation for CGAL::Matrix_d)
     */
    template <class NT > inline 
    NT determinant(const internal::Simple_matrix<NT>& A)
    {
        CGAL_assertion(A.row_dimension()==A.column_dimension());
        return determinant(A,A.column_dimension());
    }
    
    /*! \ingroup CGAL_determinant
     *  \brief Will determine and execute a suitable determinant routine and
     *  return the determinant of \a A. Needs the dimension \a n of \a A as
     *  its second argument.
     */
    template <class M> inline
    typename M::NT determinant(const M& matrix,
                               int n)
    {
        typedef typename M::NT NT;
        typedef typename Algebraic_structure_traits<NT>::Algebraic_category Algebraic_category;
        typedef typename Algebraic_structure_traits<NT>::Is_exact Is_exact;
    
        return internal::determinant (matrix, n, Algebraic_category(), Is_exact());
    }


    // Part of det_berkowitz
    // Computes sum of all clows of length k
    template <class M> 
    inline
    std::vector<typename M::NT> 
    clow_lengths (const M& A,int k,int n)
    {
        typedef typename M::NT NT;
    
        int i, j, l;
    
        typename internal::Simple_vector<NT> r(k-1);
        typename internal::Simple_vector<NT> s(k-1);
        typename internal::Simple_vector<NT> t(k-1);
        std::vector<NT> rMks(k);
    
        typename internal::Simple_matrix<NT> MM(k-1);
    
        for (i=n-k+2;i<=n;++i)
            for (j=n-k+2;j<=n;++j)
                MM[i-n+k-2][j-n+k-2] = A[i-1][j-1];
    
        i = n-k+1;
        l = 1;
    
        for (j=n-k+2;j<=n;++j,++l)
        {
            r[l-1] = A[i-1][j-1];
            s[l-1] = A[j-1][i-1];
        }
    
        rMks[0] = A[i-1][i-1];
        rMks[1] = r*s;
    
        for (i=2;i<k;++i)
        {
            // r = r * M;
            for (j=0;j<k-1;++j)
                for (l=0;l<k-1;++l)
                    t[j] += r[l] * MM[l][j];
            for (j=0;j<k-1;++j)
            {
                r[j] = t[j];
                t[j] = NT(0);
            }
            rMks[i] = r*s; 
        }
    
        return rMks;
    }

    /*! \ingroup CGAL_determinant
     *  \brief Computes the determinant of \a A according to the method proposed
     *  by Berkowitz.
     *  (specialisation for CGAL::Matrix_d)
     *
     *  Note that this routine is completely free of divisions!
     */
    template <class NT > inline 
    NT det_berkowitz(const internal::Simple_matrix<NT>& A)
    {
        CGAL_assertion(A.row_dimension()==A.column_dimension());
        return det_berkowitz(A,A.column_dimension());
    }

    template <class M, class OutputIterator> inline 
    OutputIterator minors_berkowitz (const M& A,OutputIterator minors,int n,int m=0)
    {
        CGAL_precondition(n>0);
        CGAL_precondition(m<=n);
        
       
        typedef typename M::NT NT;
        
        // If default value is set, reset it to the second parameter
        if(m==0) {
          m=n;
        }
    
        int i, j, k, offset;
        std::vector<NT> rMks;
        NT a;
    
        typename internal::Simple_matrix<NT> B(n+1);  // not square in original
    
        typename internal::Simple_vector<NT> p(n+1);
        typename internal::Simple_vector<NT> q(n+1);
    
        for (k=1;k<=n;++k)
        {
            // compute vector q = B*p;
            if (k == 1)
        {
                p[0] = NT(-1);
                q[0] = p[0];
                p[1] = A[n-1][n-1];
                q[1] = p[1];
        }
            else if (k == 2)
            {
                p[0] = NT(1);
                q[0] = p[0];
                p[1] = -A[n-2][n-2] - A[n-1][n-1];
                q[1] = p[1];
                p[2] = -A[n-2][n-1] * A[n-1][n-2] + A[n-2][n-2] * A[n-1][n-1];
                q[2] = p[2];
        }
            else if (k == n)
        {
                rMks = internal::clow_lengths<M>(A,k,n);
                // Setup for last row of matrix B
                i = n+1;
                B[i-1][n-1] = NT(-1);
    
                for (j=1;j<=n;++j)
                    B[i-1][i-j-1] = rMks[j-1];
    
                p[i-1] = NT(0);
    
                for (j=1;j<=n;++j)
                    p[i-1] = p[i-1] + B[i-1][j-1] * q[j-1];
        }
            else
            {
                rMks = internal::clow_lengths<M>(A,k,n);
    
                // Setup for matrix B (diagonal after diagonal)
    
                for (i=1;i<=k;++i)
                    B[i-1][i-1] = NT(-1);
    
                for (offset=1;offset<=k;++offset)
                {
                    a = rMks[offset-1]; 
    
                    for (i=1;i<=k-offset+1;++i)
                        B[offset+i-1][i-1] = a;
                }
    
                // Multiply s.t. p=B*q
    
                for (i=1;i<=k;++i)
                {
                    p[i-1] = NT(0);
    
                    for (j=1;j<=i;++j)
                        p[i-1] = p[i-1] + B[i-1][j-1] * q[j-1];
                }
    
                p[i-1] = NT(0);
    
                for (j=1;j<=k;++j)
                    p[i-1] = p[i-1] + B[i-1][j-1] * q[j-1];
    
                for (i=1;i<=k+1;++i)
                    q[i-1] = p[i-1];
            }
           
        if(k > n-m) { 
          (*minors)=p[k];
          ++minors;
        }
        }
        return minors;
    }
    
    /*! \ingroup CGAL_determinant
     *  \brief Computes the determinant of \a A according to the method proposed
     *  by Berkowitz. Needs the dimension \a n of \a A as its second argument. 
     *
     *  Note that this routine is completely free of divisions!
     */
    template <class M> inline 
    typename M::NT det_berkowitz (const M& A,
                                  int n)
    {
      typedef typename M::NT NT;
      if(n==0) {
        return NT(1);
      }
      NT det[1];
      minors_berkowitz(A,det,n,1);
      return det[0];
    }

    

} // namespace internal



} //namespace CGAL

#endif // CGAL_POLYNOMIAL_DETERMINANT_H