/usr/include/CGAL/eigen_2.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | // Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Pierre Alliez
#ifndef CGAL_EIGEN_2_H
#define CGAL_EIGEN_2_H
#include <cmath>
#include <utility>
#include <CGAL/assertions.h>
namespace CGAL {
namespace internal {
// extract eigenvalues and eigenvectors from a 2x2 symmetric
// positive definite matrix.
// Note: computations involve a square root.
// Matrix numbering:
// a b
// b c
// Eigen values and vectors are sorted in descendent order.
template <typename K>
void eigen_symmetric_2(const typename K::FT *matrix, // a b c
std::pair<typename K::Vector_2,
typename K::Vector_2>& eigen_vectors,
std::pair<typename K::FT,
typename K::FT>& eigen_values)
{
// types
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector;
// for better reading
FT a = matrix[0];
FT b = matrix[1];
FT c = matrix[2];
FT p = c*c - 2*a*c + 4*b*b + a*a;
CGAL_assertion(a >= 0.0 && c >= 0.0);
// degenerate or isotropic case
if(p == 0.0)
{
// unit eigen values by default
eigen_values.first = eigen_values.second = (FT)1.0;
// any vector is eigen vector
// the 2D canonical frame is output by default
eigen_vectors.first = Vector((FT)1.0,(FT)0.0);
eigen_vectors.second = Vector((FT)0.0,(FT)1.0);
}
else
{
if(b == 0.0)
{
if(a>=c)
{
eigen_values.first = a;
eigen_values.second = c;
eigen_vectors.first = Vector((FT)1.0, (FT)0.0);
eigen_vectors.second = Vector((FT)0.0, (FT)1.0);
}
else
{
eigen_values.first = c;
eigen_values.second = a;
eigen_vectors.first = Vector((FT)0.0, (FT)1.0);
eigen_vectors.second = Vector((FT)1.0, (FT)0.0);
}
}
else // generic case
{
FT l1 = (FT)(0.5 * ( -1*CGAL::sqrt(p) + c + a));
FT l2 = (FT)(0.5 * ( CGAL::sqrt(p) + c + a));
// all eigen values of a symmetric positive
// definite matrix must be real and positive
// we saturate the values if this is not the
// case for floating point computations.
l1 = (l1 < (FT)0.0) ? (FT)0.0 : l1;
l2 = (l2 < (FT)0.0) ? (FT)0.0 : l2;
// sort eigen values and vectors in descendent order.
if(l1 >= l2)
{
eigen_values.first = l1;
eigen_values.second = l2;
eigen_vectors.first = Vector((FT)1.0, (FT)(-(CGAL::sqrt(p)-c+a) / (2*b)));
eigen_vectors.second = Vector((FT)1.0, (FT)( (CGAL::sqrt(p)+c-a) / (2*b)));
}
else
{
eigen_values.first = l2;
eigen_values.second = l1;
eigen_vectors.first = Vector((FT)1.0, (FT)( (CGAL::sqrt(p)+c-a) / (2*b)));
eigen_vectors.second = Vector((FT)1.0, (FT)(-(CGAL::sqrt(p)-c+a) / (2*b)));
}
} // end generic case
} // end non-degenerate case
} // end eigen_symmetric_2
} // end namespace internal
} //namespace CGAL
#endif // CGAL_EIGEN_2_H
|