/usr/include/CGAL/leda_real.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | // Copyright (c) 1999,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra, Michael Hemmer
#ifndef CGAL_LEDA_REAL_H
#define CGAL_LEDA_REAL_H
#include <CGAL/number_type_basic.h>
#include <CGAL/leda_coercion_traits.h>
#include <CGAL/utils.h>
#include <CGAL/Interval_nt.h>
#include <utility>
#include <CGAL/LEDA_basic.h>
#if CGAL_LEDA_VERSION < 500
#include <LEDA/real.h>
#include <LEDA/interval.h>
#else
#include <LEDA/numbers/real.h>
#endif
namespace CGAL {
template <> class Algebraic_structure_traits< leda_real >
#if CGAL_LEDA_VERSION >= 500
: public Algebraic_structure_traits_base< leda_real,
Field_with_root_of_tag > {
#else
: public Algebraic_structure_traits_base< leda_real,
Field_with_kth_root_tag > {
#endif
public:
typedef Tag_true Is_exact;
typedef Tag_true Is_numerical_sensitive;
class Sqrt
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CGAL_LEDA_SCOPE::sqrt( x );
}
};
class Kth_root
: public std::binary_function<int, Type, Type> {
public:
Type operator()( int k,
const Type& x) const {
CGAL_precondition_msg(k > 0, "'k' must be positive for k-th roots");
return CGAL_LEDA_SCOPE::root( x, k);
}
};
// Root_of is only available for LEDA versions >= 5.0
#if CGAL_LEDA_VERSION >= 500
class Root_of {
public:
typedef Type result_type;
// typedef leda_rational Boundary;
private:
template< class ForwardIterator >
inline
CGAL_LEDA_SCOPE::polynomial<Type>
make_polynomial(ForwardIterator begin,
ForwardIterator end) const {
CGAL_LEDA_SCOPE::growing_array<Type> coeffs;
for(ForwardIterator it = begin; it < end; it++)
coeffs.push_back(*it);
return CGAL_LEDA_SCOPE::polynomial<Type>(coeffs);
}
public:
template <class ForwardIterator>
Type operator()( int k,
ForwardIterator begin,
ForwardIterator end) const {
return CGAL_LEDA_SCOPE::diamond(k,make_polynomial(begin,end));
}
/* template <class ForwardIterator>
Type operator()( leda_rational lower,
leda_rational upper,
ForwardIterator begin,
ForwardIterator end) const {
return CGAL_LEDA_SCOPE::diamond(lower,upper,
make_polynomial(begin,end));
};*/
};
#endif
};
template <> class Real_embeddable_traits< leda_real >
: public INTERN_RET::Real_embeddable_traits_base< leda_real , CGAL::Tag_true > {
public:
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CGAL_LEDA_SCOPE::abs( x );
}
};
class Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
}
};
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
Comparison_result )
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
// this call is required to get reasonable values for the double
// approximation (as of LEDA-4.3.1)
x.improve_approximation_to(53);
return x.to_double();
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
#if CGAL_LEDA_VERSION >= 501
leda_bigfloat bnum = x.to_bigfloat();
leda_bigfloat berr = x.get_bigfloat_error();
double dummy;
double low = CGAL_LEDA_SCOPE::sub(bnum, berr, 53, CGAL_LEDA_SCOPE::TO_N_INF).to_double(dummy,
CGAL_LEDA_SCOPE::TO_N_INF);
double upp = CGAL_LEDA_SCOPE::add(bnum, berr, 53, CGAL_LEDA_SCOPE::TO_P_INF).to_double(dummy,
CGAL_LEDA_SCOPE::TO_P_INF);
std::pair<double, double> result(low, upp);
CGAL_postcondition(Type(result.first)<=x);
CGAL_postcondition(Type(result.second)>=x);
return result;
#else
CGAL_LEDA_SCOPE::interval temp(x); //bug in leda
std::pair<double, double> result(temp.lower_bound(),temp.upper_bound());
CGAL_postcondition_msg(Type(result.first)<=x,
"Known bug in LEDA <=5.0");
CGAL_postcondition_msg(Type(result.first)>=x,
"Known bug in LEDA <=5.0");
return result;
// If x is very small and we look closer at x
// (i.e. comparison or to_double() or to_bigfloat())
// then x gets 0, which is really bad.
// Therefore we do not touch x.
// The LEDA interval above returns (-inf, inf) for
// very small x, which is also bad and leads to
// problems lateron. The postcondition fails in this
// situation.
#endif
// Original CGAL to_interval:
// Protect_FPU_rounding<true> P (CGAL_FE_TONEAREST);
// double approx = z.to_double();
// double rel_error = z.get_double_error();
// FPU_set_cw(CGAL_FE_UPWARD);
// Interval_nt_advanced ina(-rel_error,rel_error);
// ina += 1;
// ina *= approx;
// return ina.pair();
}
};
};
template <>
class Output_rep< ::leda::real > {
const ::leda::real& t;
public:
//! initialize with a const reference to \a t.
Output_rep( const ::leda::real& tt) : t(tt) {}
//! perform the output, calls \c operator\<\< by default.
std::ostream& operator()( std::ostream& out) const {
out << CGAL_NTS to_double(t);
return out;
}
};
template <>
class Output_rep< ::leda::real, CGAL::Parens_as_product_tag > {
const ::leda::real& t;
public:
//! initialize with a const reference to \a t.
Output_rep( const ::leda::real& tt) : t(tt) {}
//! perform the output, calls \c operator\<\< by default.
std::ostream& operator()( std::ostream& out) const {
if (t<0) out << "(" << ::CGAL::oformat(t)<<")";
else out << ::CGAL::oformat(t);
return out;
}
};
} //namespace CGAL
// Unary + is missing for leda::real
namespace leda {
inline real operator+( const real& i) { return i; }
} // namespace leda
//since types are included by LEDA_coercion_traits.h:
#include <CGAL/leda_integer.h>
#include <CGAL/leda_rational.h>
#include <CGAL/leda_bigfloat.h>
#include <CGAL/LEDA_arithmetic_kernel.h>
#endif // CGAL_LEDA_REAL_H
|