/usr/include/CGAL/compute_average_spacing.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | // Copyright (c) 2007-09 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Pierre Alliez and Laurent Saboret
#ifndef CGAL_AVERAGE_SPACING_3_H
#define CGAL_AVERAGE_SPACING_3_H
#include <CGAL/Search_traits_3.h>
#include <CGAL/squared_distance_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>
#include <iterator>
#include <list>
namespace CGAL {
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace internal {
/// Computes average spacing of one query point from K nearest neighbors.
///
/// \pre `k >= 2`.
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return average spacing (scalar).
template < typename Kernel,
typename Tree >
typename Kernel::FT
compute_average_spacing(const typename Kernel::Point_3& query, ///< 3D point whose spacing we want to compute
Tree& tree, ///< KD-tree
unsigned int k) ///< number of neighbors
{
// basic geometric types
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
// types for K nearest neighbors search
typedef Search_traits_3<Kernel> Tree_traits;
typedef Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::iterator Search_iterator;
// performs k + 1 queries (if unique the query point is
// output first). search may be aborted when k is greater
// than number of input points
Neighbor_search search(tree,query,k+1);
Search_iterator search_iterator = search.begin();
FT sum_distances = (FT)0.0;
unsigned int i;
for(i=0;i<(k+1);i++)
{
if(search_iterator == search.end())
break; // premature ending
Point p = search_iterator->first;
sum_distances += std::sqrt(CGAL::squared_distance(query,p));
search_iterator++;
}
// output average spacing
return sum_distances / (FT)i;
}
} /* namespace internal */
/// \endcond
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/// \ingroup PkgPointSetProcessing
/// Computes average spacing from k nearest neighbors.
///
/// \pre `k >= 2.`
///
/// @tparam InputIterator iterator over input points.
/// @tparam PointPMap is a model of `ReadablePropertyMap` with value type `Point_3<Kernel>`.
/// It can be omitted if the value type of `InputIterator` is convertible to `Point_3<Kernel>`.
/// @tparam Kernel Geometric traits class.
/// It can be omitted and deduced automatically from the value type of `PointPMap`.
///
/// @return average spacing (scalar).
// This variant requires the kernel.
template <typename InputIterator,
typename PointPMap,
typename Kernel
>
typename Kernel::FT
compute_average_spacing(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3
unsigned int k, ///< number of neighbors.
const Kernel& /*kernel*/) ///< geometric traits.
{
// basic geometric types
typedef typename Kernel::Point_3 Point;
// types for K nearest neighbors search structure
typedef typename Kernel::FT FT;
typedef Search_traits_3<Kernel> Tree_traits;
typedef Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::Tree Tree;
// precondition: at least one element in the container.
// to fix: should have at least three distinct points
// but this is costly to check
CGAL_point_set_processing_precondition(first != beyond);
// precondition: at least 2 nearest neighbors
CGAL_point_set_processing_precondition(k >= 2);
// Instanciate a KD-tree search.
// Note: We have to convert each input iterator to Point_3.
std::vector<Point> kd_tree_points;
for(InputIterator it = first; it != beyond; it++)
{
#ifdef CGAL_USE_PROPERTY_MAPS_API_V1
Point point = get(point_pmap, it);
#else
Point point = get(point_pmap, *it);
#endif
kd_tree_points.push_back(point);
}
Tree tree(kd_tree_points.begin(), kd_tree_points.end());
// iterate over input points, compute and output normal
// vectors (already normalized)
FT sum_spacings = (FT)0.0;
unsigned int nb_points = 0;
for(InputIterator it = first; it != beyond; it++)
{
sum_spacings += internal::compute_average_spacing<Kernel,Tree>(
#ifdef CGAL_USE_PROPERTY_MAPS_API_V1
get(point_pmap,it),
#else
get(point_pmap,*it),
#endif
tree,k);
nb_points++;
}
// return average spacing
return sum_spacings / (FT)nb_points;
}
/// @cond SKIP_IN_MANUAL
// This variant deduces the kernel from the iterator type.
template <typename InputIterator,
typename PointPMap
>
typename Kernel_traits<typename boost::property_traits<PointPMap>::value_type>::Kernel::FT
compute_average_spacing(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3
unsigned int k) ///< number of neighbors
{
typedef typename boost::property_traits<PointPMap>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
return compute_average_spacing(
first,beyond,
point_pmap,
k,
Kernel());
}
/// @endcond
/// @cond SKIP_IN_MANUAL
// This variant creates a default point property map = Identity_property_map.
template < typename InputIterator >
typename Kernel_traits<typename std::iterator_traits<InputIterator>::value_type>::Kernel::FT
compute_average_spacing(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
unsigned int k) ///< number of neighbors.
{
return compute_average_spacing(
first,beyond,
#ifdef CGAL_USE_PROPERTY_MAPS_API_V1
make_dereference_property_map(first),
#else
make_identity_property_map(
typename std::iterator_traits<InputIterator>::value_type()),
#endif
k);
}
/// @endcond
} //namespace CGAL
#endif // CGAL_AVERAGE_SPACING_3_H
|