This file is indexed.

/usr/include/CGAL/Polynomial/prs_resultant.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

// $URL$
// $Id$
// 
//
// Author(s)     : Arno Eigenwillig <arno@mpi-inf.mpg.de>
//
// ============================================================================

// TODO: The comments are all original EXACUS comments and aren't adapted. So
//         they may be wrong now.

/*! \file CGAL/prs_resultant.h
 *  \brief Resultant computation via polynomial remainder sequences (PRS)
 *
 */

#include <CGAL/basic.h>
#include <CGAL/Polynomial.h>

#include <CGAL/ipower.h>
#include <CGAL/Polynomial/hgdelta_update.h>

#ifndef CGAL_POLYNOMIAL_PRS_RESULTANT_H
#define CGAL_POLYNOMIAL_PRS_RESULTANT_H

namespace CGAL {

template <class NT> inline
NT prs_resultant_integral_domain(Polynomial<NT> A, Polynomial<NT> B) {
    // implemented using the subresultant algorithm for resultant computation
    // see [Cohen, 1993], algorithm 3.3.7

    if (A.is_zero() || B.is_zero()) return NT(0);

    int signflip;
    if (A.degree() < B.degree()) {
        Polynomial<NT> T = A; A = B; B = T;
        signflip = (A.degree() & B.degree() & 1);
    } else {
        signflip = 0;
    }
    
    typedef CGAL::Scalar_factor_traits<Polynomial<NT> > SFT;
    typedef typename SFT::Scalar Scalar; 
    typename SFT::Scalar_factor scalar_factor;
    typename CGAL::Coercion_traits<Scalar, NT>::Cast cast_scalar_nt; 
    
    Scalar a = scalar_factor(A), b = scalar_factor(B);
    NT g(1), h(1);
    NT t = cast_scalar_nt (CGAL::ipower(a, B.degree()) * CGAL::ipower(b, A.degree()));

    Polynomial<NT> Q, R; NT d;
    int delta;

    A /= cast_scalar_nt(a); B /= cast_scalar_nt(b);
    do {
        signflip ^= (A.degree() & B.degree() & 1);
        Polynomial<NT>::pseudo_division(A, B, Q, R, d);
        delta = A.degree() - B.degree();
        CGAL_expensive_assertion_code
          (typedef typename CGAL::Algebraic_structure_traits<NT>::Is_exact
           Is_exact;)
        CGAL_expensive_assertion(CGAL::check_tag(Is_exact()) == false
          || d == CGAL::ipower(B.lcoeff(), delta + 1) );
        A = B;
        B = R / (g * CGAL::ipower(h, delta));
        g = A.lcoeff();
        // h = h^(1-delta) * g^delta
        internal::hgdelta_update(h, g, delta);
    } while (B.degree() > 0);
    // h = h^(1-deg(A)) * lcoeff(B)^deg(A)
    delta = A.degree();
    g = B.lcoeff();
    internal::hgdelta_update(h, g, delta);
    h = signflip ? -(t*h) : t*h;
    typename Algebraic_structure_traits<NT>::Simplify simplify;
    simplify(h);
    return h;
}



template <class NT> inline
NT prs_resultant_ufd(Polynomial<NT> A, Polynomial<NT> B) {
    // implemented using the subresultant algorithm for resultant computation
    // see [Cohen, 1993], algorithm 3.3.7

    if (A.is_zero() || B.is_zero()) return NT(0);

    int signflip;
    if (A.degree() < B.degree()) {
        Polynomial<NT> T = A; A = B; B = T;
        signflip = (A.degree() & B.degree() & 1);
    } else {
        signflip = 0;
    }

    NT a = A.content(), b = B.content();
    NT g(1), h(1), t = CGAL::ipower(a, B.degree()) * CGAL::ipower(b, A.degree());
    Polynomial<NT> Q, R; NT d;
    int delta;

    A /= a; B /= b;
    do {
        signflip ^= (A.degree() & B.degree() & 1);
        Polynomial<NT>::pseudo_division(A, B, Q, R, d);
        delta = A.degree() - B.degree();
        CGAL_expensive_assertion_code
          (typedef typename CGAL::Algebraic_structure_traits<NT>::Is_exact
           Is_exact;)
        CGAL_expensive_assertion(CGAL::check_tag(Is_exact()) == false
          || d == CGAL::ipower(B.lcoeff(), delta + 1) );
        A = B;
        B = R / (g * CGAL::ipower(h, delta));
        g = A.lcoeff();
        // h = h^(1-delta) * g^delta
        internal::hgdelta_update(h, g, delta);
    } while (B.degree() > 0);
    // h = h^(1-deg(A)) * lcoeff(B)^deg(A)
    delta = A.degree();
    g = B.lcoeff();
    internal::hgdelta_update(h, g, delta);
    h = signflip ? -(t*h) : t*h;
    typename Algebraic_structure_traits<NT>::Simplify simplify;
    simplify(h);
    return h;
}

template <class NT> inline
NT prs_resultant_field(Polynomial<NT> A, Polynomial<NT> B) {
    // implemented using the Euclidean algorithm for resultant computation
    // compare [Cox et al, 1997], p.157

    if (A.is_zero() || B.is_zero()) return NT(0);

    int signflip;
    if (A.degree() < B.degree()) {
        Polynomial<NT> T = A; A = B; B = T;
        signflip = (A.degree() & B.degree() & 1);
    } else {
        signflip = 0;
    }

    NT res(1);
    Polynomial<NT> Q, R;
    while (B.degree() > 0) {
        signflip ^= (A.degree() & B.degree() & 1);
        Polynomial<NT>::euclidean_division(A, B, Q, R);
        res *= CGAL::ipower(B.lcoeff(), A.degree() - R.degree());
        A = B;
        B = R;
    }
    res = CGAL::ipower(B.lcoeff(), A.degree()) * (signflip ? -res : res);
    typename Algebraic_structure_traits<NT>::Simplify simplify;
    simplify(res);
    return res;
}

// definition follows below
template <class NT> inline
NT prs_resultant_decompose(Polynomial<NT> A, Polynomial<NT> B);

namespace INTERN_PRS_RESULTANT {
    template <class NT> inline
    NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, ::CGAL::Tag_false) {
        return prs_resultant_field(A, B);
    }

    template <class NT> inline
    NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, ::CGAL::Tag_true) {
        return prs_resultant_decompose(A, B);
    }

    template <class NT> inline
    NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, Field_tag) {
        typedef typename Fraction_traits<NT>::Is_fraction Is_decomposable;
        return prs_resultant_(A, B, Is_decomposable());     
    }

    template <class NT> inline
    NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, Unique_factorization_domain_tag) {
        return prs_resultant_ufd(A, B);
    }
} // namespace internal

template <class NT> inline
NT prs_resultant_decompose(Polynomial<NT> A, Polynomial<NT> B){
    typedef Polynomial<NT> POLY;
    typedef typename Fraction_traits<POLY>::Numerator_type INTPOLY;
    typedef typename Fraction_traits<POLY>::Denominator_type DENOM;
    typename Fraction_traits<POLY>::Decompose decompose;
    typedef typename INTPOLY::NT RES;
    
    DENOM a, b;
    A.simplify_coefficients();
    B.simplify_coefficients();
    INTPOLY A0; decompose(A,A0,a);
    INTPOLY B0; decompose(B,B0,b);
    DENOM c = CGAL::ipower(a, B.degree()) * CGAL::ipower(b, A.degree());
    typedef typename Algebraic_structure_traits<RES>::Algebraic_category Algebraic_category;
    RES res0 = INTERN_PRS_RESULTANT::prs_resultant_(A0, B0, Algebraic_category());
    typename Fraction_traits<NT>::Compose comp_frac;
    NT res = comp_frac(res0, c);
    typename Algebraic_structure_traits<NT>::Simplify simplify;
    simplify(res);
    return res;
}


/*! \ingroup CGAL_Polynomial
 *  \relates CGAL::Polynomial
 *  \brief compute the resultant of polynomials \c A and \c B
 *
 *  The resultant of two polynomials is computed from their
 *  polynomial remainder sequence (PRS), in the Euclidean or
 *  subresultant version. This depends on the coefficient type:
 *  If \c NT is a \c UFDomain , the subresultant PRS is formed.
 *  If \c NT is a \c Field that is not decomposable (see
 *  \c CGAL::Fraction_traits ), then a Euclidean PRS is formed.
 *  If \c NT is a \c Field that is decomposable, then the
 *  \c Numerator must be a \c UFDomain, and the subresultant
 *  PRS is formed for the decomposed polynomials.
 *
 *  Using \c CGAL::hybrid_bezout_subresultant() may be faster in some cases
 *  and works for non-UFDomains, too.
 *  Using \c CGAL::resultant() from \c CGAL/resultant.h
 *  chooses automatically among these alternative methods of resultant
 *  computation for you.
 *
 *  For the benefit of those who want to do their own template
 *  metaprogramming to choose the method of resultant computation,
 *  the three variants of resultant computation from a PRS
 *  can be called directly as \c prs_resultant_field() ,
 *  \c prs_resultant_ufd() and \c prs_resultant_decompose() .
 *  <b>Do not use them directly unless you know what you are doing!</b>
 *
 */
template <class NT> inline
NT prs_resultant(Polynomial<NT> A, Polynomial<NT> B) {
    typedef typename Algebraic_structure_traits<NT>::Algebraic_category
                                                                   Algebraic_category;
    return INTERN_PRS_RESULTANT::prs_resultant_(A, B, Algebraic_category());     
}

} //namespace CGAL

#endif // CGAL_POLYNOMIAL_PRS_RESULTANT_H

// EOF