/usr/include/CGAL/mpz_class.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | // Copyright (c) 2002,2003,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sylvain Pion, Michael Hemmer
#ifndef CGAL_MPZ_CLASS_H
#define CGAL_MPZ_CLASS_H
#include <CGAL/number_type_basic.h>
#include <CGAL/gmpxx_coercion_traits.h>
#include <CGAL/Modular_traits.h>
// This file gathers the necessary adaptors so that the following
// C++ number types that come with GMP can be used by CGAL :
// - mpz_class
// Note that GMP++ use the expression template mechanism, which makes things
// a little bit complicated in order to make square(x+y) work for example.
// Reading gmpxx.h shows that ::__gmp_expr<T, T> is the mp[zqf]_class proper,
// while ::__gmp_expr<T, U> is the others "expressions".
#define CGAL_CHECK_GMP_EXPR \
CGAL_static_assertion( \
(::boost::is_same< ::__gmp_expr< T , T >,Type>::value ));
namespace CGAL {
// AST for mpz_class
template<>
class Algebraic_structure_traits< mpz_class >
:public Algebraic_structure_traits_base< mpz_class , Euclidean_ring_tag > {
public:
typedef mpz_class Type;
typedef Euclidean_ring_tag Algebraic_category;
typedef Tag_true Is_exact;
typedef Tag_false Is_numerical_sensitive;
struct Is_zero: public std::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) == 0;
}
};
struct Is_one: public std::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return x == 1;
}
};
struct Simplify: public std::unary_function< mpz_class , void > {
template <class T, class U>
void operator()( const ::__gmp_expr< T ,U >&) const {
CGAL_CHECK_GMP_EXPR;
}
};
struct Square: public std::unary_function< mpz_class , mpz_class > {
mpz_class operator()( const mpz_class& x) const {
return x*x;
}
};
struct Unit_part: public std::unary_function< mpz_class , mpz_class > {
mpz_class operator()( const mpz_class& x) const {
return (x < 0) ? -1 : 1;
}
};
struct Integral_division:
public std::binary_function< mpz_class , mpz_class, mpz_class > {
template <typename T, typename U1, typename U2>
mpz_class operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y) const {
CGAL_CHECK_GMP_EXPR;
mpz_class result = x / y;
CGAL_precondition_msg( result * y == x,
"'x' must be divisible by 'y' in "
"Algebraic_structure_traits<mpz_class>::Integral_div()(x,y)" );
return result;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Gcd : public std::binary_function< mpz_class, mpz_class, mpz_class > {
mpz_class operator()(
const mpz_class& x,
const mpz_class& y) const {
mpz_class c;
mpz_gcd(c.get_mpz_t(),x.get_mpz_t(), y.get_mpz_t() );
return c;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Div : public std::binary_function< mpz_class, mpz_class, mpz_class > {
template <typename T, typename U1, typename U2>
mpz_class operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y) const {
CGAL_CHECK_GMP_EXPR;
return x / y;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Mod : public std::binary_function< mpz_class, mpz_class, mpz_class > {
template <typename T, typename U1, typename U2>
mpz_class operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y) const {
CGAL_CHECK_GMP_EXPR;
return x % y;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Div_mod {
typedef mpz_class first_argument_type;
typedef mpz_class second_argument_type;
typedef mpz_class& third_argument_type;
typedef mpz_class& fourth_argument_type;
typedef void result_type;
void operator()(
const mpz_class& x,
const mpz_class& y,
mpz_class& q,
mpz_class& r
) const {
typedef Algebraic_structure_traits<mpz_class> Traits;
Traits::Div actual_div;
Traits::Mod actual_mod;
q = actual_div( x, y );
r = actual_mod( x, y );
// use mpz_tdiv_qr to do both at once
return;
}
};
struct Sqrt: public std::unary_function< mpz_class , mpz_class > {
template <typename T, typename U>
mpz_class operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sqrt(x);
}
};
/*struct Is_square: public std::binary_function< mpz_class , mpz_class& , bool > {
template <typename T, typename U>
bool operator()(
const ::__gmp_expr< T , U >& x,
mpz_class& r){
r = ::sqrt(x);
return (r*r==x) ? true : false;
}
template <typename T, typename U>
bool operator()(const ::__gmp_expr< T , U >& x){
mpz_class r = ::sqrt(x);
return (r*r==x) ? true : false;
}
};*/
};
// RET for mpz_class
template<>
class Real_embeddable_traits< mpz_class >
: public INTERN_RET::Real_embeddable_traits_base< mpz_class , CGAL::Tag_true > {
public:
struct Is_zero: public std::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) == 0;
}
};
struct Is_finite: public std::unary_function<mpz_class,bool> {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& ) const {
CGAL_CHECK_GMP_EXPR;
return true;
}
};
struct Is_positive: public std::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) > 0;
}
};
struct Is_negative: public std::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) < 0;
}
};
struct Abs: public std::unary_function< mpz_class , mpz_class > {
template <typename T, typename U>
mpz_class operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::abs(x);
}
};
struct Sgn
: public std::unary_function< mpz_class, ::CGAL::Sign > {
public:
template <typename T, typename U>
::CGAL::Sign operator()( const ::__gmp_expr< T , U >& x ) const {
CGAL_CHECK_GMP_EXPR;
return (::CGAL::Sign) ::sgn( x );
}
};
struct Compare
: public std::binary_function< mpz_class, mpz_class, Comparison_result > {
template <typename T, typename U1, typename U2>
Comparison_result operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y ) const {
CGAL_CHECK_GMP_EXPR;
// cmp returns any int value, not just -1/0/1...
return (Comparison_result) CGAL_NTS sign( ::cmp(x, y) );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT
( Type, Comparison_result)
};
struct To_double
: public std::unary_function< mpz_class, double > {
double operator()( const mpz_class& x ) const {
return x.get_d();
}
};
struct To_interval
: public std::unary_function< mpz_class, std::pair< double, double > > {
std::pair<double, double>
operator()( const mpz_class& x ) const {
mpfr_t y;
mpfr_init2 (y, 53); /* Assume IEEE-754 */
mpfr_set_z (y, x.get_mpz_t(), GMP_RNDD);
double i = mpfr_get_d (y, GMP_RNDD); /* EXACT but can overflow */
mpfr_set_z (y, x.get_mpz_t(), GMP_RNDU);
double s = mpfr_get_d (y, GMP_RNDU); /* EXACT but can overflow */
mpfr_clear (y);
return std::pair<double, double>(i, s);
}
};
};
/*! \ingroup NiX_Modular_traits_spec
* \brief a model of concept ModularTraits,
* specialization of NiX::Modular_traits.
*/
template<>
class Modular_traits< mpz_class > {
public:
typedef mpz_class NT;
typedef CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(const mpz_class& a){
NT tmp(CGAL::mod(a,NT(Residue::get_current_prime())));
return CGAL::Residue(int(mpz_get_si(tmp.get_mpz_t())));
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return NT(x.get_value());
}
};
};
template <>
struct Split_double<mpz_class>
{
void operator()(double d, mpz_class &num, mpz_class &den) const
{
std::pair<double, double> p = split_numerator_denominator(d);
num = mpz_class(p.first);
den = mpz_class(p.second);
}
};
} //namespace CGAL
#undef CGAL_CHECK_GMP_EXPR
#endif // CGAL_MPZ_CLASS_H
|