This file is indexed.

/usr/include/CLHEP/Matrix/SymMatrix.h is in libclhep-dev 2.1.4.1-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// -*- C++ -*-
// CLASSDOC OFF
// ---------------------------------------------------------------------------
// CLASSDOC ON
// 
// This file is a part of the CLHEP - a Class Library for High Energy Physics.
// 
// This is the definition of the HepSymMatrix class.
// 
// This software written by Nobu Katayama and Mike Smyth, Cornell University.
//
// .SS Usage
//
//   This is very much like the Matrix, except of course it is restricted to
//   Symmetric Matrix.  All the operations for Matrix can also be done here
//   (except for the +=,-=,*= that don't yield a symmetric matrix.  e.g.
//    +=(const Matrix &) is not defined)
   
//   The matrix is stored as a lower triangular matrix.
//   In addition to the (row, col) method of finding element, fast(row, col)
//   returns an element with checking to see if row and col need to be 
//   interchanged so that row >= col.

//   New operations are:
//
// .ft B
//  sym = s.similarity(m);
//
//  This returns m*s*m.T(). This is a similarity
//  transform when m is orthogonal, but nothing
//  restricts m to be orthogonal.  It is just
//  a more efficient way to calculate m*s*m.T,
//  and it realizes that this should be a 
//  HepSymMatrix (the explicit operation m*s*m.T
//  will return a Matrix, not realizing that 
//  it is symmetric).
//
// .ft B
//  sym =  similarityT(m);
//
// This returns m.T()*s*m.
//
// .ft B
// s << m;
//
// This takes the matrix m, and treats it
// as symmetric matrix that is copied to s.
// This is useful for operations that yield
// symmetric matrix, but which the computer
// is too dumb to realize.
//
// .ft B
// s = vT_times_v(const HepVector v);
//
//  calculates v.T()*v.
//
// ./"This code has been written by Mike Smyth, and the algorithms used are
// ./"described in the thesis "A Tracking Library for a Silicon Vertex Detector"
// ./"(Mike Smyth, Cornell University, June 1993).
// ./"This is file contains C++ stuff for doing things with Matrixes.
// ./"To turn on bound checking, define MATRIX_BOUND_CHECK before including
// ./"this file.
//

#ifndef _SYMMatrix_H_
#define _SYMMatrix_H_

#ifdef GNUPRAGMA
#pragma interface
#endif

#include <vector>

#include "CLHEP/Matrix/defs.h"
#include "CLHEP/Matrix/GenMatrix.h"

namespace CLHEP {

class HepRandom;

class HepMatrix;
class HepDiagMatrix;
class HepVector;

/**
 * @author
 * @ingroup matrix
 */
class HepSymMatrix : public HepGenMatrix {
public:
   inline HepSymMatrix();
   // Default constructor. Gives 0x0 symmetric matrix.
   // Another SymMatrix can be assigned to it.

   explicit HepSymMatrix(int p);
   HepSymMatrix(int p, int);
   // Constructor. Gives p x p symmetric matrix.
   // With a second argument, the matrix is initialized. 0 means a zero
   // matrix, 1 means the identity matrix.

   HepSymMatrix(int p, HepRandom &r);

   HepSymMatrix(const HepSymMatrix &hm1);
   // Copy constructor.

   HepSymMatrix(const HepDiagMatrix &hm1);
   // Constructor from DiagMatrix

   virtual ~HepSymMatrix();
   // Destructor.

   inline int num_row() const;
   inline int num_col() const;
   // Returns number of rows/columns.

   const double & operator()(int row, int col) const; 
   double & operator()(int row, int col);
   // Read and write a SymMatrix element.
   // ** Note that indexing starts from (1,1). **

   const double & fast(int row, int col) const;
   double & fast(int row, int col);
   // fast element access.
   // Must be row>=col;
   // ** Note that indexing starts from (1,1). **

   void assign(const HepMatrix &hm2);
   // Assigns hm2 to s, assuming hm2 is a symmetric matrix.

   void assign(const HepSymMatrix &hm2);
   // Another form of assignment. For consistency.

   HepSymMatrix & operator*=(double t);
   // Multiply a SymMatrix by a floating number.

   HepSymMatrix & operator/=(double t); 
   // Divide a SymMatrix by a floating number.

   HepSymMatrix & operator+=( const HepSymMatrix &hm2);
   HepSymMatrix & operator+=( const HepDiagMatrix &hm2);
   HepSymMatrix & operator-=( const HepSymMatrix &hm2);
   HepSymMatrix & operator-=( const HepDiagMatrix &hm2);
   // Add or subtract a SymMatrix.

   HepSymMatrix & operator=( const HepSymMatrix &hm2);
   HepSymMatrix & operator=( const HepDiagMatrix &hm2);
   // Assignment operators. Notice that there is no SymMatrix = Matrix.

   HepSymMatrix operator- () const;
   // unary minus, ie. flip the sign of each element.

   HepSymMatrix T() const;
   // Returns the transpose of a SymMatrix (which is itself).

   HepSymMatrix apply(double (*f)(double, int, int)) const;
   // Apply a function to all elements of the matrix.

   HepSymMatrix similarity(const HepMatrix &hm1) const;
   HepSymMatrix similarity(const HepSymMatrix &hm1) const;
   // Returns hm1*s*hm1.T().

   HepSymMatrix similarityT(const HepMatrix &hm1) const;
   // temporary. test of new similarity.
   // Returns hm1.T()*s*hm1.

   double similarity(const HepVector &v) const;
   // Returns v.T()*s*v (This is a scaler).

   HepSymMatrix sub(int min_row, int max_row) const;
   // Returns a sub matrix of a SymMatrix.
   void sub(int row, const HepSymMatrix &hm1);
   // Sub matrix of this SymMatrix is replaced with hm1.
   HepSymMatrix sub(int min_row, int max_row);
   // SGI CC bug. I have to have both with/without const. I should not need
   // one without const.

   inline HepSymMatrix inverse(int &ifail) const;
   // Invert a Matrix. The matrix is not changed
   // Returns 0 when successful, otherwise non-zero.

   void invert(int &ifail);
   // Invert a Matrix.
   // N.B. the contents of the matrix are replaced by the inverse.
   // Returns ierr = 0 when successful, otherwise non-zero. 
   // This method has less overhead then inverse().

   inline void invert();
   // Invert a matrix. Throw std::runtime_error on failure.

   inline HepSymMatrix inverse() const;
   // Invert a matrix. Throw std::runtime_error on failure. 

   double determinant() const;
   // calculate the determinant of the matrix.

   double trace() const;
   // calculate the trace of the matrix (sum of diagonal elements).

   class HepSymMatrix_row {
   public:
      inline HepSymMatrix_row(HepSymMatrix&,int);
      inline double & operator[](int);
   private:
      HepSymMatrix& _a;
      int _r;
   };
   class HepSymMatrix_row_const {
   public:
      inline HepSymMatrix_row_const(const HepSymMatrix&,int);
      inline const double & operator[](int) const;
   private:
      const HepSymMatrix& _a;
      int _r;
   };
   // helper class to implement m[i][j]

   inline HepSymMatrix_row operator[] (int);
   inline HepSymMatrix_row_const operator[] (int) const;
   // Read or write a matrix element.
   // While it may not look like it, you simply do m[i][j] to get an
   // element. 
   // ** Note that the indexing starts from [0][0]. **

   // Special-case inversions for 5x5 and 6x6 symmetric positive definite:
   // These set ifail=0 and invert if the matrix was positive definite;
   // otherwise ifail=1 and the matrix is left unaltered.
   void invertCholesky5 (int &ifail);  
   void invertCholesky6 (int &ifail);

   // Inversions for 5x5 and 6x6 forcing use of specific methods:  The
   // behavior (though not the speed) will be identical to invert(ifail).
   void invertHaywood4 (int & ifail);  
   void invertHaywood5 (int &ifail);  
   void invertHaywood6 (int &ifail);
   void invertBunchKaufman (int &ifail);  

protected:
   inline int num_size() const;
  
private:
   friend class HepSymMatrix_row;
   friend class HepSymMatrix_row_const;
   friend class HepMatrix;
   friend class HepDiagMatrix;

   friend void tridiagonal(HepSymMatrix *a,HepMatrix *hsm);
   friend double condition(const HepSymMatrix &m);
   friend void diag_step(HepSymMatrix *t,int begin,int end);
   friend void diag_step(HepSymMatrix *t,HepMatrix *u,int begin,int end);
   friend HepMatrix diagonalize(HepSymMatrix *s);
   friend HepVector house(const HepSymMatrix &a,int row,int col);
   friend void house_with_update2(HepSymMatrix *a,HepMatrix *v,int row,int col);

   friend HepSymMatrix operator+(const HepSymMatrix &hm1, 
				  const HepSymMatrix &hm2);
   friend HepSymMatrix operator-(const HepSymMatrix &hm1, 
				  const HepSymMatrix &hm2);
   friend HepMatrix operator*(const HepSymMatrix &hm1, const HepSymMatrix &hm2);
   friend HepMatrix operator*(const HepSymMatrix &hm1, const HepMatrix &hm2);
   friend HepMatrix operator*(const HepMatrix &hm1, const HepSymMatrix &hm2);
   friend HepVector operator*(const HepSymMatrix &hm1, const HepVector &hm2);
   // Multiply a Matrix by a Matrix or Vector.
   
   friend HepSymMatrix vT_times_v(const HepVector &v);
   // Returns v * v.T();

#ifdef DISABLE_ALLOC
   std::vector<double > m;
#else
   std::vector<double,Alloc<double,25> > m;
#endif
   int nrow;
   int size_;				     // total number of elements

   static double posDefFraction5x5;
   static double adjustment5x5;
   static const  double CHOLESKY_THRESHOLD_5x5;
   static const  double CHOLESKY_CREEP_5x5;

   static double posDefFraction6x6;
   static double adjustment6x6;
   static const double CHOLESKY_THRESHOLD_6x6;
   static const double CHOLESKY_CREEP_6x6;

   void invert4  (int & ifail);
   void invert5  (int & ifail);
   void invert6  (int & ifail);

};

//
// Operations other than member functions for Matrix, SymMatrix, DiagMatrix
// and Vectors implemented in Matrix.cc and Matrix.icc (inline).
//

std::ostream& operator<<(std::ostream &s, const HepSymMatrix &q);
// Write out Matrix, SymMatrix, DiagMatrix and Vector into ostream.

HepMatrix operator*(const HepMatrix &hm1, const HepSymMatrix &hm2);
HepMatrix operator*(const HepSymMatrix &hm1, const HepMatrix &hm2);
HepMatrix operator*(const HepSymMatrix &hm1, const HepSymMatrix &hm2);
HepSymMatrix operator*(double t, const HepSymMatrix &s1);
HepSymMatrix operator*(const HepSymMatrix &s1, double t);
// Multiplication operators.
// Note that m *= hm1 is always faster than m = m * hm1

HepSymMatrix operator/(const HepSymMatrix &hm1, double t);
// s = s1 / t. (s /= t is faster if you can use it.)

HepMatrix operator+(const HepMatrix &hm1, const HepSymMatrix &s2);
HepMatrix operator+(const HepSymMatrix &s1, const HepMatrix &hm2);
HepSymMatrix operator+(const HepSymMatrix &s1, const HepSymMatrix &s2);
// Addition operators

HepMatrix operator-(const HepMatrix &hm1, const HepSymMatrix &s2);
HepMatrix operator-(const HepSymMatrix &hm1, const HepMatrix &hm2);
HepSymMatrix operator-(const HepSymMatrix &s1, const HepSymMatrix &s2);
// subtraction operators

HepSymMatrix dsum(const HepSymMatrix &s1, const HepSymMatrix &s2);
// Direct sum of two symmetric matrices;

double condition(const HepSymMatrix &m);
// Find the conditon number of a symmetric matrix.

void diag_step(HepSymMatrix *t, int begin, int end);
void diag_step(HepSymMatrix *t, HepMatrix *u, int begin, int end);
// Implicit symmetric QR step with Wilkinson Shift

HepMatrix diagonalize(HepSymMatrix *s);
// Diagonalize a symmetric matrix.
// It returns the matrix U so that s_old = U * s_diag * U.T()

HepVector house(const HepSymMatrix &a, int row=1, int col=1);
void house_with_update2(HepSymMatrix *a, HepMatrix *v, int row=1, int col=1);
// Finds and does Householder reflection on matrix.

void tridiagonal(HepSymMatrix *a, HepMatrix *hsm);
HepMatrix tridiagonal(HepSymMatrix *a);
// Does a Householder tridiagonalization of a symmetric matrix.

}  // namespace CLHEP

#ifdef ENABLE_BACKWARDS_COMPATIBILITY
//  backwards compatibility will be enabled ONLY in CLHEP 1.9
using namespace CLHEP;
#endif

#ifndef HEP_DEBUG_INLINE
#include "CLHEP/Matrix/SymMatrix.icc"
#endif

#endif /*!_SYMMatrix_H*/