This file is indexed.

/usr/include/CGAL/apply_to_range.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Copyright (c) 2002-2004  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Radu Ursu

#ifndef CGAL_apply_to_range_h
#define CGAL_apply_to_range_h

#include <CGAL/Point_2.h>
#include <CGAL/Unique_hash_map.h>
#include <stack>

namespace CGAL{


template <class Tr, class Fct, class R>
void apply_to_range(const Tr &t, 
             const Point_2<R> &p1, const Point_2<R> &p2,
             Fct& fct)
{
  if (t.dimension()<2) return;
  typedef typename Tr::Point         POINT;
  typedef typename Tr::Face_handle   hFACE;
  typedef typename Tr::Vertex_handle hVERTEX;
  typedef typename Tr::Line_face_circulator      LFC;
  typedef typename Tr::Finite_vertices_iterator  FVI;
  typedef typename Tr::Finite_faces_iterator     FFI;
  typedef typename Kernel_traits<POINT>::Kernel K; 
  typedef typename K::FT FT;

  LFC l1, l2, l3, l4;         //the faces that intersect the pixmap RECTANGLE
  hFACE hface1, hface2, 
        hface3, hface4;       //the faces where we start to search
  FT    xr_left,   yr_top, 
        xr_right,  yr_bottom;//the coordinates of the screen boundaries  
  CGAL::Unique_hash_map<hFACE, bool> visited(false);//used for DFS  
  std::stack<hFACE>               face_stack; //used for DFS
  
  xr_left = p1.x(); xr_right = p2.x();
  yr_top = p1.y(); yr_bottom = p2.y();

  hface1 = t.locate(POINT(xr_left, yr_top));
  hface2 = t.locate(POINT(xr_right, yr_top));
  hface3 = t.locate(POINT(xr_right, yr_bottom));
  hface4 = t.locate(POINT(xr_left, yr_bottom));
  
  l1 = t.line_walk(POINT(xr_left, yr_top), POINT(xr_right, yr_top), hface1);
  l2 = t.line_walk(POINT(xr_right, yr_top), POINT(xr_right, yr_bottom), hface2);
  l3 = t.line_walk(POINT(xr_right, yr_bottom), POINT(xr_left, yr_bottom), hface3);
  l4 = t.line_walk(POINT(xr_left, yr_bottom), POINT(xr_left, yr_top), hface4);

  //test if everything is inside or outside
  if( (l1 == (Nullptr_t) NULL) && (l2 == (Nullptr_t) NULL) &&
      (l3 == (Nullptr_t) NULL) && (l4 == (Nullptr_t) NULL)) 
  {
    FVI v = t.finite_vertices_begin();
    if((*v).point().x() < xr_left || (*v).point().x() > xr_right || 
       (*v).point().y() < yr_bottom || (*v).point().y() > yr_top) //true if everything is outside
      return;
    else{ //everything is inside
      FFI it = t.finite_faces_begin();
      while(it != t.finite_faces_end())
      {
        fct(it);
        it++;
      }
    }
    return;
  }

  //if we are here, then a part of the triangulation is inside, the other is outside

  //put all the faces on the boundaries in the stack and the map
  if(l1 != (Nullptr_t) NULL) //found at least one face that intersect the TOP segment
  {
    while (t.is_infinite(l1)) l1++; //we should start with a finite face
    do{                             //put all of them in the stack;
      face_stack.push(l1);
      visited[l1] = true;
      l1++;
    }while(!t.is_infinite(l1) && 
	   t.triangle(l1).has_on_unbounded_side(POINT(xr_right, yr_top)));
  }
  if(l2 != (Nullptr_t) NULL) //found at least one face that intersect the RIGHT segment
  {
    while (t.is_infinite(l2)) l2++; //we should start with a finite face
    do{                             //put all of them in the stack;
      if(!visited[l2]){
        face_stack.push(l2);
        visited[l2] = true;       
      }
      l2++;
    }while(!t.is_infinite(l2) && 
	   t.triangle(l2).has_on_unbounded_side(POINT(xr_right, yr_bottom)));
  }
  if(l3 != (Nullptr_t) NULL) //found at least one face that intersect the BOTTOM segment
  {
    while (t.is_infinite(l3)) l3++; //we should start with a finite face
    do{                             //put all of them in the stack;
      if(!visited[l3]){
        face_stack.push(l3);
        visited[l3] = true;        
      }
      l3++;
    }while(!t.is_infinite(l3) && 
	   t.triangle(l3).has_on_unbounded_side(POINT(xr_left, yr_bottom)));
  }
  if(l4 != (Nullptr_t) NULL) //found at least one face that intersect the LEFT segment
  {
    while (t.is_infinite(l4)) l4++; //we should start with a finite face
    do{                             //put all of them in the stack;
      if(!visited[l4]){
        face_stack.push(l4);
        visited[l4] = true;
      }
      l4++;
    }while(!t.is_infinite(l4) && 
	   t.triangle(l4).has_on_unbounded_side(POINT(xr_left, yr_top)));
  }
  
  //HERE we begin to walk through the faces DFS
  hFACE hf;
  typename CGAL::Unique_hash_map<hFACE,bool>::Data& 
     data_ref_start(visited[hf]);
  data_ref_start = true;
  while(!face_stack.empty()){
    hf = face_stack.top();
    face_stack.pop();         //done with this face
    for (int i=0; i<3; i++){  //visit all the neighbors
      if(!visited[(*hf).neighbor(i)] )
        if(!t.is_infinite((*hf).neighbor(i))){                //true if it is not an infinite face
          hVERTEX hv = (*(*hf).neighbor(i)).vertex((*(*hf).neighbor(i)).index(hf));
          if(!((*hv).point().x() < xr_left || (*hv).point().x() > xr_right ||
               (*hv).point().y() < yr_bottom || (*hv).point().y() > yr_top)) //true if the vertex is outside
          face_stack.push((*hf).neighbor(i));
          typename CGAL::Unique_hash_map<hFACE,bool>::Data& 
              data_ref(visited[(*hf).neighbor(i)]);
          data_ref = true;
        }
    }
    fct(hf);
  }
}

}//end namespace

#endif