/usr/include/CGAL/RS/algebraic_1.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | // Copyright (c) 2006-2013 INRIA Nancy-Grand Est (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author: Luis PeƱaranda <luis.penaranda@gmx.com>
#ifndef CGAL_RS_ALGEBRAIC_1_H
#define CGAL_RS_ALGEBRAIC_1_H
#include <boost/operators.hpp>
#include <CGAL/Real_embeddable_traits.h>
#include <CGAL/Gmpq.h>
#include <iostream>
namespace CGAL{
namespace RS_AK1{
// This class represents the simplest algebraic number one can think about.
// One algebraic number is represented by the polynomial of which it is
// root and the two endpoints of an interval that contains it, and no other
// root. Polynomial type and bound type are the first two template
// parameters.
//
// The third template parameter is a refiner, a function object that
// receives the polynomial and the bounds defining an algebraic number and
// an integer p, and modifies the two bounds until the difference between
// the two bounds is less than x*2^(-p), where x is the value of the
// represented algebraic number. The signature of a refiner must be:
// void
// Refiner_()(const Polynomial_&,Bound_&,Bound_&,int p);
//
// The fourth template argument is a comparator, a function object that
// receives the polynomials and bounds defining two algebraic numbres and
// just compares them, returning a CGAL::Comparison_result. The signature
// of a comparator must be:
// CGAL::Comparison_result
// Comparator_()(const Polynomial_&,Bound_&,Bound_&,
// const Polynomial_&,Bound_&,Bound_&);
// The comparator can modify the bounds, with the condition that the
// algebraic numbers remain consistent (one and only one root on each
// interval).
template <class Polynomial_,
class Bound_,
class Refiner_,
class Comparator_,
class Ptraits_>
class Algebraic_1:
boost::totally_ordered<Algebraic_1<Polynomial_,
Bound_,
Refiner_,
Comparator_,
Ptraits_>,
double>{
protected:
typedef Polynomial_ Polynomial;
typedef Bound_ Bound;
typedef Refiner_ Refiner;
typedef Comparator_ Comparator;
typedef Ptraits_ Ptraits;
typedef typename Ptraits::Coefficient_type Coefficient;
typedef typename Ptraits::Scale Scale;
typedef Algebraic_1<Polynomial,
Bound,
Refiner,
Comparator,
Ptraits>
Algebraic;
Polynomial pol;
mutable Bound left,right;
public:
Algebraic_1(){};
Algebraic_1(const Polynomial &p,
const Bound &l,
const Bound &r):pol(p),left(l),right(r){
CGAL_assertion(l<=r);
}
Algebraic_1(const Algebraic &a):
pol(a.pol),left(a.left),right(a.right){}
// XXX: This assumes that Gmpq is constructible from bound type and
// that polynomial coefficient type is constructible from mpz_t.
Algebraic_1(const Bound &b):left(b),right(b){
typedef typename Ptraits::Shift shift;
Gmpq q(b);
pol=Coefficient(mpq_denref(q.mpq()))*
shift()(Polynomial(1),1,0)-
Coefficient(mpq_numref(q.mpq()));
CGAL_assertion(left==right&&left==b);
}
// XXX: This implementation assumes that the bound type is Gmpfr
// and that T can be exactly converted to Gmpq. This constructor
// can handle types such as int, unsigned and long.
template <class T>
Algebraic_1(const T &t){
typedef typename Ptraits::Shift shift;
CGAL::Gmpq q(t);
pol=Coefficient(mpq_denref(q.mpq()))*
shift()(Polynomial(1),1,0)-
Coefficient(mpq_numref(q.mpq()));
left=Bound(t,std::round_toward_neg_infinity);
right=Bound(t,std::round_toward_infinity);
CGAL_assertion(left<=t&&right>=t);
}
// XXX: This constructor assumes the bound is a Gmpfr.
Algebraic_1(const CGAL::Gmpq &q){
typedef typename Ptraits::Shift shift;
pol=Coefficient(mpq_denref(q.mpq()))*
shift()(Polynomial(1),1,0)-
Coefficient(mpq_numref(q.mpq()));
left=Bound();
right=Bound();
mpfr_t b;
mpfr_init(b);
mpfr_set_q(b,q.mpq(),GMP_RNDD);
mpfr_swap(b,left.fr());
mpfr_set_q(b,q.mpq(),GMP_RNDU);
mpfr_swap(b,right.fr());
mpfr_clear(b);
CGAL_assertion(left<=q&&right>=q);
}
~Algebraic_1(){}
Algebraic_1& operator=(const Algebraic &a){
pol=a.get_pol();
left=a.get_left();
right=a.get_right();
return *this;
}
Polynomial get_pol()const{return pol;}
Bound& get_left()const{return left;}
Bound& get_right()const{return right;}
Algebraic operator-()const{
return Algebraic(Scale()(get_pol(),Coefficient(-1)),
-right,
-left);
}
#define CGAL_RS_COMPARE_ALGEBRAIC(_a) \
(Comparator()(get_pol(),get_left(),get_right(), \
(_a).get_pol(),(_a).get_left(),(_a).get_right()))
Comparison_result compare(Algebraic a)const{
return CGAL_RS_COMPARE_ALGEBRAIC(a);
};
#define CGAL_RS_COMPARE_ALGEBRAIC_TYPE(_t) \
bool operator<(_t t)const \
{Algebraic a(t);return CGAL_RS_COMPARE_ALGEBRAIC(a)==CGAL::SMALLER;} \
bool operator>(_t t)const \
{Algebraic a(t);return CGAL_RS_COMPARE_ALGEBRAIC(a)==CGAL::LARGER;} \
bool operator==(_t t)const \
{Algebraic a(t);return CGAL_RS_COMPARE_ALGEBRAIC(a)==CGAL::EQUAL;}
bool operator==(Algebraic a)const
{return CGAL_RS_COMPARE_ALGEBRAIC(a)==CGAL::EQUAL;}
bool operator!=(Algebraic a)const
{return CGAL_RS_COMPARE_ALGEBRAIC(a)!=CGAL::EQUAL;}
bool operator<(Algebraic a)const
{return CGAL_RS_COMPARE_ALGEBRAIC(a)==CGAL::SMALLER;}
bool operator<=(Algebraic a)const
{return CGAL_RS_COMPARE_ALGEBRAIC(a)!=CGAL::LARGER;}
bool operator>(Algebraic a)const
{return CGAL_RS_COMPARE_ALGEBRAIC(a)==CGAL::LARGER;}
bool operator>=(Algebraic a)const
{return CGAL_RS_COMPARE_ALGEBRAIC(a)!=CGAL::SMALLER;}
CGAL_RS_COMPARE_ALGEBRAIC_TYPE(double)
#undef CGAL_RS_COMPARE_ALGEBRAIC_TYPE
#undef CGAL_RS_COMPARE_ALGEBRAIC
#ifdef IEEE_DBL_MANT_DIG
#define CGAL_RS_DBL_PREC IEEE_DBL_MANT_DIG
#else
#define CGAL_RS_DBL_PREC 53
#endif
double to_double(){
typedef Real_embeddable_traits<Bound> RT;
typedef typename RT::To_double TD;
Refiner()(get_pol(),get_left(),get_right(),CGAL_RS_DBL_PREC);
CGAL_assertion(TD()(get_left())==TD()(get_right()));
return TD()(get_left());
}
std::pair<double,double> to_interval()const{
typedef Real_embeddable_traits<Bound> RT;
typedef typename RT::To_interval TI;
return std::make_pair(TI()(get_left()).first,
TI()(get_right()).second);
}
#undef CGAL_RS_DBL_PREC
void set_left(const Bound &l)const{
left=l;
}
void set_right(const Bound &r)const{
right=r;
}
void set_pol(const Polynomial &p){
pol=p;
}
}; // class Algebraic_1
} // namespace RS_AK1
// We define Algebraic_1 as real-embeddable
template <class Polynomial_,
class Bound_,
class Refiner_,
class Comparator_,
class Ptraits_>
class Real_embeddable_traits<RS_AK1::Algebraic_1<Polynomial_,
Bound_,
Refiner_,
Comparator_,
Ptraits_> >:
public INTERN_RET::Real_embeddable_traits_base<
RS_AK1::Algebraic_1<Polynomial_,
Bound_,
Refiner_,
Comparator_,
Ptraits_>,
CGAL::Tag_true>{
typedef Polynomial_ P;
typedef Bound_ B;
typedef Refiner_ R;
typedef Comparator_ C;
typedef Ptraits_ T;
public:
typedef RS_AK1::Algebraic_1<P,B,R,C,T> Type;
typedef CGAL::Tag_true Is_real_embeddable;
typedef bool Boolean;
typedef CGAL::Sign Sign;
typedef CGAL::Comparison_result Comparison_result;
typedef INTERN_RET::Real_embeddable_traits_base<Type,CGAL::Tag_true>
Base;
typedef typename Base::Compare Compare;
class Sgn:public std::unary_function<Type,CGAL::Sign>{
public:
CGAL::Sign operator()(const Type &a)const{
return Compare()(a,Type(0));
}
};
class To_double:public std::unary_function<Type,double>{
public:
double operator()(Type a)const{return a.to_double();}
};
class To_interval:
public std::unary_function<Type,std::pair<double,double> >{
public:
std::pair<double,double> operator()(const Type &a)const{
return a.to_interval();
}
};
class Is_zero:public std::unary_function<Type,Boolean>{
public:
bool operator()(const Type &a)const{
return Sgn()(a)==CGAL::ZERO;
}
};
class Is_finite:public std::unary_function<Type,Boolean>{
public:
bool operator()(const Type&)const{return true;}
};
class Abs:public std::unary_function<Type,Type>{
public:
Type operator()(const Type &a)const{
return Sgn()(a)==CGAL::NEGATIVE?-a:a;
}
};
};
template <class P,class B,class R,class C,class T>
inline
RS_AK1::Algebraic_1<P,B,R,C,T> min
BOOST_PREVENT_MACRO_SUBSTITUTION(RS_AK1::Algebraic_1<P,B,R,C,T> a,
RS_AK1::Algebraic_1<P,B,R,C,T> b){
return(a<b?a:b);
}
template <class P,class B,class R,class C,class T>
inline
RS_AK1::Algebraic_1<P,B,R,C,T> max
BOOST_PREVENT_MACRO_SUBSTITUTION(RS_AK1::Algebraic_1<P,B,R,C,T> a,
RS_AK1::Algebraic_1<P,B,R,C,T> b){
return(a>b?a:b);
}
template <class P,class B,class R,class C,class T>
inline
std::ostream& operator<<(std::ostream &o,
const RS_AK1::Algebraic_1<P,B,R,C,T> &a){
return(o<<'['<<a.get_pol()<<','<<
a.get_left()<<','<<
a.get_right()<<']');
}
// XXX: This function works, but it will be nice to rewrite it cleanly.
template <class P,class B,class R,class C,class T>
inline
std::istream& operator>>(std::istream &i,
RS_AK1::Algebraic_1<P,B,R,C,T> &a){
std::istream::int_type c;
P pol;
B lb,rb;
c=i.get();
if(c!='['){
CGAL_error_msg("error reading istream, \'[\' expected");
return i;
}
i>>pol;
c=i.get();
if(c!=','){
CGAL_error_msg("error reading istream, \',\' expected");
return i;
}
i>>lb;
c=i.get();
if(c!=','){
CGAL_error_msg("error reading istream, \',\' expected");
return i;
}
i>>rb;
c=i.get();
if(c!=']'){
CGAL_error_msg("error reading istream, \']\' expected");
return i;
}
a=RS_AK1::Algebraic_1<P,B,R,C,T>(pol,lb,rb);
return i;
}
} // namespace CGAL
#endif // CGAL_RS_ALGEBRAIC_1_H
|