This file is indexed.

/usr/include/CGAL/Triangulation.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
// Copyright (c) 2009-2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)    : Samuel Hornus

#ifndef CGAL_TRIANGULATION_H
#define CGAL_TRIANGULATION_H

#include <CGAL/internal/Triangulation/utilities.h>
#include <CGAL/Triangulation_data_structure.h>
#include <CGAL/Triangulation_full_cell.h>
#include <CGAL/Triangulation_vertex.h>
#include <CGAL/Iterator_project.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Dimension.h>
#include <CGAL/iterator.h>
#include <CGAL/Default.h>

#include <boost/iterator/filter_iterator.hpp>
#include <boost/iterator/transform_iterator.hpp>

namespace CGAL {

// Iterator which iterates over vertex_handle's, but returns a point when
// dereferenced. If the current 
// vertex_handle vh == vh_where_point_should_be_substituted, it returns
// "subtitute_point", otherwise, it returns vh->point()
template<class VertexHandleConstIter>
class Substitute_point_in_vertex_iterator 
{
  typedef typename std::iterator_traits<VertexHandleConstIter>::value_type Vertex_handle;
  typedef typename Vertex_handle::value_type Vertex;
  typedef typename Vertex::Point Point;

public:
  typedef Point const& result_type; // For result_of

  Substitute_point_in_vertex_iterator(
    Vertex_handle vh_where_point_should_be_substituted,
    Point const *subtitute_point)
  : vh_where_point_should_be_substituted_(vh_where_point_should_be_substituted)
  , subtitute_point_(subtitute_point)
  {}

  result_type operator()(Vertex_handle vh) const
  {
    if (vh == vh_where_point_should_be_substituted_) 
      return *subtitute_point_;
    else
      return vh->point();
  }

private:
  Vertex_handle vh_where_point_should_be_substituted_;
  Point const *subtitute_point_;

};


template <  class TriangulationTraits, class TDS_ = Default >
class Triangulation
{
    typedef typename TriangulationTraits::Dimension Maximal_dimension_;
    typedef typename Default::Get<TDS_, Triangulation_data_structure
                    <   Maximal_dimension_,
                        Triangulation_vertex<TriangulationTraits>,
                        Triangulation_full_cell<TriangulationTraits> >
                        >::type                     TDS;
    typedef Triangulation<TriangulationTraits, TDS_> Self;
    
protected:
    typedef typename TriangulationTraits::Flat_orientation_d Flat_orientation_d;
    typedef typename TriangulationTraits::Construct_flat_orientation_d Construct_flat_orientation_d;
    typedef typename TriangulationTraits::In_flat_orientation_d In_flat_orientation_d;
    
    // Wrapper
    struct Coaffine_orientation_d 
    {
      boost::optional<Flat_orientation_d>* fop;
      Construct_flat_orientation_d cfo;
      In_flat_orientation_d ifo;

      Coaffine_orientation_d(
        boost::optional<Flat_orientation_d>& x, 
        Construct_flat_orientation_d const&y, 
        In_flat_orientation_d const&z)
      : fop(&x), cfo(y), ifo(z) {}
      
      template<class Iter> 
      CGAL::Orientation operator()(Iter a, Iter b) const
      {
        if (*fop)
          return ifo(fop->get(),a,b);
        *fop = cfo(a,b);
        CGAL_assertion(ifo(fop->get(),a,b) == CGAL::POSITIVE);
        return CGAL::POSITIVE;
      }
    };

    void reset_flat_orientation()
    {
      if (current_dimension() == preset_flat_orientation_.first)
      {
        CGAL_assertion(preset_flat_orientation_.second != NULL);
        flat_orientation_ = *preset_flat_orientation_.second;
      }
      else
        flat_orientation_ = boost::none;
    }

    typedef typename TriangulationTraits::Orientation_d
                                                    Orientation_d;

public:

    typedef TriangulationTraits                     Geom_traits;
    typedef TDS                                     Triangulation_ds;

    typedef typename TDS::Vertex                    Vertex;
    typedef typename TDS::Full_cell                 Full_cell;
    typedef typename TDS::Facet                     Facet;
    typedef typename TDS::Face                      Face;

    typedef Maximal_dimension_                      Maximal_dimension;
    typedef typename Geom_traits::Point_d           Point;

    typedef typename TDS::Vertex_handle            Vertex_handle;
    typedef typename TDS::Vertex_iterator          Vertex_iterator;
    typedef typename TDS::Vertex_const_handle      Vertex_const_handle;
    typedef typename TDS::Vertex_const_iterator    Vertex_const_iterator;

    typedef typename TDS::Full_cell_handle           Full_cell_handle;
    typedef typename TDS::Full_cell_iterator         Full_cell_iterator;
    typedef typename TDS::Full_cell_const_handle     Full_cell_const_handle;
    typedef typename TDS::Full_cell_const_iterator   Full_cell_const_iterator;
    
    typedef typename TDS::Facet_iterator           Facet_iterator;

    typedef typename TDS::size_type                size_type;
    typedef typename TDS::difference_type          difference_type;

    /// The type of location a new point is found lying on
    enum  Locate_type
    {
          ON_VERTEX = 0 // simplex of dimension 0
        , IN_FACE   = 1 // simplex of dimension in [ 1, |current_dimension()| - 2 ]
        , IN_FACET  = 2 // simplex of dimension |current_dimension()| - 1
        , IN_FULL_CELL  = 3 /// simplex of dimension |current_dimension()|
        , OUTSIDE_CONVEX_HULL = 4
        , OUTSIDE_AFFINE_HULL = 5
    };

    // Finite elements iterators

    class Finiteness_predicate;

    typedef boost::filter_iterator<Finiteness_predicate, Vertex_iterator>
        Finite_vertex_iterator;
    typedef boost::filter_iterator<Finiteness_predicate, Vertex_const_iterator>
        Finite_vertex_const_iterator;
    typedef boost::filter_iterator<Finiteness_predicate, Full_cell_iterator>
        Finite_full_cell_iterator;
    typedef boost::filter_iterator<Finiteness_predicate, Full_cell_const_iterator>
        Finite_full_cell_const_iterator;
    typedef boost::filter_iterator<Finiteness_predicate, Facet_iterator>
        Finite_facet_iterator;

protected: // DATA MEMBERS

    Triangulation_ds                    tds_;
    const Geom_traits                   kernel_;
    Vertex_handle                       infinity_;
    mutable std::vector<Oriented_side>  orientations_;
    mutable boost::optional<Flat_orientation_d> flat_orientation_;
    // The user can specify a Flat_orientation_d object to be used for 
    // orienting simplices of a specific dimension 
    // (= preset_flat_orientation_.first)
    // preset_flat_orientation_.first = numeric_limits<int>::max() otherwise)
    std::pair<int, const Flat_orientation_d *> preset_flat_orientation_;
    // for stochastic walk in the locate() function:
    mutable Random                      rng_;
#ifdef CGAL_TRIANGULATION_STATISTICS
    mutable unsigned long walk_size_;
#endif

protected: // HELPER FUNCTIONS

    typedef CGAL::Iterator_project<
        typename Full_cell::Vertex_handle_const_iterator,
        internal::Triangulation::Point_from_vertex_handle<Vertex_handle, Point>
    > Point_const_iterator;

    Point_const_iterator points_begin(Full_cell_const_handle c) const
        { return Point_const_iterator(c->vertices_begin()); }
    Point_const_iterator points_end(Full_cell_const_handle c) const
        { return Point_const_iterator(c->vertices_end()); }
    Point_const_iterator points_begin(Full_cell_handle c) const
        { return Point_const_iterator(c->vertices_begin()); }
    Point_const_iterator points_end(Full_cell_handle c) const
        { return Point_const_iterator(c->vertices_end()); }

public:

    //       FACETS OPERATIONS

    Full_cell_handle full_cell(const Facet & f) const
    {
        return tds().full_cell(f);
    }

    int index_of_covertex(const Facet & f) const
    {
        return tds().index_of_covertex(f);
    }

    // - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS

    Triangulation(int dim, const Geom_traits k = Geom_traits())
        : tds_(dim)
        , kernel_(k)
        , infinity_()
        , preset_flat_orientation_((std::numeric_limits<int>::max)(),
                                   (Flat_orientation_d*) NULL)
        , rng_((long)0)
#ifdef CGAL_TRIANGULATION_STATISTICS
        ,walk_size_(0)
#endif
    {
        clear();
    }

    // With this constructor,
    // the user can specify a Flat_orientation_d object to be used for 
    // orienting simplices of a specific dimension 
    // (= preset_flat_orientation_.first)
    // It it used for by dark triangulations created by DT::remove
    Triangulation(
      int dim,
      const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation, 
      const Geom_traits k = Geom_traits())
        : tds_(dim)
        , kernel_(k)
        , infinity_()
        , preset_flat_orientation_(preset_flat_orientation)
        , rng_((long)0)
#ifdef CGAL_TRIANGULATION_STATISTICS
        ,walk_size_(0)
#endif
    {
        clear();
    }
    
    Triangulation(const Triangulation & t2)
        : tds_(t2.tds_)
        , kernel_(t2.kernel_)
        , infinity_()
        , preset_flat_orientation_((std::numeric_limits<int>::max)(), 
                                   (Flat_orientation_d*) NULL)
        , rng_(t2.rng_)
#ifdef CGAL_TRIANGULATION_STATISTICS
        ,walk_size_(t2.walk_size_)
#endif
    {
        // We find the vertex at infinity by scanning the vertices of both
        // triangulations. This works because Compact_container garantees that
        // the vertices in the copy (*this) are stored in the same order as in
        // the original triangulation (t2)
        infinity_ = vertices_begin();
        Vertex_const_iterator inf2 = t2.vertices_begin();
        while( inf2 != t2.infinite_vertex() )
        {
            ++infinity_;
            ++inf2;
        }
        // A full_cell has at most 1 + maximal_dimension() facets:
        orientations_.resize(1 + maximal_dimension());
        // Our coaffine orientation predicates HAS state member variables
        reset_flat_orientation();
    }

    ~Triangulation() {}

    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS FUNCTIONS

    /* These three function are no longer needed since we do not use them anymore
       in the Delaunay_triangulation::remove. *But*, they may reappear in the future
       if we manage to passe the information that flags/TDS_data is available or not
       for marking simplices in Delaunay_triangulation::remove. This would be useful
       to make it a little faster, instead of binary searching if a simplex is marked
       or not... 
    // NOT DOCUMENTED -- 
    bool get_visited(Full_cell_handle s) const
    {
        return tds().get_visited(s);
    }
    // NOT DOCUMENTED -- 
    bool get_visited(Full_cell_const_handle s) const
    {
        return tds().get_visited(s);
    }

    // NOT DOCUMENTED -- 
    void set_visited(Full_cell_handle s, bool b) const
    {
        tds().set_visited(s, b);
    } */

    Coaffine_orientation_d coaffine_orientation_predicate() const
    {
      return Coaffine_orientation_d (
        flat_orientation_, 
        geom_traits().construct_flat_orientation_d_object(), 
        geom_traits().in_flat_orientation_d_object()
      );
    }

    const Triangulation_ds & tds() const
    {
        return tds_;
    }

    Triangulation_ds & tds()
    {
        return tds_;
    }

    const Geom_traits & geom_traits() const
    {
        return kernel_;
    }

    int maximal_dimension() const { return tds().maximal_dimension(); }
    int current_dimension() const { return tds().current_dimension(); }

    bool empty() const
    {
        return current_dimension() == -1;
    }

    size_type number_of_vertices() const
    {
        return tds().number_of_vertices() - 1;
    }

    size_type number_of_full_cells() const
    {
        return tds().number_of_full_cells();
    }

    Vertex_handle infinite_vertex() const
    {
        return infinity_;
    }

    Full_cell_handle infinite_full_cell() const
    {
        CGAL_assertion(infinite_vertex()->full_cell()->has_vertex(infinite_vertex()));
        return infinite_vertex()->full_cell();
    }

// - - - - - - - - - - - - - - - - - - - - - - - - - NON CONSTANT-TIME ACCESS FUNCTIONS

    size_type number_of_finite_full_cells() const
    {
        Full_cell_const_iterator s = full_cells_begin();
        size_type result = number_of_full_cells();
        for( ; s != full_cells_end(); ++s )
        {
            if( is_infinite(s) )
                --result;
        }
        return result;
    }

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - TRAVERSAL

    Vertex_iterator vertices_begin() { return tds().vertices_begin(); }
    Vertex_iterator vertices_end()   { return tds().vertices_end(); }

    Vertex_const_iterator vertices_begin() const { return tds().vertices_begin(); }
    Vertex_const_iterator vertices_end()   const { return tds().vertices_end(); }

    Finite_vertex_iterator finite_vertices_begin()
    { return Finite_vertex_iterator(Finiteness_predicate(*this), vertices_begin(), vertices_end()); }
    Finite_vertex_iterator finite_vertices_end()
    { return Finite_vertex_iterator(Finiteness_predicate(*this), vertices_end(), vertices_end()); }
    Finite_vertex_const_iterator finite_vertices_begin() const
    { return Finite_vertex_const_iterator(Finiteness_predicate(*this), vertices_begin(), vertices_end()); }
    Finite_vertex_const_iterator finite_vertices_end() const
    { return Finite_vertex_const_iterator(Finiteness_predicate(*this), vertices_end(), vertices_end()); }

    Full_cell_iterator full_cells_begin() { return tds().full_cells_begin(); }
    Full_cell_iterator full_cells_end()   { return tds().full_cells_end(); }

    Full_cell_const_iterator full_cells_begin() const { return tds().full_cells_begin(); }
    Full_cell_const_iterator full_cells_end()   const { return tds().full_cells_end(); }

    Finite_full_cell_iterator finite_full_cells_begin()
    { return Finite_full_cell_iterator(Finiteness_predicate(*this), full_cells_begin(), full_cells_end()); }
    Finite_full_cell_iterator finite_full_cells_end()
    { return Finite_full_cell_iterator(Finiteness_predicate(*this), full_cells_end(), full_cells_end()); }
    Finite_full_cell_const_iterator finite_full_cells_begin() const
    { return Finite_full_cell_const_iterator(Finiteness_predicate(*this), full_cells_begin(), full_cells_end()); }
    Finite_full_cell_const_iterator finite_full_cells_end() const
    { return Finite_full_cell_const_iterator(Finiteness_predicate(*this), full_cells_end(), full_cells_end()); }

    Facet_iterator facets_begin() { return tds().facets_begin(); }
    Facet_iterator facets_end() { return tds().facets_end(); }
    Facet_iterator finite_facets_begin()
    { return Finite_facet_iterator(Finiteness_predicate(*this), facets_begin(), facets_end()); }
    Facet_iterator finite_facets_end()
    { return Finite_facet_iterator(Finiteness_predicate(*this), facets_end(), facets_end()); }

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOME PREDICATE FUNCTORS

    class Finiteness_predicate
    {
        const Self & t_;
    public:
        Finiteness_predicate(const Self & t) : t_(t) {}
        template < class T >
        bool operator()(const T & t) const
        {
            return ! t_.is_infinite(t);
        }
    };

    class Point_equality_predicate
    {
        const Point & o_;
    public:
        Point_equality_predicate(const Point & o) : o_(o) {}
        bool operator()(const Point & o) const { return  (o == o_ );}
    };

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SIMPLE QUERIES
/*
    bool is_vertex(const Point & p, Vertex_handle & v, Full_cell_handle hint = Full_cell_handle()) const
    {
        Locate_type lt;
        Face f(maximal_dimension());
        Facet ft;
        Full_cell_handle s = locate(p, lt, f, ft, hint);
        if( ON_VERTEX == lt )
        {
            v = s->vertex(f.index(0));
            return true;
        }
        return false;
    }

    bool is_vertex(Vertex_const_handle v) const
    {
        return tds().is_vertex(v);
    }

    bool is_full_cell(Full_cell_const_handle s) const
    {
        return tds().is_full_cell(s);
    }
*/

    bool is_infinite(Vertex_const_handle v) const
    {
        CGAL_precondition(Vertex_const_handle() != v);
        return (infinite_vertex() == v);
    }

    bool is_infinite(const Vertex & v) const /* internal use, not documented */
    {
        return (&(*infinite_vertex()) == &v);
    }

    bool is_infinite(Full_cell_const_handle s) const
    {
        CGAL_precondition(Full_cell_const_handle() != s);
        return is_infinite(*s);
    }
    bool is_infinite(const Full_cell & s) const /* internal use, not documented */
    {
        for(int i = 0; i <= current_dimension(); ++i)
            if( is_infinite(s.vertex(i)) )
                return true;
        return false;
    }
    bool is_infinite(const Facet & ft) const
    {
        Full_cell_const_handle s = full_cell(ft);
        CGAL_precondition(s != Full_cell_handle());
        if( is_infinite(s) )
            return (s->vertex(index_of_covertex(ft)) != infinite_vertex());
        return false;
    }

    bool is_infinite(const Face & f) const
    {
        Full_cell_const_handle s = f.full_cell();
        CGAL_precondition(s != Full_cell_handle());
        if( is_infinite(s) )
        {
            Vertex_handle v;
            for( int i(0); i<= f.face_dimension(); ++i)
                if ( is_infinite( f.vertex(i) )) return true;
        }
        return false;
    }

    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ELEMENT GATHERING

    
    template< typename OutputIterator >
    OutputIterator incident_full_cells(const Face & f, OutputIterator out) const
    {
        return tds().incident_full_cells(f, out);
    }
    template< typename OutputIterator >
    OutputIterator incident_full_cells(Vertex_const_handle v, OutputIterator out) const
    {
        return tds().incident_full_cells(v, out);
    }
    template< typename OutputIterator >
    OutputIterator star(const Face & f, OutputIterator out) const
    {
        return tds().star(f, out);
    }

    template< typename OutputIterator >
    OutputIterator incident_faces(Vertex_const_handle v, int d, OutputIterator out)
    {
        return tds().incident_faces(v, d, out);
    }
    /*
    template< typename OutputIterator, class Comparator >
    OutputIterator incident_upper_faces( Vertex_const_handle v, int d,
                                                OutputIterator out, Comparator cmp = Comparator())
    {
        return tds().incident_upper_faces(v, d, out, cmp);
    }
    template< typename OutputIterator >
    OutputIterator incident_upper_faces( Vertex_const_handle v, int d,
                                                OutputIterator out)
    { // FIXME: uncomment this function, since it uses a comparator specific to
       // *geometric* triangulation (taking infinite vertex into account)
        internal::Triangulation::Compare_vertices_for_upper_face<Self> cmp(*this);
        return tds().incident_upper_faces(v, d, out, cmp);
    }
    */
    Orientation orientation(Full_cell_const_handle s, bool in_is_valid = false) const
    {
        if( ! in_is_valid )
            CGAL_assertion( ! is_infinite(s) );
        if( 0 == current_dimension() )
            return POSITIVE;
        if( current_dimension() == maximal_dimension() )
        {
            Orientation_d ori = geom_traits().orientation_d_object();
            return ori(points_begin(s), points_begin(s) + 1 + current_dimension());
        }
        else
        {
            return coaffine_orientation_predicate()(points_begin(s), points_begin(s) + 1 + current_dimension());
        }
    }

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UPDATE OPERATIONS

    void clear()
    {
        tds_.clear();
        infinity_ = tds().insert_increase_dimension();
        // A full_cell has at most 1 + maximal_dimension() facets:
        orientations_.resize(1 + maximal_dimension());
        // Our coaffine orientation predicates HAS state member variables
        reset_flat_orientation();
#ifdef CGAL_TRIANGULATION_STATISTICS
        walk_size_ = 0;
#endif
    }

    void set_current_dimension(int d)
    {
        tds().set_current_dimension(d);
    }

    Full_cell_handle new_full_cell()
    { 
        return tds().new_full_cell();
    }

    Vertex_handle  new_vertex(const Point & p) 
    {
        return tds().new_vertex(p);
    }

    void set_neighbors(Full_cell_handle s, int i, Full_cell_handle s1, int j)
    {
        tds().set_neighbors(s, i, s1, j);
    }

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY

    bool is_valid(bool = false, int = 0) const;
    bool are_incident_full_cells_valid(Vertex_const_handle, bool = false, int = 0) const;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - POINT LOCATION

protected:
    template< typename OrientationPredicate >
    Full_cell_handle do_locate(   const Point &, Locate_type &, Face &, Facet &,
                                Full_cell_handle start,
                                const OrientationPredicate & o) const;
public:
    Full_cell_handle locate(  const Point &, Locate_type &, Face &, Facet &,
                            Full_cell_handle start = Full_cell_handle()) const;
    Full_cell_handle locate(  const Point &, Locate_type &, Face &, Facet &,
                            Vertex_handle) const;
    Full_cell_handle locate(const Point & p, Full_cell_handle s = Full_cell_handle()) const;
    Full_cell_handle locate(const Point & p, Vertex_handle v) const;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS

    Vertex_handle contract_face(const Point &, const Face &);

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - POINT INSERTION

    template< typename ForwardIterator >
    size_type insert(ForwardIterator start, ForwardIterator end)
    {
        size_type n = number_of_vertices();
        std::vector<Point> points(start, end);
        spatial_sort(points.begin(), points.end(), geom_traits());
        Full_cell_handle hint = Full_cell_handle();
        typename std::vector<Point>::const_iterator s = points.begin();
        while( s != points.end() )
        {
            hint = insert(*s++, hint)->full_cell();
        }
        return number_of_vertices() - n;
    }
    Vertex_handle insert(const Point &, const Locate_type, const Face &, const Facet &, const Full_cell_handle);
    Vertex_handle insert(const Point &, Full_cell_handle start = Full_cell_handle());
    Vertex_handle insert(const Point &, Vertex_handle);
    template< typename ForwardIterator >
    Vertex_handle insert_in_hole(const Point & p, ForwardIterator start, ForwardIterator end, const Facet & ft)
    {
        Emptyset_iterator out;
        return insert_in_hole(p, start, end, ft, out);
    }
    template< typename ForwardIterator, typename OutputIterator >
    Vertex_handle insert_in_hole(const Point & p, ForwardIterator start, ForwardIterator end, const Facet & ft, 
                                 OutputIterator out)
    {
        Vertex_handle v = tds().insert_in_hole(start, end, ft, out);
        v->set_point(p);
        return v;
    }
    Vertex_handle insert_in_face(const Point &, const Face &);
    Vertex_handle insert_in_facet(const Point &, const Facet &);
    Vertex_handle insert_in_full_cell(const Point &, Full_cell_handle);
    Vertex_handle insert_outside_convex_hull_1(const Point &, Full_cell_handle);
    Vertex_handle insert_outside_convex_hull(const Point &, Full_cell_handle);
    Vertex_handle insert_outside_affine_hull(const Point &);

// - - - - - - - - - - - - - - - - - - - - - - - - - - - FACET-TRAVERSAL PREDICATES

    template< typename OrientationPredicate >
    class Outside_convex_hull_traversal_predicate
    {
        Triangulation & t_;
        const Point & p_;
        OrientationPredicate const& ori_;
        int cur_dim_;
    public:
        Outside_convex_hull_traversal_predicate(Triangulation & t, const Point & p,
                                    OrientationPredicate const& ori)
        : t_(t), p_(p), ori_(ori), cur_dim_(t.current_dimension()) {}
        // FUTURE change parameter to const reference
        bool operator()(Facet f) const
        {
            Full_cell_handle s = t_.full_cell(f);
            const int i = t_.index_of_covertex(f);
            Full_cell_handle n = s->neighbor(i);
            if( ! t_.is_infinite(n) )
                return false;
            int inf_v_index = n->index(t_.infinite_vertex());
            n->vertex(inf_v_index)->set_point(p_);
            bool ok = (POSITIVE == ori_(t_.points_begin(n), t_.points_begin(n) + cur_dim_ + 1));
            return ok;
        }
    };

    // make sure all full_cells have positive orientation
    void reorient_full_cells();

}; // Triangulation<...>

// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

// CLASS MEMBER FUNCTIONS

template < class TT, class TDS >
void
Triangulation<TT, TDS>
::reorient_full_cells()
{
    if( current_dimension() < 1 )
        return;
    Full_cell_iterator sit = full_cells_begin();
    Full_cell_iterator send = full_cells_end();
    while( sit != send )
    {
        if( is_infinite(sit) && (1 == current_dimension()) )
        {
            ++sit;
            continue;
        }
        sit->swap_vertices(current_dimension() - 1, current_dimension());
        ++sit;
    }
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
// - - - - - - - - - - - - - - - - - - - - - - - - THE REMOVAL METHODS

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::contract_face(const Point & p, const Face & f)
{
    CGAL_precondition( ! is_infinite(f) );
    Vertex_handle v = tds().contract_face(f);
    v->set_point(p);
    CGAL_expensive_postcondition_msg(are_incident_full_cells_valid(v), "new point is not where it should be");
    return v;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
// - - - - - - - - - - - - - - - - - - - - - - - - THE INSERTION METHODS

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert(const Point & p, const Locate_type lt, const Face & f, const Facet & ft, const Full_cell_handle s)
{
    switch( lt )
    {
        case IN_FULL_CELL:
            return insert_in_full_cell(p, s);
            break;
        case OUTSIDE_CONVEX_HULL:
            return insert_outside_convex_hull(p, s);
            break;
        case OUTSIDE_AFFINE_HULL:
            return insert_outside_affine_hull(p);
            break;
        case IN_FACET:
        {
            return insert_in_facet(p, ft);
            break;
        }
        case IN_FACE:
            return insert_in_face(p, f);
            break;
        case ON_VERTEX:
            s->vertex(f.index(0))->set_point(p);
            return s->vertex(f.index(0));
            break;
    }
    CGAL_assertion(false);
    return Vertex_handle();
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert(const Point & p, Full_cell_handle start)
{
    Locate_type lt;
    Face f(maximal_dimension());
    Facet ft;
    Full_cell_handle s = locate(p, lt, f, ft, start);
    return insert(p, lt, f, ft, s);
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert(const Point & p, Vertex_handle v)
{
    if( Vertex_handle() == v )
        v = infinite_vertex();
    return insert(p, v->full_cell());
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_in_face(const Point & p, const Face & f)
{
    CGAL_precondition( ! is_infinite(f) );
    Vertex_handle v = tds().insert_in_face(f);
    v->set_point(p);
    return v;
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_in_facet(const Point & p, const Facet & ft)
{
    CGAL_precondition( ! is_infinite(ft) );
    Vertex_handle v = tds().insert_in_facet(ft);
    v->set_point(p);
    return v;
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_in_full_cell(const Point & p, Full_cell_handle s)
{
    CGAL_precondition( ! is_infinite(s) );
    Vertex_handle v = tds().insert_in_full_cell(s);
    v->set_point(p);
    return v;
}

// NOT DOCUMENTED...
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_outside_convex_hull_1(const Point & p, Full_cell_handle s)
{
    // This is a special case for dimension 1, because in that case, the right
    // infinite full_cell is not correctly oriented... (sice its first vertex is the
    // infinite one...
    CGAL_precondition( is_infinite(s) );
    CGAL_precondition( 1 == current_dimension() );
    int inf_v_index = s->index(infinite_vertex());
    bool swap = (0 == s->neighbor(inf_v_index)->index(s));
    Vertex_handle v = tds().insert_in_full_cell(s);
    v->set_point(p);
    if( swap )
    {
        s->swap_vertices(0, 1);
    }
    return v;
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_outside_convex_hull(const Point & p, Full_cell_handle s)
{
    if( 1 == current_dimension() )
    {
        return insert_outside_convex_hull_1(p, s);
    }
    CGAL_precondition( is_infinite(s) );
    CGAL_assertion( current_dimension() >= 2 );
    std::vector<Full_cell_handle> simps;
    simps.reserve(64);
    std::back_insert_iterator<std::vector<Full_cell_handle> > out(simps);
    if( current_dimension() < maximal_dimension() )
    {
        Outside_convex_hull_traversal_predicate<Coaffine_orientation_d>
            ochtp(*this, p, coaffine_orientation_predicate());
        tds().gather_full_cells(s, ochtp, out);
    }
    else
    {
        Orientation_d ori = geom_traits().orientation_d_object();
        Outside_convex_hull_traversal_predicate<Orientation_d>
            ochtp(*this, p, ori);
        tds().gather_full_cells(s, ochtp, out);
    }
    int inf_v_index = s->index(infinite_vertex());
    Vertex_handle v = insert_in_hole(
      p, simps.begin(), simps.end(), Facet(s, inf_v_index));
    return v;
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_outside_affine_hull(const Point & p)
{
    CGAL_precondition( current_dimension() < maximal_dimension() );
    Vertex_handle v = tds().insert_increase_dimension(infinite_vertex());
    // reset the orientation predicate:
    reset_flat_orientation();
    v->set_point(p);
    if( current_dimension() >= 1 )
    {
        Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
        int inf_v_index = inf_v_cell->index(infinite_vertex());
        Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
        Orientation o = orientation(s);
        CGAL_assertion( COPLANAR != o );
            if( NEGATIVE == o )
                reorient_full_cells();
    }
    return v;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
// - - - - - - - - - - - - - - - - - - - - THE MAIN LOCATE(...) FUNCTION

template < class TT, class TDS >
template< typename OrientationPredicate >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::do_locate(   const Point & p, // query point
            Locate_type & loc_type,// type of result (full_cell, face, vertex)
            Face & face,// the face containing the query in its interior (when appropriate)
            Facet & facet,// the facet containing the query in its interior (when appropriate)
            const Full_cell_handle start// starting full_cell for the walk
            , OrientationPredicate const& orientation_pred
        ) const
{
    const int cur_dim = current_dimension();

    if( cur_dim == -1 )
    {
        loc_type = OUTSIDE_AFFINE_HULL;
        return Full_cell_handle();
    }
    else if( cur_dim == 0 )
    {
        Vertex_handle vit = infinite_full_cell()->neighbor(0)->vertex(0);
        if( EQUAL != geom_traits().compare_lexicographically_d_object()(p, vit->point()) )
        {
            loc_type = OUTSIDE_AFFINE_HULL;
            return Full_cell_handle();
        }
        else
        {
            loc_type = ON_VERTEX;
            face.set_full_cell(vit->full_cell());
            face.set_index(0, 0);
            return vit->full_cell();
        }
    }

    Full_cell_handle s;

    // if we don't know where to start, we start from any bounded full_cell
    if( Full_cell_handle() == start )
    {
        // THE HACK THAT NOBODY SHOULD DO... BUT DIFFICULT TO WORK AROUND
        // THIS... TODO: WORK AROUND IT
        Full_cell_handle inf_c = const_cast<Self*>(this)->infinite_full_cell();
        int inf_v_index = inf_c->index(infinite_vertex());
        s = inf_c->neighbor(inf_v_index);
    }
    else
    {
        s = start;
        if( is_infinite(s) )
        {
            int inf_v_index = s->index(infinite_vertex());
            s = s->neighbor(inf_v_index);
        }
    }

    // Check if query |p| is outside the affine hull
    if( cur_dim < maximal_dimension() )
    {
        if( ! geom_traits().contained_in_affine_hull_d_object()(
            points_begin(s),
            points_begin(s) + current_dimension() + 1,
            p) )
        {
            loc_type = OUTSIDE_AFFINE_HULL;
            return Full_cell_handle();
        }
    }

    // we remember the |previous|ly visited full_cell to avoid the evaluation
    // of one |orientation| predicate
    Full_cell_handle previous = Full_cell_handle();
    bool full_cell_not_found = true;
    while(full_cell_not_found) // we walk until we locate the query point |p|
    {
    #ifdef CGAL_TRIANGULATION_STATISTICS
        ++walk_size_;
    #endif
        // For the remembering stochastic walk, we need to start trying
        // with a random index:
        int j, i = rng_.get_int(0, cur_dim);
        // we check |p| against all the full_cell's hyperplanes in turn
       
        for(j = 0; j <= cur_dim; ++j, i = (i + 1) % (cur_dim + 1) )
        {
            Full_cell_handle next = s->neighbor(i);
            if( previous == next )
            {   // no need to compute the orientation, we already know it
                orientations_[i] = POSITIVE;
                continue; // go to next full_cell's facet
            }

            Substitute_point_in_vertex_iterator<
              typename Full_cell::Vertex_handle_const_iterator> 
              spivi(s->vertex(i), &p);

            orientations_[i] = orientation_pred(
              boost::make_transform_iterator(s->vertices_begin(), spivi),
              boost::make_transform_iterator(s->vertices_begin() + cur_dim + 1, 
                                             spivi));

            if( orientations_[i] != NEGATIVE )
            {
                // from this facet's point of view, we are inside the
                // full_cell or on its boundary, so we continue to next facet
                continue;
            }

            // At this point, we know that we have to jump to the |next|
            // full_cell because orientation_[i] == NEGATIVE
            previous = s;
            s = next;
            if( is_infinite(next) )
            {   // we have arrived OUTSIDE the convex hull of the triangulation,
                // so we stop the search
                full_cell_not_found = false;
                loc_type = OUTSIDE_CONVEX_HULL;
                face.set_full_cell(s);
            }
            break;
        } // end of the 'for' loop
        if( ( cur_dim + 1 ) == j ) // we found the full_cell containing |p|
            full_cell_not_found = false;
    }
    // Here, we know in which full_cell |p| is in.
    // We now check more precisely where |p| landed:
    // vertex, facet, face or full_cell.
    if( ! is_infinite(s) )
    {
        face.set_full_cell(s);
        int num(0);
        int verts(0);
        for(int i = 0; i < cur_dim; ++i)
        {
            if( orientations_[i] == COPLANAR )
            {
                ++num;
                facet = Facet(s, i);
            }
            else
                face.set_index(verts++, i);
        }
        //-- We could put the if{}else{} below in the loop above, but then we would
        // need to test if (verts < cur_dim) many times... we do it only once
        // here:
        if( orientations_[cur_dim] == COPLANAR )
        {
            ++num;
            facet = Facet(s, cur_dim);
        }
        else if( verts < cur_dim )
            face.set_index(verts, cur_dim);
        //-- end of remark above //
        if( 0 == num )
        {
            loc_type = IN_FULL_CELL;
            face.clear();
        }
        else if( cur_dim == num )
            loc_type = ON_VERTEX;
        else if( 1 == num )
            loc_type = IN_FACET;
        else
            loc_type = IN_FACE;
    }
    return s;
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate(   const Point & p, // query point
            Locate_type & loc_type,// type of result (full_cell, face, vertex)
            Face & face,// the face containing the query in its interior (when appropriate)
            Facet & facet,// the facet containing the query in its interior (when appropriate)
            Full_cell_handle start// starting full_cell for the walk
        ) const
{
    if( current_dimension() == maximal_dimension() )
    {
        Orientation_d ori = geom_traits().orientation_d_object();
        return do_locate(p, loc_type, face, facet, start, ori);
    }
    else
        return do_locate(p, loc_type, face, facet, start, coaffine_orientation_predicate());
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
// - - - - - - - - - - - - - - - - - - - - the locate(...) variants

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate(   const Point & p,
            Locate_type & loc_type,
            Face & face,
            Facet & facet,
            Vertex_handle start) const
{
    if( Vertex_handle() == start )
        start = infinite_vertex();
    return locate(p, loc_type, face, facet, start->full_cell());
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate(const Point & p, Full_cell_handle s) const
{
    Locate_type lt;
    Face face(maximal_dimension());
    Facet facet;
    return locate(p, lt, face, facet, s);
}

template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate(const Point & p, Vertex_handle v) const
{
    if( Vertex_handle() != v )
        v = infinite_vertex();
    return this->locate(p, v->full_cell());
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY

template < class TT, class TDS >
bool
Triangulation<TT, TDS>
::is_valid(bool verbose, int level) const
{ 
    if( ! tds().is_valid(verbose, level) )
        return false;

    Full_cell_const_iterator c;
    if( current_dimension() < 0 )
        return true;
    Orientation o;
    for( c = full_cells_begin(); c != full_cells_end(); ++c )
    {
        if( is_infinite(c) )
        {
            if( current_dimension() > 1 )
            {
                int i = c->index( infinite_vertex() );
                Full_cell_handle n = c->neighbor(i);
                infinite_vertex()->set_point(n->vertex(c->mirror_index(i))->point());
                o = - orientation(c, true);
            }
            else
                o = POSITIVE;
        }
        else
            o = orientation(c, true);
        if( NEGATIVE == o )
        {
            if( verbose ) CGAL_warning_msg(false, "full_cell is not correctly oriented");
            return false;
        }
        if( COPLANAR == o )
        {
            if( verbose ) CGAL_warning_msg(false, "full_cell is flat");
            return false;
        }
    }
    return true;
}

template < class TT, class TDS >
bool Triangulation<TT, TDS>::are_incident_full_cells_valid(Vertex_const_handle v, bool verbose, int) const
{
    if( current_dimension() <= 0 )
        return true;
    typedef std::vector<Full_cell_const_handle> Simps;
    Simps simps;
    simps.reserve(64);
    std::back_insert_iterator<Simps> out(simps);
    incident_full_cells(v, out);
    typename Simps::const_iterator sit = simps.begin();
    for( ; sit != simps.end(); ++sit )
    {
        if( is_infinite(*sit) )
            continue;
        Orientation o = orientation(*sit);
        if( NEGATIVE == o )
        {
            if( verbose ) CGAL_warning_msg(false, "full_cell is not correctly oriented");
            return false;
        }
        if( COPLANAR == o )
        {
            if( verbose ) CGAL_warning_msg(false, "full_cell is flat");
            return false;
        }
    }
    return true;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// FUNCTIONS THAT ARE NOT MEMBER FUNCTIONS:

template < class TT, class TDS >
std::istream & 
operator>>(std::istream & is, Triangulation<TT, TDS> & tr)
  // reads :
  // - the dimensions (maximal and current)
  // - the number of finite vertices
  // - the non combinatorial information on vertices (point, etc)
  // - the number of full_cells
  // - the full_cells by the indices of their vertices in the preceding list
  // of vertices, plus the non combinatorial information on each full_cell
  // - the neighbors of each full_cell by their index in the preceding list
{
    typedef Triangulation<TT, TDS>            T;
    typedef typename T::Vertex_handle         Vertex_handle;

    // read current dimension and number of vertices
    size_t n;
    int cd;
    if( is_ascii(is) )
        is >> cd >> n;
    else
    {
        read(is, cd);
        read(is, n, io_Read_write());
    }

    CGAL_assertion_msg( cd <= tr.maximal_dimension(), "input Triangulation has too high dimension");

    tr.clear();
    tr.set_current_dimension(cd);

    if( n == 0 )
        return is;

    std::vector<Vertex_handle> vertices;
    vertices.resize(n+1);
    vertices[0] = tr.infinite_vertex();
    is >> (*vertices[0]);

    // read the vertices:
    size_t i(1);
    while( i <= n )
    {
        vertices[i] = tr.new_vertex();
        is >> (*vertices[i]); // read a vertex
        ++i;
    }

    // now, read the combinatorial information
   return tr.tds().read_full_cells(is, vertices);
}

template < class TT, class TDS >
std::ostream & 
operator<<(std::ostream & os, const Triangulation<TT, TDS> & tr)
  // writes :
  // - the dimensions (maximal and current)
  // - the number of finite vertices
  // - the non combinatorial information on vertices (point, etc)
  // - the number of full_cells
  // - the full_cells by the indices of their vertices in the preceding list
  // of vertices, plus the non combinatorial information on each full_cell
  // - the neighbors of each full_cell by their index in the preceding list
{
    typedef Triangulation<TT, TDS> T;
    typedef typename T::Vertex_const_handle         Vertex_handle;
    typedef typename T::Vertex_const_iterator       Vertex_iterator;

    // outputs dimensions and number of vertices
    size_t n = tr.number_of_vertices();
    if( is_ascii(os) )
        os << tr.current_dimension() << std::endl << n << std::endl;
    else
    {
        write(os, tr.current_dimension());
        write(os, n, io_Read_write());
    }

    if( n == 0 )
        return os;

    size_t i(0);
    // write the vertices
    std::map<Vertex_handle, int> index_of_vertex;

    // infinite vertex has index 0 (among all the vertices)
    index_of_vertex[tr.infinite_vertex()] = i++;
    os << *tr.infinite_vertex();
    for( Vertex_iterator it = tr.vertices_begin(); it != tr.vertices_end(); ++it )
    {
        if( tr.is_infinite(it) )
            continue;
        os << *it; // write the vertex
        index_of_vertex[it] = i++;
    }
    CGAL_assertion( i == n+1 );

    // output the combinatorial information
    return tr.tds().write_full_cells(os, index_of_vertex);
}

} //namespace CGAL

#endif // CGAL_TRIANGULATION_H