This file is indexed.

/usr/lib/llvm-3.7/include/polly/ScopDetection.h is in libclang-common-3.7-dev 1:3.7.1-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//===--- ScopDetection.h - Detect Scops -------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fullfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Only function calls and intrinsics that do not have side effects are allowed
// (readnone).
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_SCOP_DETECTION_H
#define POLLY_SCOP_DETECTION_H

#include "polly/ScopDetectionDiagnostic.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Pass.h"
#include <map>
#include <memory>
#include <set>

using namespace llvm;

namespace llvm {
class RegionInfo;
class Region;
class LoopInfo;
class Loop;
class ScalarEvolution;
class SCEV;
class SCEVAddRecExpr;
class SCEVUnknown;
class CallInst;
class Instruction;
class AliasAnalysis;
class Value;
}

namespace polly {
typedef std::set<const SCEV *> ParamSetType;

// Description of the shape of an array.
struct ArrayShape {
  // Base pointer identifying all accesses to this array.
  const SCEVUnknown *BasePointer;

  // Sizes of each delinearized dimension.
  SmallVector<const SCEV *, 4> DelinearizedSizes;

  ArrayShape(const SCEVUnknown *B) : BasePointer(B), DelinearizedSizes() {}
};

struct MemAcc {
  const Instruction *Insn;

  // A pointer to the shape description of the array.
  std::shared_ptr<ArrayShape> Shape;

  // Subscripts computed by delinearization.
  SmallVector<const SCEV *, 4> DelinearizedSubscripts;

  MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
      : Insn(I), Shape(S), DelinearizedSubscripts() {}
};

typedef std::map<const Instruction *, MemAcc> MapInsnToMemAcc;
typedef std::pair<const Instruction *, const SCEV *> PairInstSCEV;
typedef std::vector<PairInstSCEV> AFs;
typedef std::map<const SCEVUnknown *, AFs> BaseToAFs;
typedef std::map<const SCEVUnknown *, const SCEV *> BaseToElSize;

extern bool PollyTrackFailures;
extern bool PollyDelinearize;
extern bool PollyUseRuntimeAliasChecks;

/// @brief A function attribute which will cause Polly to skip the function
extern llvm::StringRef PollySkipFnAttr;

//===----------------------------------------------------------------------===//
/// @brief Pass to detect the maximal static control parts (Scops) of a
/// function.
class ScopDetection : public FunctionPass {
public:
  typedef SetVector<const Region *> RegionSet;

  /// @brief Set of loops (used to remember loops in non-affine subregions).
  using BoxedLoopsSetTy = SetVector<const Loop *>;

private:
  //===--------------------------------------------------------------------===//
  ScopDetection(const ScopDetection &) = delete;
  const ScopDetection &operator=(const ScopDetection &) = delete;

  /// @brief Analysis passes used.
  //@{
  ScalarEvolution *SE;
  LoopInfo *LI;
  RegionInfo *RI;
  AliasAnalysis *AA;
  //@}

  /// @brief Set to remember non-affine branches in regions.
  using NonAffineSubRegionSetTy = RegionSet;
  using NonAffineSubRegionMapTy =
      DenseMap<const Region *, NonAffineSubRegionSetTy>;
  NonAffineSubRegionMapTy NonAffineSubRegionMap;

  /// @brief Map to remeber loops in non-affine regions.
  using BoxedLoopsMapTy = DenseMap<const Region *, BoxedLoopsSetTy>;
  BoxedLoopsMapTy BoxedLoopsMap;

  /// @brief Context variables for SCoP detection.
  struct DetectionContext {
    Region &CurRegion;   // The region to check.
    AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
    bool Verifying;      // If we are in the verification phase?
    RejectLog Log;

    /// @brief Map a base pointer to all access functions accessing it.
    ///
    /// This map is indexed by the base pointer. Each element of the map
    /// is a list of memory accesses that reference this base pointer.
    BaseToAFs Accesses;

    /// @brief The set of base pointers with non-affine accesses.
    ///
    /// This set contains all base pointers which are used in memory accesses
    /// that can not be detected as affine accesses.
    SetVector<const SCEVUnknown *> NonAffineAccesses;
    BaseToElSize ElementSize;

    /// @brief The region has at least one load instruction.
    bool hasLoads;

    /// @brief The region has at least one store instruction.
    bool hasStores;

    /// @brief The region has at least one loop that is not overapproximated.
    bool hasAffineLoops;

    /// @brief The set of non-affine subregions in the region we analyze.
    NonAffineSubRegionSetTy &NonAffineSubRegionSet;

    /// @brief The set of loops contained in non-affine regions.
    BoxedLoopsSetTy &BoxedLoopsSet;

    DetectionContext(Region &R, AliasAnalysis &AA,
                     NonAffineSubRegionSetTy &NASRS, BoxedLoopsSetTy &BLS,
                     bool Verify)
        : CurRegion(R), AST(AA), Verifying(Verify), Log(&R), hasLoads(false),
          hasStores(false), hasAffineLoops(false), NonAffineSubRegionSet(NASRS),
          BoxedLoopsSet(BLS) {}
  };

  // Remember the valid regions
  RegionSet ValidRegions;

  // Remember a list of errors for every region.
  mutable RejectLogsContainer RejectLogs;

  /// @brief Add the region @p AR as over approximated sub-region in @p Context.
  ///
  /// @param AR      The non-affine subregion.
  /// @param Context The current detection context.
  ///
  /// @returns True if the subregion can be over approximated, false otherwise.
  bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;

  // Delinearize all non affine memory accesses and return false when there
  // exists a non affine memory access that cannot be delinearized. Return true
  // when all array accesses are affine after delinearization.
  bool hasAffineMemoryAccesses(DetectionContext &Context) const;

  // Try to expand the region R. If R can be expanded return the expanded
  // region, NULL otherwise.
  Region *expandRegion(Region &R);

  /// Find the Scops in this region tree.
  ///
  /// @param The region tree to scan for scops.
  void findScops(Region &R);

  /// @brief Check if all basic block in the region are valid.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if all blocks in R are valid, false otherwise.
  bool allBlocksValid(DetectionContext &Context) const;

  /// @brief Check the exit block of a region is valid.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if the exit of R is valid, false otherwise.
  bool isValidExit(DetectionContext &Context) const;

  /// @brief Check if a region is a Scop.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if R is a Scop, false otherwise.
  bool isValidRegion(DetectionContext &Context) const;

  /// @brief Check if a call instruction can be part of a Scop.
  ///
  /// @param CI The call instruction to check.
  /// @return True if the call instruction is valid, false otherwise.
  static bool isValidCallInst(CallInst &CI);

  /// @brief Check if a value is invariant in the region Reg.
  ///
  /// @param Val Value to check for invariance.
  /// @param Reg The region to consider for the invariance of Val.
  ///
  /// @return True if the value represented by Val is invariant in the region
  ///         identified by Reg.
  bool isInvariant(const Value &Val, const Region &Reg) const;

  /// @brief Check if a memory access can be part of a Scop.
  ///
  /// @param Inst The instruction accessing the memory.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the memory access is valid, false otherwise.
  bool isValidMemoryAccess(Instruction &Inst, DetectionContext &Context) const;

  /// @brief Check if an instruction has any non trivial scalar dependencies
  ///        as part of a Scop.
  ///
  /// @param Inst The instruction to check.
  /// @param RefRegion The region in respect to which we check the access
  ///                  function.
  ///
  /// @return True if the instruction has scalar dependences, false otherwise.
  bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const;

  /// @brief Check if an instruction can be part of a Scop.
  ///
  /// @param Inst The instruction to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the instruction is valid, false otherwise.
  bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const;

  /// @brief Check if the control flow in a basic block is valid.
  ///
  /// @param BB The BB to check the control flow.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the BB contains only valid control flow.
  bool isValidCFG(BasicBlock &BB, DetectionContext &Context) const;

  /// @brief Is a loop valid with respect to a given region.
  ///
  /// @param L The loop to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the loop is valid in the region.
  bool isValidLoop(Loop *L, DetectionContext &Context) const;

  /// @brief Check if the function @p F is marked as invalid.
  ///
  /// @note An OpenMP subfunction will be marked as invalid.
  bool isValidFunction(llvm::Function &F);

  /// @brief Print the locations of all detected scops.
  void printLocations(llvm::Function &F);

  /// @brief Track diagnostics for invalid scops.
  ///
  /// @param Context The context of scop detection.
  /// @param Assert Throw an assert in verify mode or not.
  /// @param Args Argument list that gets passed to the constructor of RR.
  template <class RR, typename... Args>
  inline bool invalid(DetectionContext &Context, bool Assert,
                      Args &&... Arguments) const;

public:
  static char ID;
  explicit ScopDetection();

  /// @brief Get the RegionInfo stored in this pass.
  ///
  /// This was added to give the DOT printer easy access to this information.
  RegionInfo *getRI() const { return RI; }

  /// @brief Is the region is the maximum region of a Scop?
  ///
  /// @param R The Region to test if it is maximum.
  /// @param Verify Rerun the scop detection to verify SCoP was not invalidated
  ///               meanwhile.
  ///
  /// @return Return true if R is the maximum Region in a Scop, false otherwise.
  bool isMaxRegionInScop(const Region &R, bool Verify = true) const;

  /// @brief Return the set of loops in non-affine subregions for @p R.
  const BoxedLoopsSetTy *getBoxedLoops(const Region *R) const;

  /// @brief Return true if @p SubR is a non-affine subregion in @p ScopR.
  bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const;

  /// @brief Get a message why a region is invalid
  ///
  /// @param R The region for which we get the error message
  ///
  /// @return The error or "" if no error appeared.
  std::string regionIsInvalidBecause(const Region *R) const;

  /// @name Maximum Region In Scops Iterators
  ///
  /// These iterators iterator over all maximum region in Scops of this
  /// function.
  //@{
  typedef RegionSet::iterator iterator;
  typedef RegionSet::const_iterator const_iterator;

  iterator begin() { return ValidRegions.begin(); }
  iterator end() { return ValidRegions.end(); }

  const_iterator begin() const { return ValidRegions.begin(); }
  const_iterator end() const { return ValidRegions.end(); }
  //@}

  /// @name Reject log iterators
  ///
  /// These iterators iterate over the logs of all rejected regions of this
  //  function.
  //@{
  typedef std::map<const Region *, RejectLog>::iterator reject_iterator;
  typedef std::map<const Region *, RejectLog>::const_iterator
      const_reject_iterator;

  reject_iterator reject_begin() { return RejectLogs.begin(); }
  reject_iterator reject_end() { return RejectLogs.end(); }

  const_reject_iterator reject_begin() const { return RejectLogs.begin(); }
  const_reject_iterator reject_end() const { return RejectLogs.end(); }
  //@}

  /// @brief Emit rejection remarks for all smallest invalid regions.
  ///
  /// @param F The function to emit remarks for.
  /// @param R The region to start the region tree traversal for.
  void emitMissedRemarksForLeaves(const Function &F, const Region *R);

  /// @brief Emit rejection remarks for the parent regions of all valid regions.
  ///
  /// Emitting rejection remarks for the parent regions of all valid regions
  /// may give the end-user clues about how to increase the size of the
  /// detected Scops.
  ///
  /// @param F The function to emit remarks for.
  /// @param ValidRegions The set of valid regions to emit remarks for.
  void emitMissedRemarksForValidRegions(const Function &F,
                                        const RegionSet &ValidRegions);

  /// @brief Mark the function as invalid so we will not extract any scop from
  ///        the function.
  ///
  /// @param F The function to mark as invalid.
  void markFunctionAsInvalid(Function *F) const;

  /// @brief Verify if all valid Regions in this Function are still valid
  /// after some transformations.
  void verifyAnalysis() const;

  /// @brief Verify if R is still a valid part of Scop after some
  /// transformations.
  ///
  /// @param R The Region to verify.
  void verifyRegion(const Region &R) const;

  /// @name FunctionPass interface
  //@{
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
  virtual void releaseMemory();
  virtual bool runOnFunction(Function &F);
  virtual void print(raw_ostream &OS, const Module *) const;
  //@}
};

} // end namespace polly

namespace llvm {
class PassRegistry;
void initializeScopDetectionPass(llvm::PassRegistry &);
}

#endif