/usr/include/CGAL/leda_rational.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | // Copyright (c) 1999,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Andreas Fabri, Michael Hemmer
#ifndef CGAL_LEDA_RATIONAL_H
#define CGAL_LEDA_RATIONAL_H
#include <CGAL/number_type_basic.h>
#include <CGAL/leda_coercion_traits.h>
#include <CGAL/Interval_nt.h>
#include <CGAL/Needs_parens_as_product.h>
#include <utility>
#include <limits>
#include <CGAL/LEDA_basic.h>
#if CGAL_LEDA_VERSION < 500
# include <LEDA/rational.h>
# include <LEDA/interval.h>
#else
# include <LEDA/numbers/rational.h>
# if defined( _MSC_VER )
# pragma push_macro("ERROR")
# undef ERROR
# endif // _MSC_VER
# include <LEDA/numbers/interval.h>
# if defined( _MSC_VER )
# pragma pop_macro("ERROR")
# endif
#endif
#include <CGAL/leda_integer.h> // for GCD in Fraction_traits
namespace CGAL {
template <> class Algebraic_structure_traits< leda_rational >
: public Algebraic_structure_traits_base< leda_rational,
Field_tag > {
public:
typedef Tag_true Is_exact;
typedef Tag_false Is_numerical_sensitive;
// TODO: How to implement this without having sqrt?
// typedef INTERN_AST::Is_square_per_sqrt< Type >
// Is_square;
class Simplify
: public std::unary_function< Type&, void > {
public:
void operator()( Type& x) const {
x.normalize();
}
};
};
template <> class Real_embeddable_traits< leda_rational >
: public INTERN_RET::Real_embeddable_traits_base< leda_rational , CGAL::Tag_true > {
public:
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CGAL_LEDA_SCOPE::abs( x );
}
};
class Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
}
};
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT(Type,Comparison_result)
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
return x.to_double();
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
#if CGAL_LEDA_VERSION >= 501
CGAL_LEDA_SCOPE::interval temp(x);
std::pair<double, double> result(temp.lower_bound(),temp.upper_bound());
CGAL_assertion_code( double infinity=std::numeric_limits<double>::infinity(); )
CGAL_postcondition(result.first == -infinity || Type(result.first)<=x);
CGAL_postcondition(result.second == infinity || Type(result.second)>=x);
return result;
#else
CGAL_LEDA_SCOPE::bigfloat xnum = x.numerator();
CGAL_LEDA_SCOPE::bigfloat xden = x.denominator();
CGAL_LEDA_SCOPE::bigfloat xupp =
div(xnum,xden,53,CGAL_LEDA_SCOPE::TO_P_INF);
CGAL_LEDA_SCOPE::bigfloat xlow =
div(xnum,xden,53,CGAL_LEDA_SCOPE::TO_N_INF);
// really smallest positive double
double MinDbl = CGAL_LEDA_SCOPE::fp::compose_parts(0,0,0,1);
double low = xlow.to_double();
while(Type(low) > x) low = low - MinDbl;
double upp = xupp.to_double();
while(Type(upp) < x) upp = upp + MinDbl;
std::pair<double, double> result(low,upp);
CGAL_postcondition(Type(result.first)<=x);
CGAL_postcondition(Type(result.second)>=x);
return result;
#endif
// Original CGAL to_interval (seemed to be inferior)
// // There's no guarantee about the error of to_double(), so I add
// // 3 ulps...
// Protect_FPU_rounding<true> P (CGAL_FE_TONEAREST);
// Interval_nt_advanced approx (z.to_double());
// FPU_set_cw(CGAL_FE_UPWARD);
//
// approx += Interval_nt<false>::smallest();
// approx += Interval_nt<false>::smallest();
// approx += Interval_nt<false>::smallest();
// return approx.pair();
}
};
};
/*! \ingroup NiX_Fraction_traits_spec
* \brief Specialization of Fraction_traits for ::leda::rational
*/
template <>
class Fraction_traits< leda_rational > {
public:
typedef leda_rational Type;
typedef ::CGAL::Tag_true Is_fraction;
typedef leda_integer Numerator_type;
typedef Numerator_type Denominator_type;
typedef Algebraic_structure_traits< Numerator_type >::Gcd Common_factor;
class Decompose {
public:
typedef Type first_argument_type;
typedef Numerator_type& second_argument_type;
typedef Numerator_type& third_argument_type;
void operator () (
const Type& rat,
Numerator_type& num,
Numerator_type& den) {
num = rat.numerator();
den = rat.denominator();
}
};
class Compose {
public:
typedef Numerator_type first_argument_type;
typedef Numerator_type second_argument_type;
typedef Type result_type;
Type operator ()(
const Numerator_type& num ,
const Numerator_type& den ) {
Type result(num, den);
result.normalize();
return result;
}
};
};
template <class F>
class Output_rep< leda_rational, F> {
const leda_rational& t;
public:
//! initialize with a const reference to \a t.
Output_rep( const leda_rational& tt) : t(tt) {}
//! perform the output, calls \c operator\<\< by default.
std::ostream& operator()( std::ostream& out) const {
switch (get_mode(out)) {
case IO::PRETTY:{
if(t.denominator() == leda_integer(1))
return out <<t.numerator();
else
return out << t.numerator()
<< "/"
<< t.denominator();
break;
}
default:
return out << t.numerator()
<< "/"
<< t.denominator();
}
}
};
template <>
struct Needs_parens_as_product< leda_rational >{
bool operator()( leda_rational t){
if (t.denominator() != 1 )
return true;
else
return needs_parens_as_product(t.numerator()) ;
}
};
template <>
class Output_rep< leda_rational, Parens_as_product_tag > {
const leda_rational& t;
public:
// Constructor
Output_rep( const leda_rational& tt) : t(tt) {}
// operator
std::ostream& operator()( std::ostream& out) const {
Needs_parens_as_product< leda_rational > needs_parens_as_product;
if (needs_parens_as_product(t))
return out <<"("<< oformat(t) <<")";
else
return out << oformat(t);
}
};
template < >
class Benchmark_rep< leda_rational > {
const leda_rational& t;
public:
//! initialize with a const reference to \a t.
Benchmark_rep( const leda_rational& tt) : t(tt) {}
//! perform the output, calls \c operator\<\< by default.
std::ostream& operator()( std::ostream& out) const {
return
out << "Rational(" << t.numerator() << ","
<< t.denominator() << ")";
}
static std::string get_benchmark_name() {
return "Rational";
}
};
} //namespace CGAL
// Unary + is missing for leda::rational
namespace leda{
inline rational operator+( const rational& i) { return i; }
}
//since types are included by LEDA_coercion_traits.h:
#include <CGAL/leda_integer.h>
#include <CGAL/leda_bigfloat.h>
#include <CGAL/leda_real.h>
#include <CGAL/LEDA_arithmetic_kernel.h>
#endif // CGAL_LEDA_RATIONAL_H
|