This file is indexed.

/usr/include/CGAL/long_double.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright (c) 2005,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Sylvain Pion, Michael Hemmer

#ifndef CGAL_LONG_DOUBLE_H
#define CGAL_LONG_DOUBLE_H

#include <CGAL/number_type_basic.h>

#include <utility>
#include <cmath>
#ifdef CGAL_CFG_IEEE_754_BUG
#  include <CGAL/IEEE_754_unions.h>
#endif

// #include <CGAL/FPU.h>
#include <CGAL/Interval_nt.h>

namespace CGAL {

// Is_valid moved to top, since used by is_finite
#ifdef CGAL_CFG_IEEE_754_BUG

#define CGAL_EXPONENT_DOUBLE_MASK   0x7ff00000
#define CGAL_MANTISSA_DOUBLE_MASK   0x000fffff

inline
bool
is_finite_by_mask_long_double(unsigned int h)
{
  unsigned int e = h & CGAL_EXPONENT_DOUBLE_MASK;
  return ( ( e ^ CGAL_EXPONENT_DOUBLE_MASK ) != 0 );
}

inline
bool
is_nan_by_mask_long_double(unsigned int h, unsigned int l)
{
  if ( is_finite_by_mask_long_double(h) )
      return false;
  return (( h & CGAL_MANTISSA_DOUBLE_MASK ) != 0) || (( l & 0xffffffff ) != 0);
}

template<>
class Is_valid< long double >
  : public std::unary_function< long double, bool > {
  public :
    bool operator()( const long double& x ) const {
      double d = x;
      IEEE_754_double* p = reinterpret_cast<IEEE_754_double*>(&d);
      return ! ( is_nan_by_mask_long_double( p->c.H, p->c.L ));
    }
};

#else

template<>
class Is_valid< long double >
  : public std::unary_function< long double, bool > {
  public :
    bool operator()( const long double& x ) const {
      return (x == x);
    }
};

#endif




template <> class Algebraic_structure_traits< long double >
  : public Algebraic_structure_traits_base< long double,
                                            Field_with_kth_root_tag >  {
  public:
    typedef Tag_false            Is_exact;
    typedef Tag_true             Is_numerical_sensitive;

    class Sqrt
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
          return std::sqrt( x );
        }
    };

    class Kth_root
      :public std::binary_function<int, Type, Type > {
      public:
        Type operator()( int k,
                                        const Type& x) const {
          CGAL_precondition_msg( k > 0,
                                    "'k' must be positive for k-th roots");
          return std::pow(x, (long double)1.0 / (long double)(k));
        };
    };

};

template <> class Real_embeddable_traits< long double >
  : public INTERN_RET::Real_embeddable_traits_base< long double , CGAL::Tag_true > {
  public:

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {
          // The conversion long double to double does not always follow the
          // rounding mode (e.g. on MacIntel/g++-4.0.2).  So let's do a naive
          // conversion to double, then widen the interval.
          return (Interval_nt<>((double)x)+Interval_nt<>::smallest()).pair();
#if 0
          // We hope that the long double -> double conversion
          // follows the current rounding mode.
          Protect_FPU_rounding<true> P(CGAL_FE_UPWARD);
          volatile long double mx = -x; // needed otherwise the conversion can
                                        // get factorized between d and -d...
          if (x>0)
            return std::make_pair(- static_cast<double>(CGAL_IA_FORCE_TO_DOUBLE(mx)),
                                  static_cast<double>(CGAL_IA_FORCE_TO_DOUBLE(x)));
          else
            return std::make_pair((double) CGAL_IA_FORCE_TO_DOUBLE(x),
                                  - (double) CGAL_IA_FORCE_TO_DOUBLE(mx));
#endif
        }
    };

// Is_finite depends on platform
    class Is_finite
      : public std::unary_function< Type, bool > {
      public:
        bool operator()( const Type& x ) const {
#ifdef CGAL_CFG_IEEE_754_BUG
          Type d = x;
          IEEE_754_double* p = reinterpret_cast<IEEE_754_double*>(&d);
          return is_finite_by_mask_long_double( p->c.H );
#else
          return (x == x) && (is_valid(x-x));
#endif
        }
    };

};

} //namespace CGAL

#endif // CGAL_LONG_DOUBLE_H