/usr/include/CGAL/Triangulation.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 | // Copyright (c) 2009-2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Samuel Hornus
#ifndef CGAL_TRIANGULATION_H
#define CGAL_TRIANGULATION_H
#include <CGAL/internal/Triangulation/utilities.h>
#include <CGAL/Triangulation_data_structure.h>
#include <CGAL/Triangulation_full_cell.h>
#include <CGAL/Triangulation_vertex.h>
#include <CGAL/Iterator_project.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Dimension.h>
#include <CGAL/iterator.h>
#include <CGAL/Default.h>
#include <boost/iterator/filter_iterator.hpp>
#include <boost/iterator/transform_iterator.hpp>
namespace CGAL {
// Iterator which iterates over vertex_handle's, but returns a point when
// dereferenced. If the current
// vertex_handle vh == vh_where_point_should_be_substituted, it returns
// "subtitute_point", otherwise, it returns vh->point()
template<class VertexHandleConstIter>
class Substitute_point_in_vertex_iterator
{
typedef typename std::iterator_traits<VertexHandleConstIter>::value_type Vertex_handle;
typedef typename Vertex_handle::value_type Vertex;
typedef typename Vertex::Point Point;
public:
typedef Point const& result_type; // For result_of
Substitute_point_in_vertex_iterator(
Vertex_handle vh_where_point_should_be_substituted,
Point const *subtitute_point)
: vh_where_point_should_be_substituted_(vh_where_point_should_be_substituted)
, subtitute_point_(subtitute_point)
{}
result_type operator()(Vertex_handle vh) const
{
if (vh == vh_where_point_should_be_substituted_)
return *subtitute_point_;
else
return vh->point();
}
private:
Vertex_handle vh_where_point_should_be_substituted_;
Point const *subtitute_point_;
};
template < class TriangulationTraits, class TDS_ = Default >
class Triangulation
{
typedef typename TriangulationTraits::Dimension Maximal_dimension_;
typedef typename Default::Get<TDS_, Triangulation_data_structure
< Maximal_dimension_,
Triangulation_vertex<TriangulationTraits>,
Triangulation_full_cell<TriangulationTraits> >
>::type TDS;
typedef Triangulation<TriangulationTraits, TDS_> Self;
protected:
typedef typename TriangulationTraits::Flat_orientation_d Flat_orientation_d;
typedef typename TriangulationTraits::Construct_flat_orientation_d Construct_flat_orientation_d;
typedef typename TriangulationTraits::In_flat_orientation_d In_flat_orientation_d;
// Wrapper
struct Coaffine_orientation_d
{
boost::optional<Flat_orientation_d>* fop;
Construct_flat_orientation_d cfo;
In_flat_orientation_d ifo;
Coaffine_orientation_d(
boost::optional<Flat_orientation_d>& x,
Construct_flat_orientation_d const&y,
In_flat_orientation_d const&z)
: fop(&x), cfo(y), ifo(z) {}
template<class Iter>
CGAL::Orientation operator()(Iter a, Iter b) const
{
if (*fop)
return ifo(fop->get(),a,b);
*fop = cfo(a,b);
CGAL_assertion(ifo(fop->get(),a,b) == CGAL::POSITIVE);
return CGAL::POSITIVE;
}
};
void reset_flat_orientation()
{
if (current_dimension() == preset_flat_orientation_.first)
{
CGAL_assertion(preset_flat_orientation_.second != NULL);
flat_orientation_ = *preset_flat_orientation_.second;
}
else
flat_orientation_ = boost::none;
}
typedef typename TriangulationTraits::Orientation_d
Orientation_d;
public:
typedef TriangulationTraits Geom_traits;
typedef TDS Triangulation_ds;
typedef typename TDS::Vertex Vertex;
typedef typename TDS::Full_cell Full_cell;
typedef typename TDS::Facet Facet;
typedef typename TDS::Face Face;
typedef Maximal_dimension_ Maximal_dimension;
typedef typename Geom_traits::Point_d Point;
typedef typename TDS::Vertex_handle Vertex_handle;
typedef typename TDS::Vertex_iterator Vertex_iterator;
typedef typename TDS::Vertex_const_handle Vertex_const_handle;
typedef typename TDS::Vertex_const_iterator Vertex_const_iterator;
typedef typename TDS::Full_cell_handle Full_cell_handle;
typedef typename TDS::Full_cell_iterator Full_cell_iterator;
typedef typename TDS::Full_cell_const_handle Full_cell_const_handle;
typedef typename TDS::Full_cell_const_iterator Full_cell_const_iterator;
typedef typename TDS::Facet_iterator Facet_iterator;
typedef typename TDS::size_type size_type;
typedef typename TDS::difference_type difference_type;
/// The type of location a new point is found lying on
enum Locate_type
{
ON_VERTEX = 0 // simplex of dimension 0
, IN_FACE = 1 // simplex of dimension in [ 1, |current_dimension()| - 2 ]
, IN_FACET = 2 // simplex of dimension |current_dimension()| - 1
, IN_FULL_CELL = 3 /// simplex of dimension |current_dimension()|
, OUTSIDE_CONVEX_HULL = 4
, OUTSIDE_AFFINE_HULL = 5
};
// Finite elements iterators
class Finiteness_predicate;
typedef boost::filter_iterator<Finiteness_predicate, Vertex_iterator>
Finite_vertex_iterator;
typedef boost::filter_iterator<Finiteness_predicate, Vertex_const_iterator>
Finite_vertex_const_iterator;
typedef boost::filter_iterator<Finiteness_predicate, Full_cell_iterator>
Finite_full_cell_iterator;
typedef boost::filter_iterator<Finiteness_predicate, Full_cell_const_iterator>
Finite_full_cell_const_iterator;
typedef boost::filter_iterator<Finiteness_predicate, Facet_iterator>
Finite_facet_iterator;
protected: // DATA MEMBERS
Triangulation_ds tds_;
const Geom_traits kernel_;
Vertex_handle infinity_;
mutable std::vector<Oriented_side> orientations_;
mutable boost::optional<Flat_orientation_d> flat_orientation_;
// The user can specify a Flat_orientation_d object to be used for
// orienting simplices of a specific dimension
// (= preset_flat_orientation_.first)
// preset_flat_orientation_.first = numeric_limits<int>::max() otherwise)
std::pair<int, const Flat_orientation_d *> preset_flat_orientation_;
// for stochastic walk in the locate() function:
mutable Random rng_;
#ifdef CGAL_TRIANGULATION_STATISTICS
mutable unsigned long walk_size_;
#endif
protected: // HELPER FUNCTIONS
typedef CGAL::Iterator_project<
typename Full_cell::Vertex_handle_const_iterator,
internal::Triangulation::Point_from_vertex_handle<Vertex_handle, Point>
> Point_const_iterator;
Point_const_iterator points_begin(Full_cell_const_handle c) const
{ return Point_const_iterator(c->vertices_begin()); }
Point_const_iterator points_end(Full_cell_const_handle c) const
{ return Point_const_iterator(c->vertices_end()); }
Point_const_iterator points_begin(Full_cell_handle c) const
{ return Point_const_iterator(c->vertices_begin()); }
Point_const_iterator points_end(Full_cell_handle c) const
{ return Point_const_iterator(c->vertices_end()); }
public:
// FACETS OPERATIONS
Full_cell_handle full_cell(const Facet & f) const
{
return tds().full_cell(f);
}
int index_of_covertex(const Facet & f) const
{
return tds().index_of_covertex(f);
}
// - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS
Triangulation(int dim, const Geom_traits k = Geom_traits())
: tds_(dim)
, kernel_(k)
, infinity_()
, preset_flat_orientation_((std::numeric_limits<int>::max)(),
(Flat_orientation_d*) NULL)
, rng_((long)0)
#ifdef CGAL_TRIANGULATION_STATISTICS
,walk_size_(0)
#endif
{
clear();
}
// With this constructor,
// the user can specify a Flat_orientation_d object to be used for
// orienting simplices of a specific dimension
// (= preset_flat_orientation_.first)
// It it used for by dark triangulations created by DT::remove
Triangulation(
int dim,
const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation,
const Geom_traits k = Geom_traits())
: tds_(dim)
, kernel_(k)
, infinity_()
, preset_flat_orientation_(preset_flat_orientation)
, rng_((long)0)
#ifdef CGAL_TRIANGULATION_STATISTICS
,walk_size_(0)
#endif
{
clear();
}
Triangulation(const Triangulation & t2)
: tds_(t2.tds_)
, kernel_(t2.kernel_)
, infinity_()
, preset_flat_orientation_((std::numeric_limits<int>::max)(),
(Flat_orientation_d*) NULL)
, rng_(t2.rng_)
#ifdef CGAL_TRIANGULATION_STATISTICS
,walk_size_(t2.walk_size_)
#endif
{
// We find the vertex at infinity by scanning the vertices of both
// triangulations. This works because Compact_container garantees that
// the vertices in the copy (*this) are stored in the same order as in
// the original triangulation (t2)
infinity_ = vertices_begin();
Vertex_const_iterator inf2 = t2.vertices_begin();
while( inf2 != t2.infinite_vertex() )
{
++infinity_;
++inf2;
}
// A full_cell has at most 1 + maximal_dimension() facets:
orientations_.resize(1 + maximal_dimension());
// Our coaffine orientation predicates HAS state member variables
reset_flat_orientation();
}
~Triangulation() {}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS FUNCTIONS
/* These three function are no longer needed since we do not use them anymore
in the Delaunay_triangulation::remove. *But*, they may reappear in the future
if we manage to passe the information that flags/TDS_data is available or not
for marking simplices in Delaunay_triangulation::remove. This would be useful
to make it a little faster, instead of binary searching if a simplex is marked
or not...
// NOT DOCUMENTED --
bool get_visited(Full_cell_handle s) const
{
return tds().get_visited(s);
}
// NOT DOCUMENTED --
bool get_visited(Full_cell_const_handle s) const
{
return tds().get_visited(s);
}
// NOT DOCUMENTED --
void set_visited(Full_cell_handle s, bool b) const
{
tds().set_visited(s, b);
} */
Coaffine_orientation_d coaffine_orientation_predicate() const
{
return Coaffine_orientation_d (
flat_orientation_,
geom_traits().construct_flat_orientation_d_object(),
geom_traits().in_flat_orientation_d_object()
);
}
const Triangulation_ds & tds() const
{
return tds_;
}
Triangulation_ds & tds()
{
return tds_;
}
const Geom_traits & geom_traits() const
{
return kernel_;
}
int maximal_dimension() const { return tds().maximal_dimension(); }
int current_dimension() const { return tds().current_dimension(); }
bool empty() const
{
return current_dimension() == -1;
}
size_type number_of_vertices() const
{
return tds().number_of_vertices() - 1;
}
size_type number_of_full_cells() const
{
return tds().number_of_full_cells();
}
Vertex_handle infinite_vertex() const
{
return infinity_;
}
Full_cell_handle infinite_full_cell() const
{
CGAL_assertion(infinite_vertex()->full_cell()->has_vertex(infinite_vertex()));
return infinite_vertex()->full_cell();
}
// - - - - - - - - - - - - - - - - - - - - - - - - - NON CONSTANT-TIME ACCESS FUNCTIONS
size_type number_of_finite_full_cells() const
{
Full_cell_const_iterator s = full_cells_begin();
size_type result = number_of_full_cells();
for( ; s != full_cells_end(); ++s )
{
if( is_infinite(s) )
--result;
}
return result;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - TRAVERSAL
Vertex_iterator vertices_begin() { return tds().vertices_begin(); }
Vertex_iterator vertices_end() { return tds().vertices_end(); }
Vertex_const_iterator vertices_begin() const { return tds().vertices_begin(); }
Vertex_const_iterator vertices_end() const { return tds().vertices_end(); }
Finite_vertex_iterator finite_vertices_begin()
{ return Finite_vertex_iterator(Finiteness_predicate(*this), vertices_begin(), vertices_end()); }
Finite_vertex_iterator finite_vertices_end()
{ return Finite_vertex_iterator(Finiteness_predicate(*this), vertices_end(), vertices_end()); }
Finite_vertex_const_iterator finite_vertices_begin() const
{ return Finite_vertex_const_iterator(Finiteness_predicate(*this), vertices_begin(), vertices_end()); }
Finite_vertex_const_iterator finite_vertices_end() const
{ return Finite_vertex_const_iterator(Finiteness_predicate(*this), vertices_end(), vertices_end()); }
Full_cell_iterator full_cells_begin() { return tds().full_cells_begin(); }
Full_cell_iterator full_cells_end() { return tds().full_cells_end(); }
Full_cell_const_iterator full_cells_begin() const { return tds().full_cells_begin(); }
Full_cell_const_iterator full_cells_end() const { return tds().full_cells_end(); }
Finite_full_cell_iterator finite_full_cells_begin()
{ return Finite_full_cell_iterator(Finiteness_predicate(*this), full_cells_begin(), full_cells_end()); }
Finite_full_cell_iterator finite_full_cells_end()
{ return Finite_full_cell_iterator(Finiteness_predicate(*this), full_cells_end(), full_cells_end()); }
Finite_full_cell_const_iterator finite_full_cells_begin() const
{ return Finite_full_cell_const_iterator(Finiteness_predicate(*this), full_cells_begin(), full_cells_end()); }
Finite_full_cell_const_iterator finite_full_cells_end() const
{ return Finite_full_cell_const_iterator(Finiteness_predicate(*this), full_cells_end(), full_cells_end()); }
Facet_iterator facets_begin() { return tds().facets_begin(); }
Facet_iterator facets_end() { return tds().facets_end(); }
Facet_iterator finite_facets_begin()
{ return Finite_facet_iterator(Finiteness_predicate(*this), facets_begin(), facets_end()); }
Facet_iterator finite_facets_end()
{ return Finite_facet_iterator(Finiteness_predicate(*this), facets_end(), facets_end()); }
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOME PREDICATE FUNCTORS
class Finiteness_predicate
{
const Self & t_;
public:
Finiteness_predicate(const Self & t) : t_(t) {}
template < class T >
bool operator()(const T & t) const
{
return ! t_.is_infinite(t);
}
};
class Point_equality_predicate
{
const Point & o_;
public:
Point_equality_predicate(const Point & o) : o_(o) {}
bool operator()(const Point & o) const { return (o == o_ );}
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SIMPLE QUERIES
/*
bool is_vertex(const Point & p, Vertex_handle & v, Full_cell_handle hint = Full_cell_handle()) const
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle s = locate(p, lt, f, ft, hint);
if( ON_VERTEX == lt )
{
v = s->vertex(f.index(0));
return true;
}
return false;
}
bool is_vertex(Vertex_const_handle v) const
{
return tds().is_vertex(v);
}
bool is_full_cell(Full_cell_const_handle s) const
{
return tds().is_full_cell(s);
}
*/
bool is_infinite(Vertex_const_handle v) const
{
CGAL_precondition(Vertex_const_handle() != v);
return (infinite_vertex() == v);
}
bool is_infinite(const Vertex & v) const /* internal use, not documented */
{
return (&(*infinite_vertex()) == &v);
}
bool is_infinite(Full_cell_const_handle s) const
{
CGAL_precondition(Full_cell_const_handle() != s);
return is_infinite(*s);
}
bool is_infinite(const Full_cell & s) const /* internal use, not documented */
{
for(int i = 0; i <= current_dimension(); ++i)
if( is_infinite(s.vertex(i)) )
return true;
return false;
}
bool is_infinite(const Facet & ft) const
{
Full_cell_const_handle s = full_cell(ft);
CGAL_precondition(s != Full_cell_handle());
if( is_infinite(s) )
return (s->vertex(index_of_covertex(ft)) != infinite_vertex());
return false;
}
bool is_infinite(const Face & f) const
{
Full_cell_const_handle s = f.full_cell();
CGAL_precondition(s != Full_cell_handle());
if( is_infinite(s) )
{
Vertex_handle v;
for( int i(0); i<= f.face_dimension(); ++i)
if ( is_infinite( f.vertex(i) )) return true;
}
return false;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ELEMENT GATHERING
template< typename OutputIterator >
OutputIterator incident_full_cells(const Face & f, OutputIterator out) const
{
return tds().incident_full_cells(f, out);
}
template< typename OutputIterator >
OutputIterator incident_full_cells(Vertex_const_handle v, OutputIterator out) const
{
return tds().incident_full_cells(v, out);
}
template< typename OutputIterator >
OutputIterator star(const Face & f, OutputIterator out) const
{
return tds().star(f, out);
}
template< typename OutputIterator >
OutputIterator incident_faces(Vertex_const_handle v, int d, OutputIterator out)
{
return tds().incident_faces(v, d, out);
}
/*
template< typename OutputIterator, class Comparator >
OutputIterator incident_upper_faces( Vertex_const_handle v, int d,
OutputIterator out, Comparator cmp = Comparator())
{
return tds().incident_upper_faces(v, d, out, cmp);
}
template< typename OutputIterator >
OutputIterator incident_upper_faces( Vertex_const_handle v, int d,
OutputIterator out)
{ // FIXME: uncomment this function, since it uses a comparator specific to
// *geometric* triangulation (taking infinite vertex into account)
internal::Triangulation::Compare_vertices_for_upper_face<Self> cmp(*this);
return tds().incident_upper_faces(v, d, out, cmp);
}
*/
Orientation orientation(Full_cell_const_handle s, bool in_is_valid = false) const
{
if( ! in_is_valid )
CGAL_assertion( ! is_infinite(s) );
if( 0 == current_dimension() )
return POSITIVE;
if( current_dimension() == maximal_dimension() )
{
Orientation_d ori = geom_traits().orientation_d_object();
return ori(points_begin(s), points_begin(s) + 1 + current_dimension());
}
else
{
return coaffine_orientation_predicate()(points_begin(s), points_begin(s) + 1 + current_dimension());
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UPDATE OPERATIONS
void clear()
{
tds_.clear();
infinity_ = tds().insert_increase_dimension();
// A full_cell has at most 1 + maximal_dimension() facets:
orientations_.resize(1 + maximal_dimension());
// Our coaffine orientation predicates HAS state member variables
reset_flat_orientation();
#ifdef CGAL_TRIANGULATION_STATISTICS
walk_size_ = 0;
#endif
}
void set_current_dimension(int d)
{
tds().set_current_dimension(d);
}
Full_cell_handle new_full_cell()
{
return tds().new_full_cell();
}
Vertex_handle new_vertex(const Point & p)
{
return tds().new_vertex(p);
}
void set_neighbors(Full_cell_handle s, int i, Full_cell_handle s1, int j)
{
tds().set_neighbors(s, i, s1, j);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
bool is_valid(bool = false, int = 0) const;
bool are_incident_full_cells_valid(Vertex_const_handle, bool = false, int = 0) const;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - POINT LOCATION
protected:
template< typename OrientationPredicate >
Full_cell_handle do_locate( const Point &, Locate_type &, Face &, Facet &,
Full_cell_handle start,
const OrientationPredicate & o) const;
public:
Full_cell_handle locate( const Point &, Locate_type &, Face &, Facet &,
Full_cell_handle start = Full_cell_handle()) const;
Full_cell_handle locate( const Point &, Locate_type &, Face &, Facet &,
Vertex_handle) const;
Full_cell_handle locate(const Point & p, Full_cell_handle s = Full_cell_handle()) const;
Full_cell_handle locate(const Point & p, Vertex_handle v) const;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
Vertex_handle contract_face(const Point &, const Face &);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - POINT INSERTION
template< typename ForwardIterator >
size_type insert(ForwardIterator start, ForwardIterator end)
{
size_type n = number_of_vertices();
std::vector<Point> points(start, end);
spatial_sort(points.begin(), points.end(), geom_traits());
Full_cell_handle hint = Full_cell_handle();
typename std::vector<Point>::const_iterator s = points.begin();
while( s != points.end() )
{
hint = insert(*s++, hint)->full_cell();
}
return number_of_vertices() - n;
}
Vertex_handle insert(const Point &, const Locate_type, const Face &, const Facet &, const Full_cell_handle);
Vertex_handle insert(const Point &, Full_cell_handle start = Full_cell_handle());
Vertex_handle insert(const Point &, Vertex_handle);
template< typename ForwardIterator >
Vertex_handle insert_in_hole(const Point & p, ForwardIterator start, ForwardIterator end, const Facet & ft)
{
Emptyset_iterator out;
return insert_in_hole(p, start, end, ft, out);
}
template< typename ForwardIterator, typename OutputIterator >
Vertex_handle insert_in_hole(const Point & p, ForwardIterator start, ForwardIterator end, const Facet & ft,
OutputIterator out)
{
Vertex_handle v = tds().insert_in_hole(start, end, ft, out);
v->set_point(p);
return v;
}
Vertex_handle insert_in_face(const Point &, const Face &);
Vertex_handle insert_in_facet(const Point &, const Facet &);
Vertex_handle insert_in_full_cell(const Point &, Full_cell_handle);
Vertex_handle insert_outside_convex_hull_1(const Point &, Full_cell_handle);
Vertex_handle insert_outside_convex_hull(const Point &, Full_cell_handle);
Vertex_handle insert_outside_affine_hull(const Point &);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - FACET-TRAVERSAL PREDICATES
template< typename OrientationPredicate >
class Outside_convex_hull_traversal_predicate
{
Triangulation & t_;
const Point & p_;
OrientationPredicate const& ori_;
int cur_dim_;
public:
Outside_convex_hull_traversal_predicate(Triangulation & t, const Point & p,
OrientationPredicate const& ori)
: t_(t), p_(p), ori_(ori), cur_dim_(t.current_dimension()) {}
// FUTURE change parameter to const reference
bool operator()(Facet f) const
{
Full_cell_handle s = t_.full_cell(f);
const int i = t_.index_of_covertex(f);
Full_cell_handle n = s->neighbor(i);
if( ! t_.is_infinite(n) )
return false;
int inf_v_index = n->index(t_.infinite_vertex());
n->vertex(inf_v_index)->set_point(p_);
bool ok = (POSITIVE == ori_(t_.points_begin(n), t_.points_begin(n) + cur_dim_ + 1));
return ok;
}
};
// make sure all full_cells have positive orientation
void reorient_full_cells();
}; // Triangulation<...>
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// CLASS MEMBER FUNCTIONS
template < class TT, class TDS >
void
Triangulation<TT, TDS>
::reorient_full_cells()
{
if( current_dimension() < 1 )
return;
Full_cell_iterator sit = full_cells_begin();
Full_cell_iterator send = full_cells_end();
while( sit != send )
{
if( is_infinite(sit) && (1 == current_dimension()) )
{
++sit;
continue;
}
sit->swap_vertices(current_dimension() - 1, current_dimension());
++sit;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE REMOVAL METHODS
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::contract_face(const Point & p, const Face & f)
{
CGAL_precondition( ! is_infinite(f) );
Vertex_handle v = tds().contract_face(f);
v->set_point(p);
CGAL_expensive_postcondition_msg(are_incident_full_cells_valid(v), "new point is not where it should be");
return v;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE INSERTION METHODS
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert(const Point & p, const Locate_type lt, const Face & f, const Facet & ft, const Full_cell_handle s)
{
switch( lt )
{
case IN_FULL_CELL:
return insert_in_full_cell(p, s);
break;
case OUTSIDE_CONVEX_HULL:
return insert_outside_convex_hull(p, s);
break;
case OUTSIDE_AFFINE_HULL:
return insert_outside_affine_hull(p);
break;
case IN_FACET:
{
return insert_in_facet(p, ft);
break;
}
case IN_FACE:
return insert_in_face(p, f);
break;
case ON_VERTEX:
s->vertex(f.index(0))->set_point(p);
return s->vertex(f.index(0));
break;
}
CGAL_assertion(false);
return Vertex_handle();
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert(const Point & p, Full_cell_handle start)
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle s = locate(p, lt, f, ft, start);
return insert(p, lt, f, ft, s);
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert(const Point & p, Vertex_handle v)
{
if( Vertex_handle() == v )
v = infinite_vertex();
return insert(p, v->full_cell());
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_in_face(const Point & p, const Face & f)
{
CGAL_precondition( ! is_infinite(f) );
Vertex_handle v = tds().insert_in_face(f);
v->set_point(p);
return v;
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_in_facet(const Point & p, const Facet & ft)
{
CGAL_precondition( ! is_infinite(ft) );
Vertex_handle v = tds().insert_in_facet(ft);
v->set_point(p);
return v;
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_in_full_cell(const Point & p, Full_cell_handle s)
{
CGAL_precondition( ! is_infinite(s) );
Vertex_handle v = tds().insert_in_full_cell(s);
v->set_point(p);
return v;
}
// NOT DOCUMENTED...
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_outside_convex_hull_1(const Point & p, Full_cell_handle s)
{
// This is a special case for dimension 1, because in that case, the right
// infinite full_cell is not correctly oriented... (sice its first vertex is the
// infinite one...
CGAL_precondition( is_infinite(s) );
CGAL_precondition( 1 == current_dimension() );
int inf_v_index = s->index(infinite_vertex());
bool swap = (0 == s->neighbor(inf_v_index)->index(s));
Vertex_handle v = tds().insert_in_full_cell(s);
v->set_point(p);
if( swap )
{
s->swap_vertices(0, 1);
}
return v;
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_outside_convex_hull(const Point & p, Full_cell_handle s)
{
if( 1 == current_dimension() )
{
return insert_outside_convex_hull_1(p, s);
}
CGAL_precondition( is_infinite(s) );
CGAL_assertion( current_dimension() >= 2 );
std::vector<Full_cell_handle> simps;
simps.reserve(64);
std::back_insert_iterator<std::vector<Full_cell_handle> > out(simps);
if( current_dimension() < maximal_dimension() )
{
Outside_convex_hull_traversal_predicate<Coaffine_orientation_d>
ochtp(*this, p, coaffine_orientation_predicate());
tds().gather_full_cells(s, ochtp, out);
}
else
{
Orientation_d ori = geom_traits().orientation_d_object();
Outside_convex_hull_traversal_predicate<Orientation_d>
ochtp(*this, p, ori);
tds().gather_full_cells(s, ochtp, out);
}
int inf_v_index = s->index(infinite_vertex());
Vertex_handle v = insert_in_hole(
p, simps.begin(), simps.end(), Facet(s, inf_v_index));
return v;
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Vertex_handle
Triangulation<TT, TDS>
::insert_outside_affine_hull(const Point & p)
{
CGAL_precondition( current_dimension() < maximal_dimension() );
Vertex_handle v = tds().insert_increase_dimension(infinite_vertex());
// reset the orientation predicate:
reset_flat_orientation();
v->set_point(p);
if( current_dimension() >= 1 )
{
Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
int inf_v_index = inf_v_cell->index(infinite_vertex());
Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
Orientation o = orientation(s);
CGAL_assertion( COPLANAR != o );
if( NEGATIVE == o )
reorient_full_cells();
}
return v;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - THE MAIN LOCATE(...) FUNCTION
template < class TT, class TDS >
template< typename OrientationPredicate >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::do_locate( const Point & p, // query point
Locate_type & loc_type,// type of result (full_cell, face, vertex)
Face & face,// the face containing the query in its interior (when appropriate)
Facet & facet,// the facet containing the query in its interior (when appropriate)
const Full_cell_handle start// starting full_cell for the walk
, OrientationPredicate const& orientation_pred
) const
{
const int cur_dim = current_dimension();
if( cur_dim == -1 )
{
loc_type = OUTSIDE_AFFINE_HULL;
return Full_cell_handle();
}
else if( cur_dim == 0 )
{
Vertex_handle vit = infinite_full_cell()->neighbor(0)->vertex(0);
if( EQUAL != geom_traits().compare_lexicographically_d_object()(p, vit->point()) )
{
loc_type = OUTSIDE_AFFINE_HULL;
return Full_cell_handle();
}
else
{
loc_type = ON_VERTEX;
face.set_full_cell(vit->full_cell());
face.set_index(0, 0);
return vit->full_cell();
}
}
Full_cell_handle s;
// if we don't know where to start, we start from any bounded full_cell
if( Full_cell_handle() == start )
{
// THE HACK THAT NOBODY SHOULD DO... BUT DIFFICULT TO WORK AROUND
// THIS... TODO: WORK AROUND IT
Full_cell_handle inf_c = const_cast<Self*>(this)->infinite_full_cell();
int inf_v_index = inf_c->index(infinite_vertex());
s = inf_c->neighbor(inf_v_index);
}
else
{
s = start;
if( is_infinite(s) )
{
int inf_v_index = s->index(infinite_vertex());
s = s->neighbor(inf_v_index);
}
}
// Check if query |p| is outside the affine hull
if( cur_dim < maximal_dimension() )
{
if( ! geom_traits().contained_in_affine_hull_d_object()(
points_begin(s),
points_begin(s) + current_dimension() + 1,
p) )
{
loc_type = OUTSIDE_AFFINE_HULL;
return Full_cell_handle();
}
}
// we remember the |previous|ly visited full_cell to avoid the evaluation
// of one |orientation| predicate
Full_cell_handle previous = Full_cell_handle();
bool full_cell_not_found = true;
while(full_cell_not_found) // we walk until we locate the query point |p|
{
#ifdef CGAL_TRIANGULATION_STATISTICS
++walk_size_;
#endif
// For the remembering stochastic walk, we need to start trying
// with a random index:
int j, i = rng_.get_int(0, cur_dim);
// we check |p| against all the full_cell's hyperplanes in turn
for(j = 0; j <= cur_dim; ++j, i = (i + 1) % (cur_dim + 1) )
{
Full_cell_handle next = s->neighbor(i);
if( previous == next )
{ // no need to compute the orientation, we already know it
orientations_[i] = POSITIVE;
continue; // go to next full_cell's facet
}
Substitute_point_in_vertex_iterator<
typename Full_cell::Vertex_handle_const_iterator>
spivi(s->vertex(i), &p);
orientations_[i] = orientation_pred(
boost::make_transform_iterator(s->vertices_begin(), spivi),
boost::make_transform_iterator(s->vertices_begin() + cur_dim + 1,
spivi));
if( orientations_[i] != NEGATIVE )
{
// from this facet's point of view, we are inside the
// full_cell or on its boundary, so we continue to next facet
continue;
}
// At this point, we know that we have to jump to the |next|
// full_cell because orientation_[i] == NEGATIVE
previous = s;
s = next;
if( is_infinite(next) )
{ // we have arrived OUTSIDE the convex hull of the triangulation,
// so we stop the search
full_cell_not_found = false;
loc_type = OUTSIDE_CONVEX_HULL;
face.set_full_cell(s);
}
break;
} // end of the 'for' loop
if( ( cur_dim + 1 ) == j ) // we found the full_cell containing |p|
full_cell_not_found = false;
}
// Here, we know in which full_cell |p| is in.
// We now check more precisely where |p| landed:
// vertex, facet, face or full_cell.
if( ! is_infinite(s) )
{
face.set_full_cell(s);
int num(0);
int verts(0);
for(int i = 0; i < cur_dim; ++i)
{
if( orientations_[i] == COPLANAR )
{
++num;
facet = Facet(s, i);
}
else
face.set_index(verts++, i);
}
//-- We could put the if{}else{} below in the loop above, but then we would
// need to test if (verts < cur_dim) many times... we do it only once
// here:
if( orientations_[cur_dim] == COPLANAR )
{
++num;
facet = Facet(s, cur_dim);
}
else if( verts < cur_dim )
face.set_index(verts, cur_dim);
//-- end of remark above //
if( 0 == num )
{
loc_type = IN_FULL_CELL;
face.clear();
}
else if( cur_dim == num )
loc_type = ON_VERTEX;
else if( 1 == num )
loc_type = IN_FACET;
else
loc_type = IN_FACE;
}
return s;
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate( const Point & p, // query point
Locate_type & loc_type,// type of result (full_cell, face, vertex)
Face & face,// the face containing the query in its interior (when appropriate)
Facet & facet,// the facet containing the query in its interior (when appropriate)
Full_cell_handle start// starting full_cell for the walk
) const
{
if( current_dimension() == maximal_dimension() )
{
Orientation_d ori = geom_traits().orientation_d_object();
return do_locate(p, loc_type, face, facet, start, ori);
}
else
return do_locate(p, loc_type, face, facet, start, coaffine_orientation_predicate());
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - the locate(...) variants
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate( const Point & p,
Locate_type & loc_type,
Face & face,
Facet & facet,
Vertex_handle start) const
{
if( Vertex_handle() == start )
start = infinite_vertex();
return locate(p, loc_type, face, facet, start->full_cell());
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate(const Point & p, Full_cell_handle s) const
{
Locate_type lt;
Face face(maximal_dimension());
Facet facet;
return locate(p, lt, face, facet, s);
}
template < class TT, class TDS >
typename Triangulation<TT, TDS>::Full_cell_handle
Triangulation<TT, TDS>
::locate(const Point & p, Vertex_handle v) const
{
if( Vertex_handle() != v )
v = infinite_vertex();
return this->locate(p, v->full_cell());
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
template < class TT, class TDS >
bool
Triangulation<TT, TDS>
::is_valid(bool verbose, int level) const
{
if( ! tds().is_valid(verbose, level) )
return false;
Full_cell_const_iterator c;
if( current_dimension() < 0 )
return true;
Orientation o;
for( c = full_cells_begin(); c != full_cells_end(); ++c )
{
if( is_infinite(c) )
{
if( current_dimension() > 1 )
{
int i = c->index( infinite_vertex() );
Full_cell_handle n = c->neighbor(i);
infinite_vertex()->set_point(n->vertex(c->mirror_index(i))->point());
o = - orientation(c, true);
}
else
o = POSITIVE;
}
else
o = orientation(c, true);
if( NEGATIVE == o )
{
if( verbose ) CGAL_warning_msg(false, "full_cell is not correctly oriented");
return false;
}
if( COPLANAR == o )
{
if( verbose ) CGAL_warning_msg(false, "full_cell is flat");
return false;
}
}
return true;
}
template < class TT, class TDS >
bool Triangulation<TT, TDS>::are_incident_full_cells_valid(Vertex_const_handle v, bool verbose, int) const
{
if( current_dimension() <= 0 )
return true;
typedef std::vector<Full_cell_const_handle> Simps;
Simps simps;
simps.reserve(64);
std::back_insert_iterator<Simps> out(simps);
incident_full_cells(v, out);
typename Simps::const_iterator sit = simps.begin();
for( ; sit != simps.end(); ++sit )
{
if( is_infinite(*sit) )
continue;
Orientation o = orientation(*sit);
if( NEGATIVE == o )
{
if( verbose ) CGAL_warning_msg(false, "full_cell is not correctly oriented");
return false;
}
if( COPLANAR == o )
{
if( verbose ) CGAL_warning_msg(false, "full_cell is flat");
return false;
}
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// FUNCTIONS THAT ARE NOT MEMBER FUNCTIONS:
template < class TT, class TDS >
std::istream &
operator>>(std::istream & is, Triangulation<TT, TDS> & tr)
// reads :
// - the dimensions (maximal and current)
// - the number of finite vertices
// - the non combinatorial information on vertices (point, etc)
// - the number of full_cells
// - the full_cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each full_cell
// - the neighbors of each full_cell by their index in the preceding list
{
typedef Triangulation<TT, TDS> T;
typedef typename T::Vertex_handle Vertex_handle;
// read current dimension and number of vertices
size_t n;
int cd;
if( is_ascii(is) )
is >> cd >> n;
else
{
read(is, cd);
read(is, n, io_Read_write());
}
CGAL_assertion_msg( cd <= tr.maximal_dimension(), "input Triangulation has too high dimension");
tr.clear();
tr.set_current_dimension(cd);
if( n == 0 )
return is;
std::vector<Vertex_handle> vertices;
vertices.resize(n+1);
vertices[0] = tr.infinite_vertex();
is >> (*vertices[0]);
// read the vertices:
size_t i(1);
while( i <= n )
{
vertices[i] = tr.new_vertex();
is >> (*vertices[i]); // read a vertex
++i;
}
// now, read the combinatorial information
return tr.tds().read_full_cells(is, vertices);
}
template < class TT, class TDS >
std::ostream &
operator<<(std::ostream & os, const Triangulation<TT, TDS> & tr)
// writes :
// - the dimensions (maximal and current)
// - the number of finite vertices
// - the non combinatorial information on vertices (point, etc)
// - the number of full_cells
// - the full_cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each full_cell
// - the neighbors of each full_cell by their index in the preceding list
{
typedef Triangulation<TT, TDS> T;
typedef typename T::Vertex_const_handle Vertex_handle;
typedef typename T::Vertex_const_iterator Vertex_iterator;
// outputs dimensions and number of vertices
size_t n = tr.number_of_vertices();
if( is_ascii(os) )
os << tr.current_dimension() << std::endl << n << std::endl;
else
{
write(os, tr.current_dimension());
write(os, n, io_Read_write());
}
if( n == 0 )
return os;
size_t i(0);
// write the vertices
std::map<Vertex_handle, int> index_of_vertex;
// infinite vertex has index 0 (among all the vertices)
index_of_vertex[tr.infinite_vertex()] = i++;
os << *tr.infinite_vertex();
for( Vertex_iterator it = tr.vertices_begin(); it != tr.vertices_end(); ++it )
{
if( tr.is_infinite(it) )
continue;
os << *it; // write the vertex
index_of_vertex[it] = i++;
}
CGAL_assertion( i == n+1 );
// output the combinatorial information
return tr.tds().write_full_cells(os, index_of_vertex);
}
} //namespace CGAL
#endif // CGAL_TRIANGULATION_H
|