This file is indexed.

/usr/include/CGAL/mpz_class.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Copyright (c) 2002,2003,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Sylvain Pion, Michael Hemmer

#ifndef CGAL_MPZ_CLASS_H
#define CGAL_MPZ_CLASS_H

#include <CGAL/number_type_basic.h>
#include <CGAL/gmpxx_coercion_traits.h>
#include <CGAL/Modular_traits.h>


// This file gathers the necessary adaptors so that the following
// C++ number types that come with GMP can be used by CGAL :
// - mpz_class

// Note that GMP++ use the expression template mechanism, which makes things
// a little bit complicated in order to make square(x+y) work for example.
// Reading gmpxx.h shows that ::__gmp_expr<T, T> is the mp[zqf]_class proper,
// while ::__gmp_expr<T, U> is the others "expressions".


#define CGAL_CHECK_GMP_EXPR                                             \
    CGAL_static_assertion(                                                \
            (::boost::is_same< ::__gmp_expr< T , T >,Type>::value ));

namespace CGAL {

// AST for mpz_class

template<>
class Algebraic_structure_traits< mpz_class >
  :public Algebraic_structure_traits_base<  mpz_class , Euclidean_ring_tag > {
public:
    typedef mpz_class           Type;
    typedef Euclidean_ring_tag  Algebraic_category;
    typedef Tag_true            Is_exact;
    typedef Tag_false           Is_numerical_sensitive;

    struct Is_zero: public std::unary_function< mpz_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR;
            return ::sgn(x) == 0;
        }
    };

    struct Is_one: public std::unary_function< mpz_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR;
            return x == 1;
        }
    };

    struct Simplify: public std::unary_function< mpz_class , void > {
        template <class T, class U>
        void operator()( const ::__gmp_expr< T ,U >&) const {
            CGAL_CHECK_GMP_EXPR;
        }
    };

    struct Square: public std::unary_function< mpz_class , mpz_class > {
        mpz_class operator()( const mpz_class& x) const {
            return x*x;
        }
    };

    struct Unit_part: public std::unary_function< mpz_class , mpz_class > {
        mpz_class operator()( const mpz_class& x) const {
            return (x < 0) ? -1 : 1;
        }
    };



    struct Integral_division:
        public std::binary_function< mpz_class , mpz_class, mpz_class > {
        template <typename T,  typename U1, typename U2>
        mpz_class operator()(
                const ::__gmp_expr< T , U1 >& x,
                const ::__gmp_expr< T , U2 >& y) const {
            CGAL_CHECK_GMP_EXPR;
            mpz_class result = x / y;
            CGAL_precondition_msg( result * y == x,
            "'x' must be divisible by 'y' in "
            "Algebraic_structure_traits<mpz_class>::Integral_div()(x,y)" );
            return result;
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    struct Gcd : public std::binary_function< mpz_class, mpz_class, mpz_class > {
        mpz_class operator()(
                const mpz_class& x,
                const mpz_class& y) const {
            mpz_class c;
            mpz_gcd(c.get_mpz_t(),x.get_mpz_t(), y.get_mpz_t() );
            return c;
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    struct Div : public std::binary_function< mpz_class, mpz_class, mpz_class > {
        template <typename T,  typename U1, typename U2>
        mpz_class operator()(
                const ::__gmp_expr< T , U1 >& x,
                const ::__gmp_expr< T , U2 >& y) const {
            CGAL_CHECK_GMP_EXPR;
            return x / y;
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    struct Mod : public std::binary_function< mpz_class, mpz_class, mpz_class > {
        template <typename T,  typename U1, typename U2>
        mpz_class operator()(
                const ::__gmp_expr< T , U1 >& x,
                const ::__gmp_expr< T , U2 >& y) const {
            CGAL_CHECK_GMP_EXPR;
            return x % y;
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };
    struct Div_mod {
        typedef mpz_class    first_argument_type;
        typedef mpz_class    second_argument_type;
        typedef mpz_class&   third_argument_type;
        typedef mpz_class&   fourth_argument_type;
        typedef void         result_type;
        void operator()(
                const mpz_class& x,
                const mpz_class& y,
                mpz_class& q,
                mpz_class& r
        ) const {
            typedef Algebraic_structure_traits<mpz_class> Traits;
                Traits::Div  actual_div;
                Traits::Mod  actual_mod;
                q = actual_div( x, y );
                r = actual_mod( x, y );
                // use mpz_tdiv_qr to do both at once
                return;
            }
    };


    struct Sqrt: public std::unary_function< mpz_class , mpz_class > {
        template <typename T, typename U>
        mpz_class operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR;
            return ::sqrt(x);
        }
    };


    /*struct Is_square: public std::binary_function< mpz_class , mpz_class& , bool > {
        template <typename T, typename U>
        bool operator()(
                const ::__gmp_expr< T , U >& x,
                mpz_class&                              r){
            r = ::sqrt(x);
            return (r*r==x) ? true : false;
        }
        template <typename T, typename U>
        bool operator()(const ::__gmp_expr< T , U >& x){
            mpz_class r = ::sqrt(x);
            return (r*r==x) ? true : false;
        }
        };*/
};

// RET for mpz_class
template<>
class Real_embeddable_traits< mpz_class  >
    : public INTERN_RET::Real_embeddable_traits_base< mpz_class , CGAL::Tag_true > {
public:

    struct Is_zero: public std::unary_function< mpz_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR;
            return ::sgn(x) == 0;
        }
    };
    struct Is_finite: public std::unary_function<mpz_class,bool> {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& ) const {
            CGAL_CHECK_GMP_EXPR;
            return true;
        }
    };

    struct Is_positive: public std::unary_function< mpz_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR;
            return ::sgn(x) > 0;
        }
    };

    struct Is_negative: public std::unary_function< mpz_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR;
            return ::sgn(x) < 0;
        }
    };

    struct Abs: public std::unary_function< mpz_class , mpz_class > {
        template <typename T, typename U>
        mpz_class operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR;
            return ::abs(x);
        }
    };

    struct Sgn
        : public std::unary_function< mpz_class, ::CGAL::Sign > {
    public:
        template <typename T, typename U>
        ::CGAL::Sign operator()( const ::__gmp_expr< T , U >& x ) const {
            CGAL_CHECK_GMP_EXPR;
            return (::CGAL::Sign) ::sgn( x );
        }
    };

    struct Compare
        : public std::binary_function< mpz_class, mpz_class, Comparison_result > {
        template <typename T,  typename U1, typename U2>
        Comparison_result operator()(
                const ::__gmp_expr< T , U1 >& x,
                const ::__gmp_expr< T , U2 >& y ) const {
            CGAL_CHECK_GMP_EXPR;
            // cmp returns any int value, not just -1/0/1...
            return (Comparison_result) CGAL_NTS sign( ::cmp(x, y) );
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT
        ( Type, Comparison_result)
    };

    struct To_double
        : public std::unary_function< mpz_class, double > {
        double operator()( const mpz_class& x ) const {
            return x.get_d();
        }
    };

    struct To_interval

        : public std::unary_function< mpz_class, std::pair< double, double > > {
        std::pair<double, double>
        operator()( const mpz_class& x ) const {
            mpfr_t y;
            mpfr_init2 (y, 53); /* Assume IEEE-754 */
            mpfr_set_z (y, x.get_mpz_t(), GMP_RNDD);
            double i = mpfr_get_d (y, GMP_RNDD); /* EXACT but can overflow */
            mpfr_set_z (y, x.get_mpz_t(), GMP_RNDU);
            double s = mpfr_get_d (y, GMP_RNDU); /* EXACT but can overflow */
            mpfr_clear (y);
            return std::pair<double, double>(i, s);
        }
    };
};

/*! \ingroup NiX_Modular_traits_spec
 *  \brief a model of concept ModularTraits, 
 *  specialization of NiX::Modular_traits. 
 */
template<>
class Modular_traits< mpz_class > {
public:
  typedef mpz_class NT;
  typedef CGAL::Tag_true Is_modularizable;
  typedef Residue Residue_type;

  struct Modular_image{
    Residue_type operator()(const mpz_class& a){
      NT tmp(CGAL::mod(a,NT(Residue::get_current_prime())));
      return CGAL::Residue(int(mpz_get_si(tmp.get_mpz_t())));
    }
  };
  struct Modular_image_representative{
    NT operator()(const Residue_type& x){
      return NT(x.get_value());
    }
  };    
};


template <>
struct Split_double<mpz_class>
{
  void operator()(double d, mpz_class &num, mpz_class &den) const
  {
    std::pair<double, double> p = split_numerator_denominator(d);
    num = mpz_class(p.first);
    den = mpz_class(p.second);
  }
};

} //namespace CGAL

#undef CGAL_CHECK_GMP_EXPR

#endif // CGAL_MPZ_CLASS_H