/usr/include/CGAL/RS/ak_1.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | // Copyright (c) 2006-2013 INRIA Nancy-Grand Est (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author: Luis PeƱaranda <luis.penaranda@gmx.com>
#ifndef CGAL_RS_AK_1_H
#define CGAL_RS_AK_1_H
#include <cstddef> // included only to define size_t
#include <CGAL/Polynomial_traits_d.h>
#include "algebraic_1.h"
#include "comparator_1.h"
#include "signat_1.h"
#include "functors_1.h"
namespace CGAL{
namespace RS_AK1{
template <class Polynomial_,
class Bound_,
class Isolator_,
class Refiner_,
class Ptraits_=CGAL::Polynomial_traits_d<Polynomial_> >
class Algebraic_kernel_1{
public:
typedef Polynomial_ Polynomial_1;
typedef typename Polynomial_1::NT Coefficient;
typedef Bound_ Bound;
private:
typedef Isolator_ Isolator;
typedef Refiner_ Refiner;
typedef Ptraits_ Ptraits;
typedef CGAL::RS_AK1::Signat_1<Polynomial_1,Bound>
Signat;
typedef CGAL::RS_AK1::Simple_comparator_1<Polynomial_1,
Bound,
Refiner,
Signat,
Ptraits>
Comparator;
public:
typedef CGAL::RS_AK1::Algebraic_1<Polynomial_1,
Bound,
Refiner,
Comparator,
Ptraits>
Algebraic_real_1;
typedef size_t size_type;
typedef unsigned Multiplicity_type;
// default constructor and destructor
public:
Algebraic_kernel_1(){};
~Algebraic_kernel_1(){};
// functors from the CGAL concept
public:
typedef CGAL::RS_AK1::Construct_algebraic_real_1<Polynomial_1,
Algebraic_real_1,
Bound,
Coefficient,
Isolator>
Construct_algebraic_real_1;
typedef CGAL::RS_AK1::Compute_polynomial_1<Polynomial_1,
Algebraic_real_1>
Compute_polynomial_1;
typedef CGAL::RS_AK1::Isolate_1<Polynomial_1,
Bound,
Algebraic_real_1,
Isolator,
Comparator,
Signat,
Ptraits>
Isolate_1;
typedef typename Ptraits::Is_square_free Is_square_free_1;
typedef typename Ptraits::Make_square_free Make_square_free_1;
typedef typename Ptraits::Square_free_factorize
Square_free_factorize_1;
typedef CGAL::RS_AK1::Is_coprime_1<Polynomial_1,Ptraits>
Is_coprime_1;
typedef CGAL::RS_AK1::Make_coprime_1<Polynomial_1,Ptraits>
Make_coprime_1;
typedef CGAL::RS_AK1::Solve_1<Polynomial_1,
Bound,
Algebraic_real_1,
Isolator,
Signat,
Ptraits>
Solve_1;
typedef CGAL::RS_AK1::Number_of_solutions_1<Polynomial_1,Isolator>
Number_of_solutions_1;
typedef CGAL::RS_AK1::Sign_at_1<Polynomial_1,
Bound,
Algebraic_real_1,
Refiner,
Signat,
Ptraits>
Sign_at_1;
typedef CGAL::RS_AK1::Is_zero_at_1<Polynomial_1,
Bound,
Algebraic_real_1,
Refiner,
Signat,
Ptraits>
Is_zero_at_1;
typedef CGAL::RS_AK1::Compare_1<Algebraic_real_1,
Bound,
Comparator>
Compare_1;
typedef CGAL::RS_AK1::Bound_between_1<Algebraic_real_1,
Bound,
Comparator>
Bound_between_1;
typedef CGAL::RS_AK1::Approximate_absolute_1<Polynomial_1,
Bound,
Algebraic_real_1,
Refiner>
Approximate_absolute_1;
typedef CGAL::RS_AK1::Approximate_relative_1<Polynomial_1,
Bound,
Algebraic_real_1,
Refiner>
Approximate_relative_1;
#define CREATE_FUNCTION_OBJECT(T,N) \
T N##_object()const{return T();}
CREATE_FUNCTION_OBJECT(Construct_algebraic_real_1,
construct_algebraic_real_1)
CREATE_FUNCTION_OBJECT(Compute_polynomial_1,
compute_polynomial_1)
CREATE_FUNCTION_OBJECT(Isolate_1,
isolate_1)
CREATE_FUNCTION_OBJECT(Is_square_free_1,
is_square_free_1)
CREATE_FUNCTION_OBJECT(Make_square_free_1,
make_square_free_1)
CREATE_FUNCTION_OBJECT(Square_free_factorize_1,
square_free_factorize_1)
CREATE_FUNCTION_OBJECT(Is_coprime_1,
is_coprime_1)
CREATE_FUNCTION_OBJECT(Make_coprime_1,
make_coprime_1)
CREATE_FUNCTION_OBJECT(Solve_1,
solve_1)
CREATE_FUNCTION_OBJECT(Number_of_solutions_1,
number_of_solutions_1)
CREATE_FUNCTION_OBJECT(Sign_at_1,
sign_at_1)
CREATE_FUNCTION_OBJECT(Is_zero_at_1,
is_zero_at_1)
CREATE_FUNCTION_OBJECT(Compare_1,
compare_1)
CREATE_FUNCTION_OBJECT(Bound_between_1,
bound_between_1)
CREATE_FUNCTION_OBJECT(Approximate_absolute_1,
approximate_absolute_1)
CREATE_FUNCTION_OBJECT(Approximate_relative_1,
approximate_relative_1)
#undef CREATE_FUNCTION_OBJECT
}; // class Algebraic_kernel_1
} // namespace RS_AK1
} // namespace CGAL
#endif // CGAL_RS_AK_1_H
|