This file is indexed.

/usr/include/CGAL/leda_bigfloat_interval.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Hemmer
// TODO: add sign to RET


#ifndef CGAL_LEDA_BIGFLOAT_INTERVAL_H
#define CGAL_LEDA_BIGFLOAT_INTERVAL_H

#include <CGAL/basic.h>

#include <CGAL/LEDA_basic.h>
#if CGAL_LEDA_VERSION < 500
#include <LEDA/bigfloat.h>
#else
#include <LEDA/numbers/bigfloat.h>
#endif

#include <boost/numeric/interval.hpp>

#include <CGAL/Interval_traits.h>
#include <CGAL/Bigfloat_interval_traits.h>
#include <CGAL/ipower.h>

namespace CGAL {
namespace internal {

struct Rounding_for_leda_bigfloat {
private:  typedef leda::bigfloat T;
public:
    Rounding_for_leda_bigfloat(){};
    ~Rounding_for_leda_bigfloat(){};
    
    T conv_down(const T& a){
        return round(a,leda::bigfloat::get_precision(),leda::TO_N_INF);
    };
    T conv_up  (const T& a){
        return round(a,leda::bigfloat::get_precision(),leda::TO_P_INF);
    };  
    // mathematical operations
    T add_down(const T& a, const T& b){
        return add(a,b,leda::bigfloat::get_precision(),leda::TO_N_INF);
    };
    T add_up  (const T& a, const T& b){
        return add(a,b,leda::bigfloat::get_precision(),leda::TO_P_INF);
    };  
    T sub_down(const T& a, const T& b){
        return sub(a, b, leda::bigfloat::get_precision(),leda::TO_N_INF);
    };
    T sub_up  (const T& a, const T& b){
        return sub(a, b, leda::bigfloat::get_precision(),leda::TO_P_INF);
    }; 
    T mul_down(const T& a, const T& b){
        return mul(a, b, leda::bigfloat::get_precision(),leda::TO_N_INF);
    };
    T mul_up  (const T& a, const T& b){
        return mul(a, b, leda::bigfloat::get_precision(),leda::TO_P_INF);
    }; 
    T div_down(const T& a, const T& b){
        return div(a, b, leda::bigfloat::get_precision(),leda::TO_N_INF);
    };
    T div_up  (const T& a, const T& b){
        return div(a, b, leda::bigfloat::get_precision(),leda::TO_P_INF);
    };         
    T sqrt_down(const T& a){
        return sqrt(a, leda::bigfloat::get_precision(),leda::TO_N_INF);
    };
    T sqrt_up  (const T& a){
        return sqrt(a, leda::bigfloat::get_precision(),leda::TO_P_INF);
    }; 

    T median(const T& a, const T& b){ return (a+b)/2;    };   
    T int_down(const T& a)          { return T(floor(a));};   
    T int_up  (const T& a)          { return T(ceil(a)); };
};

class Checking_for_leda_bigfloat {
        
    typedef leda::bigfloat T;

public:
        
    static T pos_inf() {
        T b = T(5) / T(0);
        CGAL_assertion(leda::ispInf(b));
        return b;
    }

    static T neg_inf() {
        T b = T(-5) / T(0);
        CGAL_assertion(leda::isnInf(b));
        return b;
    }
        
    static T nan() {
        T b = T(0)*pos_inf();
        CGAL_assertion(leda::isNaN(b));
        return b;
    }

    static bool is_nan(const T& b) {
        return leda::isNaN(b);
    }

    static T empty_lower() {
        return T(1);
    }

    static T empty_upper() {
        return T(0);
    }

    static bool is_empty(const T& a, const T& b) {
      //return a==T(1) && b == T(0);
      return a > b; 
    }
};

} // namespace internal
} //namespace CGAL

namespace boost {
namespace numeric {
inline
std::ostream& operator << 
    (std::ostream& os, const boost::numeric::interval<leda::bigfloat>& x)
{
    os << "[" 
       << x.lower().get_significant() << "*2^" << x.lower().get_exponent() 
       << " , "
       << x.upper().get_significant() << "*2^" << x.upper().get_exponent()
       << "]";
    return os;
}


}//namespace numeric
}//namespace boost

namespace CGAL {

typedef boost::numeric::interval
< leda::bigfloat,
    boost::numeric::interval_lib::policies
      < internal::Rounding_for_leda_bigfloat,
        internal::Checking_for_leda_bigfloat > > 
leda_bigfloat_interval;

} //end of namespace CGAL

#include <CGAL/leda_integer.h>
#include <CGAL/leda_rational.h>
#include <CGAL/leda_real.h>
#include <CGAL/leda_bigfloat.h>

namespace CGAL {

template <> class Algebraic_structure_traits< leda_bigfloat_interval >
    : public Algebraic_structure_traits_base< leda_bigfloat_interval,
                                            Field_with_sqrt_tag >  {
public:
    typedef Tag_false           Is_exact;
    typedef Tag_true            Is_numerical_sensitive;

    class Sqrt
        : public std::unary_function< Type, Type > {
    public:
        Type operator()( const Type& x ) const {
            return ::boost::numeric::sqrt(x);
        }
    };
};

template <> class Real_embeddable_traits< leda_bigfloat_interval >
    : public INTERN_RET::Real_embeddable_traits_base< leda_bigfloat_interval , CGAL::Tag_true > {
public:
  
    class Abs
        : public std::unary_function< Type, Type > {
    public:
        Type operator()( const Type& x ) const {
            return ::boost::numeric::abs(x);
        }
    };

    class To_double
        : public std::unary_function< Type, double > {
    public:
        double operator()( const Type& x ) const {
            return CGAL::to_double(::boost::numeric::median(x));
        }
    };

    class To_interval
        : public std::unary_function< Type, std::pair< double, double > > {
    public:
        std::pair<double, double> operator()( const Type& x ) const {            
            std::pair<double, double> lower_I(CGAL::to_interval(x.lower()));
            std::pair<double, double> upper_I(CGAL::to_interval(x.upper()));
            return std::pair< double, double >(
                    CGAL::min(lower_I.first , upper_I.first ),
                    CGAL::max(lower_I.second, upper_I.second));
        }
    };
};


// Coercion traits:
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(short      ,leda_bigfloat_interval)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(int        ,leda_bigfloat_interval)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(long       ,leda_bigfloat_interval)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(float      ,leda_bigfloat_interval)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(double     ,leda_bigfloat_interval)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(::leda::bigfloat   ,leda_bigfloat_interval)

template <>
struct Coercion_traits< leda_bigfloat_interval , ::leda::integer >{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_false Are_implicit_interoperable;
    
    typedef leda_bigfloat_interval Type;
    
    struct Cast{
        typedef Type result_type;
        Type operator()(const leda_bigfloat_interval& x)  const { return x;}
        Type operator()(const ::leda::integer& x) const {
            leda::bigfloat tmp(x);
            leda_bigfloat_interval result(
                    round(tmp,leda::bigfloat::get_precision(),leda::TO_N_INF),
                    round(tmp,leda::bigfloat::get_precision(),leda::TO_P_INF));
            CGAL_postcondition( result.lower() <= x );
            CGAL_postcondition( result.upper() >= x );
            return result; 
        }
    };
};

template <>
struct Coercion_traits< leda_bigfloat_interval , ::leda::rational >{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_false Are_implicit_interoperable;
    
    typedef leda_bigfloat_interval Type;
    
    struct Cast{
        typedef Type result_type;
        Type operator()(const leda_bigfloat_interval& x)  const { return x;}
        Type operator()(const ::leda::rational& x) const {
            long prec = ::leda::bigfloat::get_precision();
            leda_bigfloat_interval result (
                    leda_bigfloat::from_rational(x,prec,leda::TO_N_INF),
                    leda_bigfloat::from_rational(x,prec,leda::TO_P_INF));
            CGAL_postcondition( result.lower() <= x );
            CGAL_postcondition( result.upper() >= x );
            return result; 
        }
    };
};

template <>
struct Coercion_traits< leda_bigfloat_interval , ::leda::real >{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_false Are_implicit_interoperable;
    
    typedef leda_bigfloat_interval Type;
    
    struct Cast{
        typedef Type result_type;
        Type operator()(const leda_bigfloat_interval& x)  const { return x;}
        Type operator()(const ::leda::real& x) const {
            long current_prec = ::leda::bigfloat::get_precision();
            x.guarantee_relative_error(current_prec);
            leda_bigfloat_interval 
                result(x.get_lower_bound(), x.get_upper_bound());
            CGAL_postcondition( result.lower() <= x );
            CGAL_postcondition( result.upper() >= x );
            return result;
        }
    };
};

template <> struct Coercion_traits< ::leda::integer, leda_bigfloat_interval >
    :public Coercion_traits< leda_bigfloat_interval , ::leda::integer >{}; 

template <> struct Coercion_traits< ::leda::rational, leda_bigfloat_interval >
    :public Coercion_traits< leda_bigfloat_interval , ::leda::rational >{}; 

template <> struct Coercion_traits< ::leda::real, leda_bigfloat_interval >
    :public Coercion_traits< leda_bigfloat_interval , ::leda::real>{};        
        


template<>
class Interval_traits<leda_bigfloat_interval>
  :public internal::Interval_traits_base<leda_bigfloat_interval>
{
public: 
    typedef Interval_traits<leda_bigfloat_interval> Self; 
    typedef leda_bigfloat_interval Interval; 
    typedef leda::bigfloat Bound; 
    typedef CGAL::Tag_true Is_interval; 
    typedef CGAL::Tag_true With_empty_interval; 

    struct Construct :public std::binary_function<Bound,Bound,Interval>{
        Interval operator()( const Bound& l,const Bound& r) const {
            CGAL_precondition( l < r ); 
            return Interval(l,r);
        }
    };

    struct Lower :public std::unary_function<Interval,Bound>{
        Bound operator()( const Interval& a ) const {
            return a.lower();
        }
    };

    struct Upper :public std::unary_function<Interval,Bound>{
        Bound operator()( const Interval& a ) const {
            return a.upper();
        }
    };

    struct Width :public std::unary_function<Interval,Bound>{
        Bound operator()( const Interval& a ) const {
            return ::boost::numeric::width(a);
        }
    };

    struct Median :public std::unary_function<Interval,Bound>{
        Bound operator()( const Interval& a ) const {
            return ::boost::numeric::median(a);
        }
    };
    
    struct Norm :public std::unary_function<Interval,Bound>{
        Bound operator()( const Interval& a ) const {
            return ::boost::numeric::norm(a);
        }
    };

    struct Empty :public std::unary_function<Interval,bool>{
        bool operator()( const Interval& a ) const {
            return ::boost::numeric::empty(a);
        }
    };

    struct Singleton :public std::unary_function<Interval,bool>{
        bool operator()( const Interval& a ) const {
            return ::boost::numeric::singleton(a);
        }
    };

    struct Zero_in :public std::unary_function<Interval,bool>{
        bool operator()( const Interval& a ) const {
            return ::boost::numeric::in_zero(a);
        }
    };

    struct In :public std::binary_function<Bound,Interval,bool>{
        bool operator()( Bound x, const Interval& a ) const {
            return ::boost::numeric::in(x,a);
        }
    };

    struct Equal :public std::binary_function<Interval,Interval,bool>{
        bool operator()( const Interval& a, const Interval& b ) const {
            return ::boost::numeric::equal(a,b);
        }
    };
    
    struct Overlap :public std::binary_function<Interval,Interval,bool>{
        bool operator()( const Interval& a, const Interval& b ) const {
            return ::boost::numeric::overlap(a,b);
        }
    };
    
    struct Subset :public std::binary_function<Interval,Interval,bool>{
        bool operator()( const Interval& a, const Interval& b ) const {
            return ::boost::numeric::subset(a,b);
        }
    };
    
    struct Proper_subset :public std::binary_function<Interval,Interval,bool>{
        bool operator()( const Interval& a, const Interval& b ) const {
            return ::boost::numeric::proper_subset(a,b);
        }
    };
    
    struct Hull :public std::binary_function<Interval,Interval,Interval>{
        Interval operator()( const Interval& a, const Interval& b ) const {
            return ::boost::numeric::hull(a,b);
        }
    };
    
    struct Intersection :public std::binary_function<Interval,Interval,Interval>{
        Interval operator()( const Interval& a, const Interval& b ) const {
            Interval r = ::boost::numeric::intersect(a,b);      
            return r;
        }
    };
};

template<>
class Bigfloat_interval_traits<leda_bigfloat_interval>
    :public Interval_traits<leda_bigfloat_interval> 
{
  typedef leda_bigfloat_interval NT;
  typedef leda::bigfloat BF; 
public:
  typedef Bigfloat_interval_traits<leda_bigfloat_interval> Self;
  typedef CGAL::Tag_true Is_bigfloat_interval; 
  

//   struct Get_significant_bits : public std::unary_function<NT,long>{
//         long operator()( NT x) const {
//             CGAL_precondition(!Singleton()(x));
//             leda::bigfloat lower = x.lower();
//             leda::bigfloat upper = x.upper();
//             leda::integer lower_m = lower.get_significant();
//             leda::integer upper_m = upper.get_significant();
//             leda::integer lower_exp = lower.get_exponent();
//             leda::integer upper_exp = upper.get_exponent();
//             long shift = (upper_exp - lower_exp).to_long();
//             if(shift >= 0 ) upper_m = (upper_m <<  shift);
//             else            lower_m = (lower_m << -shift);
//             //CGAL_postcondition(lower_m.length() == upper_m.length());
//             leda::integer err = upper_m - lower_m; 
//             std::cout <<"LEDA: " << lower_m << " " << err << " " << std::endl; 
//             return CGAL::abs(lower_m.length()-err.length());
//         }
//     };

    
  struct Relative_precision: public std::unary_function<NT,long>{
    long operator()(const NT& x) const {
      CGAL_precondition(!Singleton()(x));
      CGAL_precondition(!CGAL::zero_in(x));

      leda::bigfloat w = Width()(x);
      w = leda::div(w,Lower()(x),Get_precision()(),leda::TO_P_INF); 
      return -leda::ilog2(w).to_long();
    }
  };
  
  struct Set_precision : public std::unary_function<long,long> {
    long operator()( long prec ) const {
      return BF::set_precision(prec); 
    }
  };
     
    struct Get_precision {
        // type for the \c AdaptableGenerator concept.
        typedef long  result_type;  
        long operator()() const {
            return BF::get_precision(); 
        }
    };
};


::leda::bigfloat inline relative_error(const leda_bigfloat_interval& x){
    if(in_zero(x)){
        return CGAL::abs(x).upper();
    }else{
        return (width(x) / CGAL::abs(x)).upper();
    }
}

leda_bigfloat_interval inline ipower(const leda_bigfloat_interval& x, int i ){
    return ::boost::numeric::pow(x,i);
}


} //namespace CGAL

#endif //  CGAL_LEDA_BIGFLOAT_INTERVAL_H