/usr/include/CGAL/Triangulation_data_structure.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 | // Copyright (c) 2009-2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Samuel Hornus
#ifndef CGAL_TRIANGULATION_DATA_STRUCTURE_H
#define CGAL_TRIANGULATION_DATA_STRUCTURE_H
#include <CGAL/basic.h>
#include <CGAL/Default.h>
#include <CGAL/iterator.h>
#include <CGAL/Compact_container.h>
#include <CGAL/Triangulation_face.h>
#include <CGAL/Triangulation_ds_vertex.h>
#include <CGAL/Triangulation_ds_full_cell.h>
#include <CGAL/internal/Combination_enumerator.h>
#include <CGAL/internal/Triangulation/utilities.h>
#include <CGAL/internal/Triangulation/Triangulation_ds_iterators.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
namespace CGAL {
template< class Dimen,
class Vb = Default,
class Fcb = Default >
class Triangulation_data_structure
{
typedef Triangulation_data_structure<Dimen, Vb, Fcb> Self;
typedef typename Default::Get<Vb, Triangulation_ds_vertex<> >::type V_base;
typedef typename Default::Get<Fcb, Triangulation_ds_full_cell<> >::type FC_base;
public:
typedef typename V_base::template Rebind_TDS<Self>::Other Vertex; /* Concept */
typedef typename FC_base::template Rebind_TDS<Self>::Other Full_cell; /* Concept */
// Tools to change the Vertex and Cell types of the TDS.
template < typename Vb2 >
struct Rebind_vertex {
typedef Triangulation_data_structure<Dimen, Vb2, Fcb> Other;
};
template < typename Fcb2 >
struct Rebind_full_cell {
typedef Triangulation_data_structure<Dimen, Vb, Fcb2> Other;
};
// we want to store an object of this class in every Full_cell:
class Full_cell_data
{
unsigned char bits_;
public:
Full_cell_data() : bits_(0) {}
Full_cell_data(const Full_cell_data & fcd) : bits_(fcd.bits_) {}
void clear() { bits_ = 0; }
void mark_visited() { bits_ = 1; }
void clear_visited() { bits_ = 0; }
bool is_clear() const { return bits_ == 0; }
bool is_visited() const { return bits_ == 1; }
// WARNING: if we use more bits and several bits can be set at once,
// then make sure to use bitwise operation above, instead of direct
// affectation.
};
protected:
typedef Compact_container<Vertex> Vertex_container;
typedef Compact_container<Full_cell> Full_cell_container;
public:
typedef Dimen Maximal_dimension;
typedef typename Vertex_container::size_type size_type; /* Concept */
typedef typename Vertex_container::difference_type difference_type; /* Concept */
typedef typename Vertex_container::iterator Vertex_handle; /* Concept */
typedef typename Vertex_container::iterator Vertex_iterator; /* Concept */
typedef typename Vertex_container::const_iterator Vertex_const_handle;
typedef typename Vertex_container::const_iterator Vertex_const_iterator;
typedef typename Full_cell_container::iterator Full_cell_handle; /* Concept */
typedef typename Full_cell_container::iterator Full_cell_iterator; /* Concept */
typedef typename Full_cell_container::const_iterator Full_cell_const_handle;
typedef typename Full_cell_container::const_iterator Full_cell_const_iterator;
typedef internal::Triangulation::
Triangulation_ds_facet_iterator<Self> Facet_iterator; /* Concept */
/* The 2 types defined below, |Facet| and |Rotor| are used when traversing
the boundary `B' of the union of a set of full cells. |Rotor| makes it
easy to rotate around itself, in the search of neighbors in `B' (see
|rotate_rotor| and |insert_in_tagged_hole|) */
// A co-dimension 1 sub-simplex.
class Facet /* Concept */
{
Full_cell_handle full_cell_;
int index_of_covertex_;
public:
Facet() : full_cell_(), index_of_covertex_(0) {}
Facet(Full_cell_handle f, int i) : full_cell_(f), index_of_covertex_(i) {}
Full_cell_handle full_cell() const { return full_cell_; }
int index_of_covertex() const { return index_of_covertex_; }
};
// A co-dimension 2 sub-simplex. called a Rotor because we can rotate
// the two "covertices" around the sub-simplex. Useful for traversing the
// boundary of a hole. NOT DOCUMENTED
class Rotor : public Facet
{
int index_of_second_covertex_;
public:
Rotor() : Facet(), index_of_second_covertex_(0) {}
Rotor(Full_cell_handle f, int first, int second) : Facet(f, first), index_of_second_covertex_(second) {}
int index_of_second_covertex() const { return index_of_second_covertex_; }
};
typedef Triangulation_face<Self> Face; /* Concept */
protected: // DATA MEMBERS
int dmax_, dcur_; // dimension of the current triangulation
Vertex_container vertices_; // list of all vertices
Full_cell_container full_cells_; // list of all full cells
private:
void clean_dynamic_memory()
{
vertices_.clear();
full_cells_.clear();
}
template < class Dim_tag >
struct get_maximal_dimension
{
static int value(const int D) { return D; }
};
// specialization
template < int D >
struct get_maximal_dimension<Dimension_tag<D> >
{
static int value(const int) { return D; }
};
public:
Triangulation_data_structure( int dim=0) /* Concept */
: dmax_(get_maximal_dimension<Dimen>::value(dim)), dcur_(-2),
vertices_(), full_cells_()
{
CGAL_assertion_msg(dmax_ > 0, "maximal dimension must be positive.");
}
~Triangulation_data_structure()
{
clean_dynamic_memory();
}
Triangulation_data_structure(const Triangulation_data_structure & tds)
: dmax_(tds.dmax_), dcur_(tds.dcur_),
vertices_(tds.vertices_), full_cells_(tds.full_cells_)
{
typedef std::map<Vertex_const_handle, Vertex_handle> V_map;
typedef std::map<Full_cell_const_handle, Full_cell_handle> C_map;
V_map vmap;
C_map cmap;
Vertex_const_iterator vfrom = tds.vertices_begin();
Vertex_iterator vto = vertices_begin();
Full_cell_const_iterator cfrom = tds.full_cells_begin();
Full_cell_iterator cto = full_cells_begin();
while( vfrom != tds.vertices_end() )
vmap[vfrom++] = vto++;
while( cfrom != tds.full_cells_end() )
cmap[cfrom++] = cto++;
cto = full_cells_begin();
while( cto != full_cells_end() )
{
for( int i = 0; i <= (std::max)(0, current_dimension()); ++i )
{
associate_vertex_with_full_cell(cto, i, vmap[cto->vertex(i)]);
cto->set_neighbor(i, cmap[cto->neighbor(i)]);
}
++cto;
}
}
// QUERIES
protected:
bool check_range(const int i) const
{
if( current_dimension() < 0 )
{
return (0 == i);
}
return ( (0 <= i) && (i <= current_dimension()) );
}
public:
/* returns the current dimension of the full cells in the triangulation. */
int maximal_dimension() const { return dmax_; } /* Concept */
int current_dimension() const { return dcur_; } /* Concept */
size_type number_of_vertices() const /* Concept */
{
return this->vertices_.size();
}
size_type number_of_full_cells() const /* Concept */
{
return this->full_cells_.size();
}
bool empty() const /* Concept */
{
return current_dimension() == -2;
}
Vertex_container & vertices() { return vertices_; }
const Vertex_container & vertices() const { return vertices_; }
Full_cell_container & full_cells() { return full_cells_; }
const Full_cell_container & full_cells() const { return full_cells_; }
Vertex_handle vertex(const Full_cell_handle s, const int i) const /* Concept */
{
CGAL_precondition(s != Full_cell_handle() && check_range(i));
return s->vertex(i);
}
Vertex_const_handle vertex(const Full_cell_const_handle s, const int i) const /* Concept */
{
CGAL_precondition(s != Full_cell_handle() && check_range(i));
return s->vertex(i);
}
bool is_vertex(const Vertex_const_handle & v) const /* Concept */
{
if( Vertex_const_handle() == v )
return false;
Vertex_const_iterator vit = vertices_begin();
while( vit != vertices_end() && ( v != vit ) )
++vit;
return v == vit;
}
bool is_full_cell(const Full_cell_const_handle & s) const /* Concept */
{
if( Full_cell_const_handle() == s )
return false;
Full_cell_const_iterator sit = full_cells_begin();
while( sit != full_cells_end() && ( s != sit ) )
++sit;
return s == sit;
}
Full_cell_handle full_cell(const Vertex_handle v) const /* Concept */
{
CGAL_precondition(v != Vertex_handle());
return v->full_cell();
}
Full_cell_const_handle full_cell(const Vertex_const_handle v) const /* Concept */
{
CGAL_precondition(Vertex_const_handle() != v);
return v->full_cell();
}
Full_cell_handle neighbor(const Full_cell_handle s, const int i) const /* Concept */
{
CGAL_precondition(Full_cell_handle() != s && check_range(i));
return s->neighbor(i);
}
Full_cell_const_handle neighbor(const Full_cell_const_handle s, const int i) const/* Concept */
{
CGAL_precondition(Full_cell_const_handle() != s && check_range(i));
return s->neighbor(i);
}
int mirror_index(const Full_cell_handle s, const int i) const /* Concept */
{
CGAL_precondition(Full_cell_handle() != s && check_range(i));
return s->mirror_index(i);
}
int mirror_index(const Full_cell_const_handle s, const int i) const
{
CGAL_precondition(Full_cell_const_handle() != s && check_range(i)); /* Concept */
return s->mirror_index(i);
}
int mirror_vertex(const Full_cell_handle s, const int i) const /* Concept */
{
CGAL_precondition(Full_cell_handle() != s && check_range(i));
return s->mirror_vertex(i);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - FACETS OPERATIONS
// works for Face_ = Facet and Face_ = Rotor.
// NOT DOCUMENTED for the Rotor case...
template< typename Face_ >
Full_cell_handle full_cell(const Face_ & f) const /* Concept */
{
return f.full_cell();
}
// works for Face_ = Facet and Face_ = Rotor.
// NOT DOCUMENTED for the Rotor case...
template< class Face_ >
int index_of_covertex(const Face_ & f) const /* Concept */
{
return f.index_of_covertex();
}
// NOT DOCUMENTED
// A Rotor has two covertices
int index_of_second_covertex(const Rotor & f) const
{
return f.index_of_second_covertex();
}
// works for Face_ = Facet and Face_ = Rotor.
// NOT DOCUMENTED...
template< class Face_ >
bool is_boundary_facet(const Face_ & f) const
{
if( get_visited(neighbor(full_cell(f), index_of_covertex(f))) )
return false;
if( ! get_visited(full_cell(f)) )
return false;
return true;
}
// NOT DOCUMENTED...
Rotor rotate_rotor(Rotor & f)
{
int opposite = mirror_index(full_cell(f), index_of_covertex(f));
Full_cell_handle s = neighbor(full_cell(f), index_of_covertex(f));
int new_second = s->index(vertex(full_cell(f), index_of_second_covertex(f)));
return Rotor(s, new_second, opposite);
}
// NICE UPDATE OPERATIONS
protected:
void do_insert_increase_dimension(const Vertex_handle, const Vertex_handle);
public:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
Vertex_handle collapse_face(const Face &); /* Concept */
void remove_decrease_dimension(Vertex_handle, Vertex_handle); /* Concept */
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS
Vertex_handle insert_in_full_cell(Full_cell_handle); /* Concept */
Vertex_handle insert_in_face(const Face &); /* Concept */
Vertex_handle insert_in_facet(const Facet &); /* Concept */
template< typename Forward_iterator >
Vertex_handle insert_in_hole(Forward_iterator, const Forward_iterator, Facet); /* Concept */
template< typename Forward_iterator, typename OutputIterator >
Vertex_handle insert_in_hole(Forward_iterator, const Forward_iterator, Facet, OutputIterator); /* Concept */
template< typename OutputIterator >
Full_cell_handle insert_in_tagged_hole(Vertex_handle, Facet, OutputIterator);
Vertex_handle insert_increase_dimension(Vertex_handle=Vertex_handle()); /* Concept */
private:
// Used by insert_in_tagged_hole
struct IITH_task
{
IITH_task(
Facet boundary_facet_,
int index_of_inside_cell_in_outside_cell_,
Full_cell_handle future_neighbor_ = Full_cell_handle(),
int new_cell_index_in_future_neighbor_ = -1,
int index_of_future_neighbor_in_new_cell_ = -1)
: boundary_facet(boundary_facet_),
index_of_inside_cell_in_outside_cell(index_of_inside_cell_in_outside_cell_),
future_neighbor(future_neighbor_),
new_cell_index_in_future_neighbor(new_cell_index_in_future_neighbor_),
index_of_future_neighbor_in_new_cell(index_of_future_neighbor_in_new_cell_)
{}
// "new_cell" is the cell about to be created
Facet boundary_facet;
int index_of_inside_cell_in_outside_cell;
Full_cell_handle future_neighbor;
int new_cell_index_in_future_neighbor;
int index_of_future_neighbor_in_new_cell;
};
// NOT DOCUMENTED
void clear_visited_marks(Full_cell_handle) const;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DANGEROUS UPDATE OPERATIONS
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DANGEROUS UPDATE OPERATIONS
private:
// NOT DOCUMENTED
template< typename FCH > // FCH = Full_cell_[const_]handle
bool get_visited(FCH c) const
{
return c->tds_data().is_visited();
}
// NOT DOCUMENTED
template< typename FCH > // FCH = Full_cell_[const_]handle
void set_visited(FCH c, bool m) const
{
if( m )
c->tds_data().mark_visited();
else
c->tds_data().clear_visited();
}
public:
void clear() /* Concept */
{
clean_dynamic_memory();
dcur_ = -2;
}
void set_current_dimension(const int d) /* Concept */
{
CGAL_precondition(-2<=d && d<=maximal_dimension());
dcur_ = d;
}
Full_cell_handle new_full_cell(const Full_cell_handle s)
{
return full_cells_.emplace(*s);
}
Full_cell_handle new_full_cell() /* Concept */
{
return full_cells_.emplace(dmax_);
}
void delete_full_cell(Full_cell_handle s) /* Concept */
{
CGAL_precondition(Full_cell_handle() != s);
// CGAL_expensive_precondition(is_full_cell(s));
full_cells_.erase(s);
}
template< typename Forward_iterator >
void delete_full_cells(Forward_iterator start, Forward_iterator end) /* Concept */
{
Forward_iterator s = start;
while( s != end )
full_cells_.erase(*s++);
}
template< class T >
Vertex_handle new_vertex( const T & t )
{
return vertices_.emplace(t);
}
Vertex_handle new_vertex() /* Concept */
{
return vertices_.emplace();
}
void delete_vertex(Vertex_handle v) /* Concept */
{
CGAL_precondition( Vertex_handle() != v );
vertices_.erase(v);
}
void associate_vertex_with_full_cell(Full_cell_handle s, const int i, Vertex_handle v) /* Concept */
{
CGAL_precondition(check_range(i));
CGAL_precondition(s != Full_cell_handle());
CGAL_precondition(v != Vertex_handle());
s->set_vertex(i, v);
v->set_full_cell(s);
}
void set_neighbors(Full_cell_handle s, int i, Full_cell_handle s1, int j) /* Concept */
{
CGAL_precondition(check_range(i));
CGAL_precondition(check_range(j));
CGAL_precondition(s != Full_cell_handle());
CGAL_precondition(s1 != Full_cell_handle());
s->set_neighbor(i, s1);
s1->set_neighbor(j, s);
s->set_mirror_index(i, j);
s1->set_mirror_index(j, i);
}
// SANITY CHECKS
bool is_valid(bool = true, int = 0) const; /* Concept */
// NOT DOCUMENTED
template< class OutStream> void write_graph(OutStream &);
Vertex_iterator vertices_begin() { return vertices_.begin(); } /* Concept */
Vertex_iterator vertices_end() { return vertices_.end(); } /* Concept */
Full_cell_iterator full_cells_begin() { return full_cells_.begin(); } /* Concept */
Full_cell_iterator full_cells_end() { return full_cells_.end(); } /* Concept */
Vertex_const_iterator vertices_begin() const { return vertices_.begin(); } /* Concept */
Vertex_const_iterator vertices_end() const { return vertices_.end(); } /* Concept */
Full_cell_const_iterator full_cells_begin() const { return full_cells_.begin(); } /* Concept */
Full_cell_const_iterator full_cells_end() const { return full_cells_.end(); } /* Concept */
Facet_iterator facets_begin() /* Concept */
{
if( current_dimension() <= 0 )
return facets_end();
return Facet_iterator(*this);
}
Facet_iterator facets_end() /* Concept */
{
return Facet_iterator(*this, 0);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - FULL CELL GATHERING
// a traversal predicate for gathering full_cells incident to a given face
// ``incident'' means that the given face is a subface of the full_cell
class Incident_full_cell_traversal_predicate
{
const Face & f_;
int dim_;
const Triangulation_data_structure & tds_;
public:
Incident_full_cell_traversal_predicate(const Triangulation_data_structure & tds,
const Face & f)
: f_(f), tds_(tds)
{
dim_ = f.face_dimension();
}
bool operator()(const Facet & facet) const
{
Vertex_handle v = tds_.full_cell(facet)->vertex(tds_.index_of_covertex(facet));
for( int i = 0; i <= dim_; ++i )
{
if( v == f_.vertex(i) )
return false;
}
return true;
}
};
// a traversal predicate for gathering full_cells having a given face as subface
class Star_traversal_predicate
{
const Face & f_;
int dim_;
const Triangulation_data_structure & tds_;
public:
Star_traversal_predicate(const Triangulation_data_structure & tds,
const Face & f)
: f_(f), tds_(tds)
{
dim_ = f.face_dimension();
}
bool operator()(const Facet & facet) const
{
Full_cell_handle s = tds_.full_cell(facet)->neighbor(tds_.index_of_covertex(facet));
for( int j = 0; j <= tds_.current_dimension(); ++j )
{
for( int i = 0; i <= dim_; ++i )
if( s->vertex(j) == f_.vertex(i) )
return true;
}
return false;
}
};
template< typename TraversalPredicate, typename OutputIterator >
Facet gather_full_cells(Full_cell_handle, TraversalPredicate &, OutputIterator &) const; /* Concept */
template< typename OutputIterator >
OutputIterator incident_full_cells(const Face &, OutputIterator) const; /* Concept */
template< typename OutputIterator >
OutputIterator incident_full_cells(Vertex_const_handle, OutputIterator) const; /* Concept */
template< typename OutputIterator >
OutputIterator star(const Face &, OutputIterator) const; /* Concept */
#ifndef CGAL_CFG_NO_CPP0X_DEFAULT_TEMPLATE_ARGUMENTS_FOR_FUNCTION_TEMPLATES
template< typename OutputIterator, typename Comparator = std::less<Vertex_const_handle> >
OutputIterator incident_upper_faces(Vertex_const_handle v, const int dim, OutputIterator out, Comparator cmp = Comparator())
{
return incident_faces(v, dim, out, cmp, true);
}
template< typename OutputIterator, typename Comparator = std::less<Vertex_const_handle> >
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator, Comparator = Comparator(), bool = false);
#else
template< typename OutputIterator, typename Comparator >
OutputIterator incident_upper_faces(Vertex_const_handle v, const int dim, OutputIterator out, Comparator cmp = Comparator())
{
return incident_faces(v, dim, out, cmp, true);
}
template< typename OutputIterator >
OutputIterator incident_upper_faces(Vertex_const_handle v, const int dim, OutputIterator out)
{
return incident_faces(v, dim, out, std::less<Vertex_const_handle>(), true);
}
template< typename OutputIterator, typename Comparator >
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator, Comparator = Comparator(), bool = false);
template< typename OutputIterator >
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator,
std::less<Vertex_const_handle> = std::less<Vertex_const_handle>(), bool = false);
#endif
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INPUT / OUTPUT
std::istream & read_full_cells(std::istream &, const std::vector<Vertex_handle> &);
std::ostream & write_full_cells(std::ostream &, std::map<Vertex_const_handle, int> &) const;
}; // end of ``declaration/definition'' of Triangulation_data_structure<...>
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// FUNCTIONS THAT ARE MEMBER FUNCTIONS:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE GATHERING METHODS
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_full_cells(const Face & f, OutputIterator out) const /* Concept */
{
// CGAL_expensive_precondition_msg(is_full_cell(f.full_cell()), "the facet does not belong to the Triangulation");
Incident_full_cell_traversal_predicate tp(*this, f);
gather_full_cells(f.full_cell(), tp, out);
return out;
}
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_full_cells(Vertex_const_handle v, OutputIterator out) const /* Concept */
{
// CGAL_expensive_precondition(is_vertex(v));
CGAL_precondition(Vertex_handle() != v);
Face f(v->full_cell());
f.set_index(0, v->full_cell()->index(v));
return incident_full_cells(f, out);
}
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::star(const Face & f, OutputIterator out) const /* Concept */
{
// CGAL_precondition_msg(is_full_cell(f.full_cell()), "the facet does not belong to the Triangulation");
Star_traversal_predicate tp(*this, f);
gather_full_cells(f.full_cell(), tp, out);
return out;
}
template< class Dim, class Vb, class Fcb >
template< typename TraversalPredicate, typename OutputIterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Facet
Triangulation_data_structure<Dim, Vb, Fcb>
::gather_full_cells(Full_cell_handle start,
TraversalPredicate & tp,
OutputIterator & out) const /* Concept */
{
std::queue<Full_cell_handle> queue;
set_visited(start, true);
queue.push(start);
const int cur_dim = current_dimension();
Facet ft;
while( ! queue.empty() )
{
Full_cell_handle s = queue.front();
queue.pop();
*out = s;
++out;
for( int i = 0; i <= cur_dim; ++i )
{
Full_cell_handle n = s->neighbor(i);
if( ! get_visited(n) )
{
set_visited(n, true);
if( tp(Facet(s, i)) )
queue.push(n);
else
ft = Facet(s, i);
}
}
}
clear_visited_marks(start);
return ft;
}
#ifdef CGAL_CFG_NO_CPP0X_DEFAULT_TEMPLATE_ARGUMENTS_FOR_FUNCTION_TEMPLATES
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_faces(Vertex_const_handle v, const int dim, OutputIterator out,
std::less<Vertex_const_handle> cmp, bool upper_faces)
{
return incident_faces<OutputIterator, std::less<Vertex_const_handle> >(v, dim, out, cmp, upper_faces);
}
#endif
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator, typename Comparator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_faces(Vertex_const_handle v, const int dim, OutputIterator out, Comparator cmp, bool upper_faces)
{
CGAL_precondition( 0 < dim );
if( dim >= current_dimension() )
return out;
typedef std::vector<Full_cell_handle> Simplices;
Simplices simps;
simps.reserve(64);
// gather incident full_cells
std::back_insert_iterator<Simplices> sout(simps);
incident_full_cells(v, sout);
// for storing the handles to the vertices of a full_cell
typedef std::vector<Vertex_const_handle> Vertices;
typedef std::vector<int> Indices;
Vertices vertices(1 + current_dimension());
Indices sorted_idx(1 + current_dimension());
// setup Face comparator and Face_set
typedef internal::Triangulation::Compare_faces_with_common_first_vertex<Self>
Upper_face_comparator;
Upper_face_comparator ufc(dim);
typedef std::set<Face, Upper_face_comparator> Face_set;
Face_set face_set(ufc);
for( typename Simplices::const_iterator s = simps.begin(); s != simps.end(); ++s )
{
int v_idx(0); // the index of |v| in the sorted full_cell
// get the vertices of the full_cell and sort them
for( int i = 0; i <= current_dimension(); ++i )
vertices[i] = (*s)->vertex(i);
if( upper_faces )
{
std::sort(vertices.begin(), vertices.end(), cmp);
while( vertices[v_idx] != v )
++v_idx;
}
else
{
while( vertices[v_idx] != v )
++v_idx;
if( 0 != v_idx )
std::swap(vertices[0], vertices[v_idx]);
v_idx = 0;
typename Vertices::iterator vbegin(vertices.begin());
++vbegin;
std::sort(vbegin, vertices.end(), cmp);
}
if( v_idx + dim > current_dimension() )
continue; // |v| is too far to the right
// stores the index of the vertices of s in the same order
// as in |vertices|:
for( int i = 0; i <= current_dimension(); ++i )
sorted_idx[i] = (*s)->index(vertices[i]);
// init state for enumerating all candidate faces:
internal::Combination_enumerator f_idx(dim, v_idx + 1, current_dimension());
Face f(*s);
f.set_index(0, v_idx);
while( ! f_idx.end() )
{
// check if face has already been found
for( int i = 0; i < dim; ++i )
f.set_index(1 + i, sorted_idx[f_idx[i]]);
face_set.insert(f);
// compute next sorted face (lexicographic enumeration)
++f_idx;
}
}
typename Face_set::iterator fit = face_set.begin();
while( fit != face_set.end() )
*out++ = *fit++;
return out;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE REMOVAL METHODS
template <class Dim, class Vb, class Fcb>
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::collapse_face(const Face & f) /* Concept */
{
const int fd = f.face_dimension();
CGAL_precondition( (1 <= fd ) && (fd < current_dimension()));
std::vector<Full_cell_handle> simps;
// save the Face's vertices:
Full_cell s;
for( int i = 0; i <= fd; ++i )
s.set_vertex(i, f.vertex(i));
// compute the star of f
simps.reserve(64);
std::back_insert_iterator<std::vector<Full_cell_handle> > out(simps);
star(f, out);
Vertex_handle v = insert_in_hole(simps.begin(), simps.end(), Facet(f.full_cell(), f.index(0)));
for( int i = 0; i <= fd; ++i )
delete_vertex(s.vertex(i));
return v;
}
template <class Dim, class Vb, class Fcb>
void
Triangulation_data_structure<Dim, Vb, Fcb>
::remove_decrease_dimension(Vertex_handle v, Vertex_handle star) /* Concept */
{
CGAL_assertion( current_dimension() >= -1 );
if( -1 == current_dimension() )
{
clear();
return;
}
else if( 0 == current_dimension() )
{
delete_full_cell(v->full_cell());
delete_vertex(v);
star->full_cell()->set_neighbor(0, Full_cell_handle());
set_current_dimension(-1);
return;
}
else if( 1 == current_dimension() )
{
Full_cell_handle s = v->full_cell();
int star_index;
if( s->has_vertex(star, star_index) )
s = s->neighbor(star_index);
// Here, |star| is not a vertex of |s|, so it's the only finite
// full_cell
Full_cell_handle inf1 = s->neighbor(0);
Full_cell_handle inf2 = s->neighbor(1);
Vertex_handle v2 = s->vertex(1 - s->index(v));
delete_vertex(v);
delete_full_cell(s);
inf1->set_vertex(1, Vertex_handle());
inf1->set_vertex(1, Vertex_handle());
inf2->set_neighbor(1, Full_cell_handle());
inf2->set_neighbor(1, Full_cell_handle());
associate_vertex_with_full_cell(inf1, 0, star);
associate_vertex_with_full_cell(inf2, 0, v2);
set_neighbors(inf1, 0, inf2, 0);
set_current_dimension(0);
return;
}
typedef std::vector<Full_cell_handle> Simplices;
Simplices simps;
incident_full_cells(v, std::back_inserter(simps));
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
{
int v_idx = (*it)->index(v);
if( ! (*it)->has_vertex(star) )
{
delete_full_cell((*it)->neighbor(v_idx));
for( int i = 0; i <= current_dimension(); ++i )
(*it)->vertex(i)->set_full_cell(*it);
}
else
star->set_full_cell(*it);
if( v_idx != current_dimension() )
{
(*it)->swap_vertices(v_idx, current_dimension());
if( ( ! (*it)->has_vertex(star) ) || (current_dimension() > 2) )
(*it)->swap_vertices(current_dimension() - 2, current_dimension() - 1);
}
(*it)->set_vertex(current_dimension(), Vertex_handle());
(*it)->set_neighbor(current_dimension(), Full_cell_handle());
}
set_current_dimension(current_dimension()-1);
delete_vertex(v);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE INSERTION METHODS
template <class Dim, class Vb, class Fcb>
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_full_cell(Full_cell_handle s) /* Concept */
{
CGAL_precondition(0 < current_dimension());
CGAL_precondition(Full_cell_handle() != s);
// CGAL_expensive_precondition(is_full_cell(s));
const int cur_dim = current_dimension();
Vertex_handle v = new_vertex();
// the full_cell 'fc' is just used to store the handle to all the new full_cells.
Full_cell fc(maximal_dimension());
for( int i = 1; i <= cur_dim; ++i )
{
Full_cell_handle new_s = new_full_cell(s);
fc.set_neighbor(i, new_s);
associate_vertex_with_full_cell(new_s, i, v);
s->vertex(i-1)->set_full_cell(new_s);
set_neighbors(new_s, i, neighbor(s, i), mirror_index(s, i));
}
fc.set_neighbor(0, s);
associate_vertex_with_full_cell(s, 0, v);
for( int i = 0; i <= cur_dim; ++i )
for( int j = 0; j <= cur_dim; ++j )
{
if( j == i ) continue;
set_neighbors(fc.neighbor(i), j, fc.neighbor(j), i);
}
return v;
}
template <class Dim, class Vb, class Fcb >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_face(const Face & f) /* Concept */
{
std::vector<Full_cell_handle> simps;
simps.reserve(64);
std::back_insert_iterator<std::vector<Full_cell_handle> > out(simps);
incident_full_cells(f, out);
return insert_in_hole(simps.begin(), simps.end(), Facet(f.full_cell(), f.index(0)));
}
template <class Dim, class Vb, class Fcb >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_facet(const Facet & ft) /* Concept */
{
Full_cell_handle s[2];
s[0] = full_cell(ft);
int i = index_of_covertex(ft);
s[1] = s[0]->neighbor(i);
i = ( i + 1 ) % current_dimension();
return insert_in_hole(s, s+2, Facet(s[0], i));
}
template <class Dim, class Vb, class Fcb >
template < typename OutputIterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Full_cell_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_tagged_hole(Vertex_handle v, Facet f,
OutputIterator new_full_cells)
{
CGAL_assertion_msg(is_boundary_facet(f), "starting facet should be on the hole boundary");
const int cur_dim = current_dimension();
Full_cell_handle new_s;
std::queue<IITH_task> task_queue;
task_queue.push(
IITH_task(f, mirror_index(full_cell(f), index_of_covertex(f))) );
while (!task_queue.empty())
{
IITH_task task = task_queue.front();
task_queue.pop();
Full_cell_handle old_s = full_cell(task.boundary_facet);
const int facet_index = index_of_covertex(task.boundary_facet);
Full_cell_handle outside_neighbor = neighbor(old_s, facet_index);
// Here, "new_s" might actually be a new cell, but it might also be "old_s"
// if it has not been treated already in the meantime
new_s = neighbor(outside_neighbor, task.index_of_inside_cell_in_outside_cell);
// If the cell has not been treated yet
if (old_s == new_s)
{
new_s = new_full_cell();
int i(0);
for ( ; i < facet_index ; ++i)
associate_vertex_with_full_cell(new_s, i, old_s->vertex(i));
++i; // skip facet_index
for ( ; i <= cur_dim ; ++i)
associate_vertex_with_full_cell(new_s, i, old_s->vertex(i));
associate_vertex_with_full_cell(new_s, facet_index, v);
set_neighbors(new_s,
facet_index,
neighbor(old_s, facet_index),
mirror_index(old_s, facet_index));
// add the new full_cell to the list of new full_cells
*new_full_cells++ = new_s;
// check all of |Facet f|'s neighbors
for (i = 0 ; i <= cur_dim ; ++i)
{
if (facet_index == i)
continue;
// we define a |Rotor| because it makes it easy to rotate around
// in a self contained fashion. The corresponding potential
// boundary facet is Facet(full_cell(rot), index_of_covertex(rot))
Rotor rot(old_s, i, facet_index);
// |rot| on line above, stands for Candidate Facet
while (!is_boundary_facet(rot))
rot = rotate_rotor(rot);
// we did find the |i|-th neighbor of Facet(old_s, facet_index)...
// has it already been extruded to center point |v| ?
Full_cell_handle inside = full_cell(rot);
Full_cell_handle outside = neighbor(inside, index_of_covertex(rot));
// "m" is the vertex of outside which is not on the boundary
Vertex_handle m = inside->mirror_vertex(index_of_covertex(rot), current_dimension()); // CJTODO: use mirror_index?
// "index" is the index of m in "outside"
int index = outside->index(m);
// new_neighbor is the inside cell which is registered as the neighbor
// of the outside cell => it's either a newly created inside cell or an
// old inside cell which we are about to delete
Full_cell_handle new_neighbor = outside->neighbor(index);
// Is new_neighbor still the old neighbor?
if (new_neighbor == inside)
{
task_queue.push(IITH_task(
Facet(inside, index_of_covertex(rot)), // boundary facet
index, // index_of_inside_cell_in_outside_cell
new_s, // future_neighbor
i, // new_cell_index_in_future_neighbor
index_of_second_covertex(rot) // index_of_future_neighbor_in_new_cell
));
}
}
}
// If there is some neighbor stories to fix
if (task.future_neighbor != Full_cell_handle())
{
// now the new neighboring full_cell exists, we link both
set_neighbors(new_s,
task.index_of_future_neighbor_in_new_cell,
task.future_neighbor,
task.new_cell_index_in_future_neighbor);
}
}
return new_s;
}
template< class Dim, class Vb, class Fcb >
template< typename Forward_iterator, typename OutputIterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_hole(Forward_iterator start, Forward_iterator end, Facet f,
OutputIterator out) /* Concept */
{
CGAL_expensive_precondition(
( std::distance(start, end) == 1 )
|| ( current_dimension() > 1 ) );
Forward_iterator sit = start;
while( end != sit )
set_visited(*sit++, true);
Vertex_handle v = new_vertex();
insert_in_tagged_hole(v, f, out);
delete_full_cells(start, end);
return v;
}
template< class Dim, class Vb, class Fcb >
template< typename Forward_iterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_hole(Forward_iterator start, Forward_iterator end, Facet f) /* Concept */
{
Emptyset_iterator out;
return insert_in_hole(start, end, f, out);
}
template <class Dim, class Vb, class Fcb>
void
Triangulation_data_structure<Dim, Vb, Fcb>
::clear_visited_marks(Full_cell_handle start) const // NOT DOCUMENTED
{
CGAL_precondition(start != Full_cell_handle());
std::queue<Full_cell_handle> queue;
set_visited(start, false);
queue.push(start);
const int cur_dim = current_dimension();
while( ! queue.empty() )
{
Full_cell_handle s = queue.front();
queue.pop();
for( int i = 0; i <= cur_dim; ++i )
{
if( get_visited(s->neighbor(i)) )
{
set_visited(s->neighbor(i), false);
queue.push(s->neighbor(i));
}
}
}
}
template <class Dim, class Vb, class Fcb>
void Triangulation_data_structure<Dim, Vb, Fcb>
::do_insert_increase_dimension(const Vertex_handle x, const Vertex_handle star)
{
Full_cell_handle start = full_cells_begin();
Full_cell_handle swap_me;
const int cur_dim = current_dimension();
for( Full_cell_iterator S = full_cells_begin(); S != full_cells_end(); ++S )
{
if( Vertex_handle() != S->vertex(cur_dim) )
continue;
set_visited(S, true);
// extends full_cell |S| to include the new vertex as the
// current_dimension()-th vertex
associate_vertex_with_full_cell(S, cur_dim, x);
if( ! S->has_vertex(star) )
{ // S is bounded, we create its unbounded "twin" full_cell
Full_cell_handle S_new = new_full_cell();
set_neighbors(S, cur_dim, S_new, 0);
associate_vertex_with_full_cell(S_new, 0, star);
// here, we could be clever so as to get consistent orientation
for( int k = 1; k <= cur_dim; ++k )
associate_vertex_with_full_cell(S_new, k, vertex(S, k - 1));
}
else if( cur_dim == 2 )
{ // if cur. dim. is 2, we must take care of the 'rightmost' infinite vertex.
if( S->mirror_index(S->index(star)) == 0 )
swap_me = S;
}
}
// now we setup the neighbors
set_visited(start, false);
std::queue<Full_cell_handle> queue;
queue.push(start);
while( ! queue.empty() )
{
Full_cell_handle S = queue.front();
queue.pop();
// here, the first visit above ensured that all neighbors exist now.
// Now we need to connect them with adjacency relation
int star_index;
if( S->has_vertex(star, star_index) )
{
set_neighbors( S, cur_dim, neighbor(neighbor(S, star_index), cur_dim),
// this is tricky :-) :
mirror_index(S, star_index) + 1);
}
else
{
Full_cell_handle S_new = neighbor(S, cur_dim);
for( int k = 0 ; k < cur_dim ; ++k )
{
Full_cell_handle S_opp = neighbor(S, k);
if( ! S_opp->has_vertex(star) )
set_neighbors(S_new, k + 1, neighbor(S_opp, cur_dim), mirror_index(S, k) + 1);
// neighbor of S_new opposite to v is S_new'
// the vertex opposite to v remains the same but ...
// remember the shifting of the vertices one step to the right
}
}
for( int k = 0 ; k < cur_dim ; ++k )
if( get_visited(neighbor(S, k)) )
{
set_visited(neighbor(S, k), false);
queue.push(neighbor(S, k));
}
}
if( ( ( cur_dim % 2 ) == 0 ) && ( cur_dim > 1 ) )
{
for( Full_cell_iterator S = full_cells_begin(); S != full_cells_end(); ++S )
{
if( x != S->vertex(cur_dim) )
S->swap_vertices(cur_dim - 1, cur_dim);
}
}
if( Full_cell_handle() != swap_me )
swap_me->swap_vertices(1, 2);
}
template <class Dim, class Vb, class Fcb>
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_increase_dimension(Vertex_handle star) /* Concept */
{
const int prev_cur_dim = current_dimension();
CGAL_precondition(prev_cur_dim < maximal_dimension());
if( -2 != current_dimension() )
{
CGAL_precondition( Vertex_handle() != star );
CGAL_expensive_precondition(is_vertex(star));
}
set_current_dimension(prev_cur_dim + 1);
Vertex_handle v = new_vertex();
switch( prev_cur_dim )
{
case -2:
{ // insertion of the first vertex
// ( geometrically : infinite vertex )
Full_cell_handle s = new_full_cell();
associate_vertex_with_full_cell(s, 0, v);
break;
}
case -1:
{ // insertion of the second vertex
// ( geometrically : first finite vertex )
//we create a triangulation of the 0-sphere, with
// vertices |star| and |v|
Full_cell_handle infinite_full_cell = star->full_cell();
Full_cell_handle finite_full_cell = new_full_cell();
associate_vertex_with_full_cell(finite_full_cell, 0, v);
set_neighbors(infinite_full_cell, 0, finite_full_cell, 0);
break;
}
default:
do_insert_increase_dimension(v, star);
break;
}
return v;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY CHECKS
template <class Dimen, class Vb, class Fcb>
bool Triangulation_data_structure<Dimen, Vb, Fcb>
::is_valid(bool verbose, int /* level */) const /* Concept */
{
Full_cell_const_handle s, t;
Vertex_const_handle v;
int i, j, k;
if( current_dimension() == -2 )
{
if( ! vertices_.empty() || ! full_cells_.empty() )
{
if( verbose ) CGAL_warning_msg(false, "current dimension is -2 but there are vertices or full_cells");
return false;
}
}
if( current_dimension() == -1 )
{
if ( (number_of_vertices() != 1) || (number_of_full_cells() != 1) )
{
if( verbose ) CGAL_warning_msg(false, "current dimension is -1 but there isn't one vertex and one full_cell");
return false;
}
}
for( v = vertices_begin(); v != vertices_end(); ++v )
{
if( ! v->is_valid(verbose) )
return false;
}
// FUTURE: for each vertex v, gather incident full_cells. then, check that
// any full_cell containing v is among those gathered full_cells...
if( current_dimension() < 0 )
return true;
for( s = full_cells_begin(); s != full_cells_end(); ++s )
{
if( ! s->is_valid(verbose) )
return false;
// check that the full cell has no duplicate vertices
for( i = 0; i <= current_dimension(); ++i )
for( j = i + 1; j <= current_dimension(); ++j )
if( vertex(s,i) == vertex(s,j) )
{
CGAL_warning_msg(false, "a full_cell has two equal vertices");
return false;
}
}
for( s = full_cells_begin(); s != full_cells_end(); ++s )
{
for( i = 0; i <= current_dimension(); ++i )
if( (t = neighbor(s,i)) != Full_cell_const_handle() )
{
int l = mirror_index(s,i);
if( s != neighbor(t,l) || i != mirror_index(t,l) )
{
if( verbose ) CGAL_warning_msg(false, "neighbor relation is not symmetric");
return false;
}
for( j = 0; j <= current_dimension(); ++j )
if( j != i )
{
// j must also occur as a vertex of t
for( k = 0; k <= current_dimension() && ( vertex(s,j) != vertex(t,k) || k == l); ++k )
;
if( k > current_dimension() )
{
if( verbose ) CGAL_warning_msg(false, "too few shared vertices between neighbors full_cells.");
return false;
}
}
}
else
{
if( verbose ) CGAL_warning_msg(false, "full_cell has a NULL neighbor");
return false;
}
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - INPUT / OUTPUT
// NOT DOCUMENTED
template <class Dim, class Vb, class Fcb>
template <class OutStream>
void Triangulation_data_structure<Dim, Vb, Fcb>
::write_graph(OutStream & os)
{
std::vector<std::set<int> > edges;
os << number_of_vertices() + 1; // add the vertex at infinity
int count(1);
for( Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit )
vit->idx_ = count++;
edges.resize(number_of_vertices()+1);
for( Full_cell_iterator sit = full_cells_begin(); sit != full_cells_end(); ++sit )
{
int v1 = 0;
while( v1 < current_dimension() )
{
int v2 = v1 + 1;
while( v2 <= current_dimension() )
{
int i1, i2;
if( Vertex_handle() != sit-> vertex(v1) )
i1 = sit->vertex(v1)->idx_;
else
i1 = 0;
if( Vertex_handle() != sit-> vertex(v2) )
i2 = sit->vertex(v2)->idx_;
else
i2 = 0;
edges[i1].insert(i2);
edges[i2].insert(i1);
++v2;
}
++v1;
}
}
for( std::size_t i = 0; i < edges.size(); ++i )
{
os << std::endl << edges[i].size();
for( std::set<int>::const_iterator nit = edges[i].begin();
nit != edges[i].end(); ++nit )
{
os << ' ' << (*nit);
}
}
}
// NOT DOCUMENTED...
template<class Dimen, class Vb, class Fcb>
std::istream &
Triangulation_data_structure<Dimen, Vb, Fcb>
::read_full_cells(std::istream & is, const std::vector<Vertex_handle> & vertices)
{
std::size_t m; // number of full_cells
int index;
const int cd = current_dimension();
if( is_ascii(is) )
is >> m;
else
read(is, m, io_Read_write());
std::vector<Full_cell_handle> full_cells;
full_cells.reserve(m);
// read the vertices of each full_cell
std::size_t i = 0;
while( i < m )
{
Full_cell_handle s = new_full_cell();
full_cells.push_back(s);
for( int j = 0; j <= cd; ++j )
{
if( is_ascii(is) )
is >> index;
else
read(is, index);
s->set_vertex(j, vertices[index]);
}
// read other non-combinatorial information for the full_cells
is >> (*s);
++i;
}
// read the neighbors of each full_cell
i = 0;
if( is_ascii(is) )
while( i < m )
{
for( int j = 0; j <= cd; ++j )
{
is >> index;
full_cells[i]->set_neighbor(j, full_cells[index]);
}
++i;
}
else
while( i < m )
{
for( int j = 0; j <= cd; ++j )
{
read(is, index);
full_cells[i]->set_neighbor(j, full_cells[index]);
}
++i;
}
// compute the mirror indices
for( i = 0; i < m; ++i )
{
Full_cell_handle s = full_cells[i];
for( int j = 0; j <= cd; ++j )
{
if( -1 != s->mirror_index(j) )
continue;
Full_cell_handle n = s->neighbor(j);
int k = 0;
Full_cell_handle nn = n->neighbor(k);
while( s != nn )
nn = n->neighbor(++k);
s->set_mirror_index(j,k);
n->set_mirror_index(k,j);
}
}
return is;
}
// NOT DOCUMENTED...
template<class Dimen, class Vb, class Fcb>
std::ostream &
Triangulation_data_structure<Dimen, Vb, Fcb>
::write_full_cells(std::ostream & os, std::map<Vertex_const_handle, int> & index_of_vertex) const
{
std::map<Full_cell_const_handle, int> index_of_full_cell;
std::size_t m = number_of_full_cells();
if( is_ascii(os) )
os << std::endl << m;
else
write(os, m, io_Read_write());
const int cur_dim = current_dimension();
// write the vertex indices of each full_cell
int i = 0;
for( Full_cell_const_iterator it = full_cells_begin(); it != full_cells_end(); ++it )
{
index_of_full_cell[it] = i++;
if( is_ascii(os) )
os << std::endl;
for( int j = 0; j <= cur_dim; ++j )
{
if( is_ascii(os) )
os << ' ' << index_of_vertex[it->vertex(j)];
else
write(os, index_of_vertex[it->vertex(j)]);
}
// write other non-combinatorial information for the full_cells
os << (*it);
}
CGAL_assertion( (std::size_t) i == m );
// write the neighbors of each full_cell
if( is_ascii(os) )
for( Full_cell_const_iterator it = full_cells_begin(); it != full_cells_end(); ++it )
{
os << std::endl;
for( int j = 0; j <= cur_dim; ++j )
os << ' ' << index_of_full_cell[it->neighbor(j)];
}
else
for( Full_cell_const_iterator it = full_cells_begin(); it != full_cells_end(); ++it )
{
for( int j = 0; j <= cur_dim; ++j )
write(os, index_of_full_cell[it->neighbor(j)]);
}
return os;
}
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// FUNCTIONS THAT ARE NOT MEMBER FUNCTIONS:
template<class Dimen, class Vb, class Fcb>
std::istream &
operator>>(std::istream & is, Triangulation_data_structure<Dimen, Vb, Fcb> & tr)
// reads :
// - the dimensions (maximal and current)
// - the number of finite vertices
// - the non combinatorial information on vertices (point, etc)
// - the number of full_cells
// - the full_cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each full_cell
// - the neighbors of each full_cell by their index in the preceding list
{
typedef Triangulation_data_structure<Dimen, Vb, Fcb> TDS;
typedef typename TDS::Vertex_handle Vertex_handle;
// read current dimension and number of vertices
std::size_t n;
int cd;
if( is_ascii(is) )
is >> cd >> n;
else
{
read(is, cd);
read(is, n, io_Read_write());
}
CGAL_assertion_msg( cd <= tr.maximal_dimension(), "input Triangulation_data_structure has too high dimension");
tr.clear();
tr.set_current_dimension(cd);
if( n == 0 )
return is;
std::vector<Vertex_handle> vertices;
vertices.resize(n);
// read the vertices:
std::size_t i(0);
while( i < n )
{
vertices[i] = tr.new_vertex();
is >> (*vertices[i]); // read a vertex
++i;
}
// now, read the combinatorial information
return tr.read_full_cells(is, vertices);
}
template<class Dimen, class Vb, class Fcb>
std::ostream &
operator<<(std::ostream & os, const Triangulation_data_structure<Dimen, Vb, Fcb> & tr)
// writes :
// - the dimensions (maximal and current)
// - the number of finite vertices
// - the non combinatorial information on vertices (point, etc)
// - the number of full cells
// - the full cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each full_cell
// - the neighbors of each full_cell by their index in the preceding list
{
typedef Triangulation_data_structure<Dimen, Vb, Fcb> TDS;
typedef typename TDS::Vertex_const_handle Vertex_handle;
typedef typename TDS::Vertex_const_iterator Vertex_iterator;
// outputs dimension and number of vertices
std::size_t n = tr.number_of_vertices();
if( is_ascii(os) )
os << tr.current_dimension() << std::endl << n;
else
{
write(os, tr.current_dimension());
write(os, n, io_Read_write());
}
if( n == 0 )
return os;
// write the vertices
std::map<Vertex_handle, int> index_of_vertex;
int i = 0;
for( Vertex_iterator it = tr.vertices_begin(); it != tr.vertices_end(); ++it, ++i )
{
os << *it; // write the vertex
index_of_vertex[it] = i;
}
CGAL_assertion( (std::size_t) i == n );
// output the combinatorial information
return tr.write_full_cells(os, index_of_vertex);
}
} //namespace CGAL
#endif // CGAL_TRIANGULATION_DATA_STRUCTURE_H
|