This file is indexed.

/usr/include/CGAL/compute_average_spacing.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright (c) 2007-09  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Pierre Alliez and Laurent Saboret

#ifndef CGAL_AVERAGE_SPACING_3_H
#define CGAL_AVERAGE_SPACING_3_H

#include <CGAL/Search_traits_3.h>
#include <CGAL/squared_distance_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>

#include <iterator>
#include <list>

namespace CGAL {


// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace internal {


/// Computes average spacing of one query point from K nearest neighbors.
///
/// \pre `k >= 2`.
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return average spacing (scalar).
template < typename Kernel,
           typename Tree >
typename Kernel::FT
compute_average_spacing(const typename Kernel::Point_3& query, ///< 3D point whose spacing we want to compute
                        Tree& tree,                            ///< KD-tree
                        unsigned int k)                        ///< number of neighbors
{
  // basic geometric types
  typedef typename Kernel::FT FT;
  typedef typename Kernel::Point_3 Point;

  // types for K nearest neighbors search
  typedef Search_traits_3<Kernel> Tree_traits;
  typedef Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
  typedef typename Neighbor_search::iterator Search_iterator;

  // performs k + 1 queries (if unique the query point is
  // output first). search may be aborted when k is greater
  // than number of input points
  Neighbor_search search(tree,query,k+1);
  Search_iterator search_iterator = search.begin();
  FT sum_distances = (FT)0.0;
  unsigned int i;
  for(i=0;i<(k+1);i++)
  {
    if(search_iterator == search.end())
      break; // premature ending

    Point p = search_iterator->first;
    sum_distances += std::sqrt(CGAL::squared_distance(query,p));
    search_iterator++;
  }

  // output average spacing
  return sum_distances / (FT)i;
}

} /* namespace internal */
/// \endcond



// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------

/// \ingroup PkgPointSetProcessing
/// Computes average spacing from k nearest neighbors.
///
/// \pre `k >= 2.`
///
/// @tparam InputIterator iterator over input points.
/// @tparam PointPMap is a model of `ReadablePropertyMap` with value type `Point_3<Kernel>`.
///        It can be omitted if the value type of `InputIterator`  is convertible to `Point_3<Kernel>`.
/// @tparam Kernel Geometric traits class.
///        It can be omitted and deduced automatically from the value type of `PointPMap`.
///
/// @return average spacing (scalar).

// This variant requires the kernel.
template <typename InputIterator,
          typename PointPMap,
          typename Kernel
>
typename Kernel::FT
compute_average_spacing(
  InputIterator first,  ///< iterator over the first input point.
  InputIterator beyond, ///< past-the-end iterator over the input points.
  PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3
  unsigned int k, ///< number of neighbors.
  const Kernel& /*kernel*/) ///< geometric traits.
{
  // basic geometric types
  typedef typename Kernel::Point_3 Point;

  // types for K nearest neighbors search structure
  typedef typename Kernel::FT FT;
  typedef Search_traits_3<Kernel> Tree_traits;
  typedef Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
  typedef typename Neighbor_search::Tree Tree;

  // precondition: at least one element in the container.
  // to fix: should have at least three distinct points
  // but this is costly to check
  CGAL_point_set_processing_precondition(first != beyond);

  // precondition: at least 2 nearest neighbors
  CGAL_point_set_processing_precondition(k >= 2);

  // Instanciate a KD-tree search.
  // Note: We have to convert each input iterator to Point_3.
  std::vector<Point> kd_tree_points; 
  for(InputIterator it = first; it != beyond; it++)
  {
  #ifdef CGAL_USE_PROPERTY_MAPS_API_V1
      Point point = get(point_pmap, it);
  #else
      Point point = get(point_pmap, *it);
  #endif
      kd_tree_points.push_back(point);
  }
  Tree tree(kd_tree_points.begin(), kd_tree_points.end());

  // iterate over input points, compute and output normal
  // vectors (already normalized)
  FT sum_spacings = (FT)0.0;
  unsigned int nb_points = 0;
  for(InputIterator it = first; it != beyond; it++)
  {
    sum_spacings += internal::compute_average_spacing<Kernel,Tree>(
      
  #ifdef CGAL_USE_PROPERTY_MAPS_API_V1
      get(point_pmap,it),
  #else
      get(point_pmap,*it),
  #endif
      tree,k);
    nb_points++;
  }

  // return average spacing
  return sum_spacings / (FT)nb_points;
}

/// @cond SKIP_IN_MANUAL
// This variant deduces the kernel from the iterator type.
template <typename InputIterator,
          typename PointPMap
>
typename Kernel_traits<typename boost::property_traits<PointPMap>::value_type>::Kernel::FT
compute_average_spacing(
  InputIterator first,    ///< iterator over the first input point.
  InputIterator beyond,   ///< past-the-end iterator over the input points.
  PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3
  unsigned int k) ///< number of neighbors
{
  typedef typename boost::property_traits<PointPMap>::value_type Point;
  typedef typename Kernel_traits<Point>::Kernel Kernel;
  return compute_average_spacing(
    first,beyond,
    point_pmap,
    k,
    Kernel());
}
/// @endcond

/// @cond SKIP_IN_MANUAL
// This variant creates a default point property map = Identity_property_map.
template < typename InputIterator >
typename Kernel_traits<typename std::iterator_traits<InputIterator>::value_type>::Kernel::FT
compute_average_spacing(
  InputIterator first,    ///< iterator over the first input point.
  InputIterator beyond,   ///< past-the-end iterator over the input points.
  unsigned int k) ///< number of neighbors.
{
  return compute_average_spacing(
    first,beyond,
#ifdef CGAL_USE_PROPERTY_MAPS_API_V1
    make_dereference_property_map(first),
#else
    make_identity_property_map(
    typename std::iterator_traits<InputIterator>::value_type()),
#endif
    k);
}
/// @endcond


} //namespace CGAL

#endif // CGAL_AVERAGE_SPACING_3_H