This file is indexed.

/usr/include/CGAL/minkowski_sum_2.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
// Copyright (c) 2006  Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// Author(s) : Ron Wein   <wein_r@yahoo.com>
//             Efi Fogel  <efifogel@gmail.com>

#ifndef CGAL_MINKOWSKI_SUM_2_H
#define CGAL_MINKOWSKI_SUM_2_H

#include <CGAL/basic.h>
#include <CGAL/Polygon_with_holes_2.h>

#include <CGAL/Minkowski_sum_2/Hole_filter_2.h>
#include <CGAL/Minkowski_sum_2/Minkowski_sum_by_reduced_convolution_2.h>
#include <CGAL/Minkowski_sum_2/Minkowski_sum_conv_2.h>
#include <CGAL/Minkowski_sum_2/Minkowski_sum_decomp_2.h>
#include <list>

namespace CGAL {

/*!
 * Computes the Minkowski sum \f$ P \oplus Q\f$ of two given polygons.
 * The function computes the reduced convolution of the two polygons and
 * extracts those loops of the convolution which are part of the Minkowsi
 * sum. This method works very efficiently, regardless of whether `P` and
 * `Q` are convex or non-convex.
 * Note that as the input polygons may not be convex, their Minkowski
 * sum may not be a simple polygon. The result is therefore represented
 * as a polygon with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \pre Both `P` and `Q` are simple, counterclockwise-oriented polygons.
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_by_reduced_convolution_2(const Polygon_2<Kernel_,
                                       Container_>& pgn1,
                                       const Polygon_2<Kernel_,
                                       Container_>& pgn2)
{
  typedef Kernel_                                    Kernel;
  typedef Container_                                 Container;

  Minkowski_sum_by_reduced_convolution_2<Kernel, Container> mink_sum;
  Polygon_2<Kernel, Container>                              sum_bound;
  std::list<Polygon_2<Kernel, Container> >                  sum_holes;

  if (pgn1.size() > pgn2.size())
    mink_sum(pgn1, pgn2, sum_bound, std::back_inserter(sum_holes));
  else mink_sum(pgn2, pgn1, sum_bound, std::back_inserter(sum_holes));

  return (Polygon_with_holes_2<Kernel,Container>(sum_bound,
                                                 sum_holes.begin(),
                                                 sum_holes.end()));
}

/*!
 * Computes the Minkowski sum \f$ P \oplus Q\f$ of two given polygons with
 * holes.
 * The function computes the reduced convolution of the two polygons and
 * extracts those loops of the convolution which are part of the Minkowsi
 * sum. This method works very efficiently, regardless of whether `P` and
 * `Q` are convex or non-convex.
 * The result is also represented as a polygon with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_by_reduced_convolution_2
(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
 const Polygon_with_holes_2<Kernel_, Container_>& pgn2)
{
  typedef Kernel_                                    Kernel;
  typedef Container_                                 Container;

  Hole_filter_2<Kernel, Container> hole_filter;

  Polygon_with_holes_2<Kernel, Container> filtered_pgn1;
  Polygon_with_holes_2<Kernel, Container> filtered_pgn2;

  hole_filter(pgn1, pgn2, filtered_pgn1);
  hole_filter(pgn2, pgn1, filtered_pgn2);

  Minkowski_sum_by_reduced_convolution_2<Kernel, Container> mink_sum;
  Polygon_2<Kernel, Container>                              sum_bound;
  std::list<Polygon_2<Kernel, Container> >                  sum_holes;

  mink_sum(filtered_pgn1, filtered_pgn2, sum_bound,
           std::back_inserter(sum_holes));

  return (Polygon_with_holes_2<Kernel,Container>(sum_bound,
                                                 sum_holes.begin(),
                                                 sum_holes.end()));
}

/*!
 * Computes the Minkowski sum \f$ P \oplus Q\f$ of a simple polygon and a
 * polygon with holes.
 * The function computes the reduced convolution of the two polygons and
 * extracts those loops of the convolution which are part of the Minkowsi
 * sum. This method works very efficiently, regardless of whether `P` and
 * `Q` are convex or non-convex.
 * The result is also represented as a polygon with holes.
 * \param[in] pgn1 The simple polygon.
 * \param[in] pgn2 The polygon with holes.
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_by_reduced_convolution_2
(const Polygon_2<Kernel_, Container_>& pgn1,
 const Polygon_with_holes_2<Kernel_, Container_>& pgn2)
{
  typedef Kernel_                                    Kernel;
  typedef Container_                                 Container;

  Hole_filter_2<Kernel, Container> hole_filter;
  Polygon_with_holes_2<Kernel, Container> filtered_pgn2;
  hole_filter(pgn2, pgn1, filtered_pgn2);
  Minkowski_sum_by_reduced_convolution_2<Kernel, Container> mink_sum;
  Polygon_2<Kernel, Container>                              sum_bound;
  std::list<Polygon_2<Kernel, Container> >                  sum_holes;
  mink_sum(pgn1, filtered_pgn2, sum_bound, std::back_inserter(sum_holes));
  return (Polygon_with_holes_2<Kernel,Container>(sum_bound,
                                                 sum_holes.begin(),
                                                 sum_holes.end()));
}

/*!
 * Computes the Minkowski sum \f$ P \oplus Q\f$ of a simple polygon and a
 * polygon with holes.
 * The function computes the reduced convolution of the two polygons and
 * extracts those loops of the convolution which are part of the Minkowsi
 * sum. This method works very efficiently, regardless of whether `P` and
 * `Q` are convex or non-convex.
 * The result is also represented as a polygon with holes.
 * \param[in] pgn1 The polygon with holes.
 * \param[in] pgn2 The simple polygon.
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_by_reduced_convolution_2
(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
 const Polygon_2<Kernel_, Container_>& pgn2)
{ return minkowski_sum_by_reduced_convolution_2(pgn2, pgn1); }

/*!
 * Compute the Minkowski sum of two simple polygons using the (full)
 * convolution method.
 * Note that as the input polygons may not be convex, their Minkowski sum may
 * not be a simple polygon. The result is therefore represented as a polygon
 * with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_by_full_convolution_2(const Polygon_2<Kernel_, Container_>& pgn1,
                                    const Polygon_2<Kernel_, Container_>& pgn2)
{
  typedef Kernel_                                    Kernel;
  typedef Container_                                 Container;

  Minkowski_sum_by_convolution_2<Kernel, Container> mink_sum;
  Polygon_2<Kernel, Container>                      sum_bound;
  std::list<Polygon_2<Kernel, Container> >          sum_holes;

  if (pgn1.size() > pgn2.size())
    mink_sum(pgn1, pgn2, sum_bound, std::back_inserter(sum_holes));
  else mink_sum(pgn2, pgn1, sum_bound, std::back_inserter(sum_holes));
  return (Polygon_with_holes_2<Kernel, Container>(sum_bound,
                                                  sum_holes.begin(),
                                                  sum_holes.end()));
}

/*!
 * Compute the Minkowski sum of two simple polygons using the convolution
 * method. This function defaults to calling the reduced convolution method,
 * as it is more efficient in most cases.
 * Note that as the input polygons may not be convex, their Minkowski sum may
 * not be a simple polygon. The result is therefore represented as a polygon
 * with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \return The resulting polygon with holes, representing the sum.
 *
 * \sa `CGAL::minkowski_sum_by_reduced_convolution_2()`
 * \sa `CGAL::minkowski_sum_by_full_convolution_2()`
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_2<Kernel_, Container_>& pgn1,
                const Polygon_2<Kernel_, Container_>& pgn2)
{ return minkowski_sum_by_reduced_convolution_2(pgn1, pgn2); }

/*!
 * Compute the Minkowski sum of two polygons with holes using the convolution
 * method. This function defaults to calling the reduced convolution method,
 * as it is more efficient in most cases.
 * Note that the result may not be a simple polygon. The result is therefore
 * represented as a polygon with holes.
 * \param[in] pgn1 The first polygon with holes.
 * \param[in] pgn2 The second polygon with holes.
 * \return The resulting polygon with holes, representing the sum.
 *
 * \sa `CGAL::minkowski_sum_by_reduced_convolution_2()`
 * \sa `CGAL::minkowski_sum_by_full_convolution_2()`
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
                const Polygon_with_holes_2<Kernel_, Container_>& pgn2)
{ return minkowski_sum_by_reduced_convolution_2(pgn1, pgn2); }

/*!
 * Compute the Minkowski sum of a simple polygon and a polygon with holes
 * using the convolution method. This function defaults to calling the reduced
 * convolution method, as it is more efficient in most cases.
 * Note that the result may not be a simple polygon. The result is therefore
 * represented as a polygon with holes.
 * \param[in] pgn1 The simple polygon.
 * \param[in] pgn2 The polygon with holes.
 * \return The resulting polygon with holes, representing the sum.
 *
 * \sa `CGAL::minkowski_sum_by_reduced_convolution_2()`
 * \sa `CGAL::minkowski_sum_by_full_convolution_2()`
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_2<Kernel_, Container_>& pgn1,
                const Polygon_with_holes_2<Kernel_, Container_>& pgn2)
{ return minkowski_sum_by_reduced_convolution_2(pgn1, pgn2); }

  /*!
 * Compute the Minkowski sum of a simple polygon and a polygon with holes
 * using the convolution method. This function defaults to calling the reduced
 * convolution method, as it is more efficient in most cases.
 * Note that the result may not be a simple polygon. The result is therefore
 * represented as a polygon with holes.
 * \param[in] pgn1 The polygon with holes.
 * \param[in] pgn2 The simple polygon.
 * \return The resulting polygon with holes, representing the sum.
 *
 * \sa `CGAL::minkowski_sum_by_reduced_convolution_2()`
 * \sa `CGAL::minkowski_sum_by_full_convolution_2()`
 */
template <typename Kernel_, typename Container_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
                const Polygon_2<Kernel_, Container_>& pgn2)
{ return minkowski_sum_by_reduced_convolution_2(pgn1, pgn2); }

/*!
 * Compute the Minkowski sum of two simple polygons by decomposing each
 * polygon to convex sub-polygons and computing the union of the pairwise
 * Minkowski sums of the sub-polygons.
 * Note that as the input polygons may not be convex, their Minkowski sum may
 * not be a simple polygon. The result is therefore represented as a polygon
 * with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_2<Kernel_, Container_>& pgn1,
                const Polygon_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy)
{
  typename Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                            Container_>::Traits_2 traits;
  return minkowski_sum_2(pgn1, pgn2, decomposition_strategy, traits);
}

/*!
 * Compute the Minkowski sum of two simple polygons by decomposing each
 * polygon to convex sub-polygons and computing the union of the pairwise
 * Minkowski sums of the sub-polygons.
 * Note that as the input polygons may not be convex, their Minkowski sum may
 * not be a simple polygon. The result is therefore represented as a polygon
 * with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \param[in] traits The traits.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_2<Kernel_, Container_>& pgn1,
                const Polygon_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy,
                const typename
                Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                                 Container_>::Traits_2& traits)
{
  typedef Container_                            Container;
  typedef DecompositionStrategy_                Decomposition_strategy;

  Minkowski_sum_by_decomposition_2<Decomposition_strategy, Container>
    mink_sum(decomposition_strategy, traits);
  return mink_sum(pgn1, pgn2);
}

/*!
 * Compute the Minkowski sum of two polygon with holes by decomposing each
 * polygon to convex sub-polygons and computing the union of the pairwise
 * Minkowski sums of the sub-polygons.
 * The result is also represented as a polygon with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
                const Polygon_with_holes_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy)
{
  typename Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                            Container_>::Traits_2 traits;
  return minkowski_sum_2(pgn1, pgn2, decomposition_strategy, traits);
}

/*!
 * Compute the Minkowski sum of two polygon with holes by decomposing each
 * polygon to convex sub-polygons and computing the union of the pairwise
 * Minkowski sums of the sub-polygons.
 * The result is also represented as a polygon with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \param[in] traits The traits.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
                const Polygon_with_holes_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy,
                const typename
                Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                                 Container_>::Traits_2& traits)
{
  typedef Kernel_                               Kernel;
  typedef Container_                            Container;
  typedef DecompositionStrategy_                Decomposition_strategy;

  Minkowski_sum_by_decomposition_2<Decomposition_strategy, Container>
    mink_sum(decomposition_strategy, traits);
  Hole_filter_2<Kernel, Container> hole_filter;
  Polygon_with_holes_2<Kernel,Container> filtered_pgn1;
  Polygon_with_holes_2<Kernel,Container> filtered_pgn2;
  hole_filter(pgn1, pgn2, filtered_pgn1);
  hole_filter(pgn2, pgn1, filtered_pgn2);
  return mink_sum(filtered_pgn1, filtered_pgn2);
}

/*!
 * Compute the Minkowski sum of a simple polygon and a polygon with holes
 * by decomposing each polygon to convex sub-polygons and computing the union
 * of the pairwise Minkowski sums of the sub-polygons.  The result is also
 * represented as a polygon with holes.
 * \param[in] pgn1 The first polygon.
 * \param[in] pgn2 The second polygon.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_2<Kernel_, Container_>& pgn1,
                const Polygon_with_holes_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy)
{
  typename Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                            Container_>::Traits_2 traits;
  return minkowski_sum_2(pgn1, pgn2, decomposition_strategy, traits);
}

/*!
 * Compute the Minkowski sum of a simple polygon and a polygon with holes
 * by decomposing each polygon to convex sub-polygons and computing the union
 * of the pairwise Minkowski sums of the sub-polygons.  The result is also
 * represented as a polygon with holes.
 * \param[in] pgn1 The simple polygon.
 * \param[in] pgn2 The polygon with holes.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \param[in] traits The traits.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_2<Kernel_, Container_>& pgn1,
                const Polygon_with_holes_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy,
                const typename
                Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                                 Container_>::Traits_2& traits)
{
  typedef Kernel_                               Kernel;
  typedef Container_                            Container;
  typedef DecompositionStrategy_                Decomposition_strategy;

  Minkowski_sum_by_decomposition_2<Decomposition_strategy, Container>
    mink_sum(decomposition_strategy, traits);
  Hole_filter_2<Kernel, Container> hole_filter;
  Polygon_with_holes_2<Kernel,Container> filtered_pgn2;
  hole_filter(pgn2, pgn1, filtered_pgn2);
  return mink_sum(pgn1, filtered_pgn2);
}

/*!
 * Compute the Minkowski sum of a simple polygon and a polygon with holes
 * by decomposing each polygon to convex sub-polygons and computing the union
 * of the pairwise Minkowski sums of the sub-polygons.  The result is also
 * represented as a polygon with holes.
 * \param[in] pgn1 The second polygon.
 * \param[in] pgn2 The first polygon.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
                const Polygon_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy)
{
  typename Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                            Container_>::Traits_2 traits;
  return minkowski_sum_2(pgn1, pgn2, decomposition_strategy, traits);
}

/*!
 * Compute the Minkowski sum of a simple polygon and a polygon with holes
 * by decomposing each polygon to convex sub-polygons and computing the union
 * of the pairwise Minkowski sums of the sub-polygons.  The result is also
 * represented as a polygon with holes.
 * \param[in] pgn1 The polygon with holes.
 * \param[in] pgn2 The simple polygon.
 * \param[in] decomposition_strategy A functor for decomposing polygons.
 * \param[in] traits The traits.
 * \return The resulting polygon with holes, representing the sum.
 */
template <typename Kernel_, typename Container_,
          typename DecompositionStrategy_>
Polygon_with_holes_2<Kernel_, Container_>
minkowski_sum_2(const Polygon_with_holes_2<Kernel_, Container_>& pgn1,
                const Polygon_2<Kernel_, Container_>& pgn2,
                const DecompositionStrategy_& decomposition_strategy,
                const typename
                Minkowski_sum_by_decomposition_2<DecompositionStrategy_,
                                                 Container_>::Traits_2& traits)
{ return minkowski_sum_2(pgn2, pgn1, decomposition_strategy, traits); }

} //namespace CGAL

#endif