/usr/include/CLHEP/Vector/RotationZ.icc is in libclhep-dev 2.1.4.1-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | // -*- C++ -*-
// ---------------------------------------------------------------------------
//
// This file is a part of the CLHEP - a Class Library for High Energy Physics.
//
// This is the definitions of the inline member functions of the
// HepRotationZ class
//
#include <cmath>
#include "CLHEP/Units/PhysicalConstants.h"
namespace CLHEP {
inline double HepRotationZ::xx() const { return its_c; }
inline double HepRotationZ::xy() const { return -its_s; }
inline double HepRotationZ::yx() const { return its_s; }
inline double HepRotationZ::yy() const { return its_c; }
inline double HepRotationZ::zz() const { return 1.0; }
inline double HepRotationZ::zy() const { return 0.0; }
inline double HepRotationZ::zx() const { return 0.0; }
inline double HepRotationZ::yz() const { return 0.0; }
inline double HepRotationZ::xz() const { return 0.0; }
inline HepRep3x3 HepRotationZ::rep3x3() const {
return HepRep3x3 ( its_c, -its_s, 0.0,
its_s, its_c, 0.0,
0.0, 0.0, 1.0 );
}
inline HepRotationZ::HepRotationZ() : its_d(0.0), its_s(0.0), its_c(1.0) {}
inline HepRotationZ::HepRotationZ(const HepRotationZ & orig) :
its_d(orig.its_d), its_s(orig.its_s), its_c(orig.its_c)
{}
inline HepRotationZ::HepRotationZ(double dd, double ss, double cc) :
its_d(dd), its_s(ss), its_c(cc)
{}
inline HepRotationZ & HepRotationZ::operator= (const HepRotationZ & orig) {
its_d = orig.its_d;
its_s = orig.its_s;
its_c = orig.its_c;
return *this;
}
inline HepRotationZ::~HepRotationZ() {}
inline Hep3Vector HepRotationZ::colX() const
{ return Hep3Vector ( its_c, its_s, 0.0 ); }
inline Hep3Vector HepRotationZ::colY() const
{ return Hep3Vector ( -its_s, its_c, 0.0 ); }
inline Hep3Vector HepRotationZ::colZ() const
{ return Hep3Vector ( 0.0, 0.0, 1.0 ); }
inline Hep3Vector HepRotationZ::rowX() const
{ return Hep3Vector ( its_c, -its_s, 0.0 ); }
inline Hep3Vector HepRotationZ::rowY() const
{ return Hep3Vector ( its_s, its_c, 0.0 ); }
inline Hep3Vector HepRotationZ::rowZ() const
{ return Hep3Vector ( 0.0, 0.0, 1.0 ); }
inline double HepRotationZ::getPhi () const { return phi(); }
inline double HepRotationZ::getTheta() const { return theta(); }
inline double HepRotationZ::getPsi () const { return psi(); }
inline double HepRotationZ::getDelta() const { return its_d; }
inline Hep3Vector HepRotationZ::getAxis () const { return axis(); }
inline double HepRotationZ::delta() const { return its_d; }
inline Hep3Vector HepRotationZ::axis() const { return Hep3Vector(0,0,1); }
inline HepAxisAngle HepRotationZ::axisAngle() const {
return HepAxisAngle ( axis(), delta() );
}
inline void HepRotationZ::getAngleAxis
(double & ddelta, Hep3Vector & aaxis) const {
ddelta = its_d;
aaxis = getAxis();
}
inline bool HepRotationZ::isIdentity() const {
return ( its_d==0 );
}
inline int HepRotationZ::compare ( const HepRotationZ & r ) const {
if (its_d > r.its_d) return 1; else if (its_d < r.its_d) return -1; else return 0;
}
inline bool HepRotationZ::operator==(const HepRotationZ & r) const
{ return (its_d==r.its_d); }
inline bool HepRotationZ::operator!=(const HepRotationZ & r) const
{ return (its_d!=r.its_d); }
inline bool HepRotationZ::operator>=(const HepRotationZ & r) const
{ return (its_d>=r.its_d); }
inline bool HepRotationZ::operator<=(const HepRotationZ & r) const
{ return (its_d<=r.its_d); }
inline bool HepRotationZ::operator> (const HepRotationZ & r) const
{ return (its_d> r.its_d); }
inline bool HepRotationZ::operator< (const HepRotationZ & r) const
{ return (its_d< r.its_d); }
inline void HepRotationZ::rectify() {
its_d = proper(its_d); // Just in case!
its_s = std::sin(its_d);
its_c = std::cos(its_d);
}
inline Hep3Vector HepRotationZ::operator() (const Hep3Vector & p) const {
double x = p.x();
double y = p.y();
double z = p.z();
return Hep3Vector( x * its_c - y * its_s,
x * its_s + y * its_c,
z );
}
inline Hep3Vector HepRotationZ::operator * (const Hep3Vector & p) const {
return operator()(p);
}
inline HepLorentzVector HepRotationZ::operator()
( const HepLorentzVector & w ) const {
return HepLorentzVector( operator() (w.vect()) , w.t() );
}
inline HepLorentzVector HepRotationZ::operator *
(const HepLorentzVector & p) const {
return operator()(p);
}
inline HepRotationZ & HepRotationZ::operator *= (const HepRotationZ & m1) {
return *this = (*this) * (m1);
}
inline HepRotationZ & HepRotationZ::transform(const HepRotationZ & m1) {
return *this = m1 * (*this);
}
inline double HepRotationZ::proper( double ddelta ) {
// -PI < d <= PI
if ( std::fabs(ddelta) < CLHEP::pi ) {
return ddelta;
} else {
register double x = ddelta / (CLHEP::twopi);
return (CLHEP::twopi) * ( x + std::floor(.5-x) );
}
} // proper()
inline HepRotationZ HepRotationZ::operator * ( const HepRotationZ & rz ) const {
return HepRotationZ ( HepRotationZ::proper(its_d+rz.its_d),
its_s*rz.its_c + its_c*rz.its_s,
its_c*rz.its_c - its_s*rz.its_s );
}
inline HepRotationZ HepRotationZ::inverse() const {
return HepRotationZ( proper(-its_d), -its_s, its_c );
}
inline HepRotationZ inverseOf(const HepRotationZ & r) {
return r.inverse();
}
inline HepRotationZ & HepRotationZ::invert() {
return *this=inverse();
}
inline HepLorentzVector HepRotationZ::col1() const
{ return HepLorentzVector (colX(), 0); }
inline HepLorentzVector HepRotationZ::col2() const
{ return HepLorentzVector (colY(), 0); }
inline HepLorentzVector HepRotationZ::col3() const
{ return HepLorentzVector (colZ(), 0); }
inline HepLorentzVector HepRotationZ::col4() const
{ return HepLorentzVector (0,0,0,1); }
inline HepLorentzVector HepRotationZ::row1() const
{ return HepLorentzVector (rowX(), 0); }
inline HepLorentzVector HepRotationZ::row2() const
{ return HepLorentzVector (rowY(), 0); }
inline HepLorentzVector HepRotationZ::row3() const
{ return HepLorentzVector (rowZ(), 0); }
inline HepLorentzVector HepRotationZ::row4() const
{ return HepLorentzVector (0,0,0,1); }
inline double HepRotationZ::xt() const { return 0.0; }
inline double HepRotationZ::yt() const { return 0.0; }
inline double HepRotationZ::zt() const { return 0.0; }
inline double HepRotationZ::tx() const { return 0.0; }
inline double HepRotationZ::ty() const { return 0.0; }
inline double HepRotationZ::tz() const { return 0.0; }
inline double HepRotationZ::tt() const { return 1.0; }
inline HepRep4x4 HepRotationZ::rep4x4() const {
return HepRep4x4 ( its_c, -its_s, 0.0, 0.0,
its_s, its_c, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 );
}
inline double HepRotationZ::getTolerance() {
return Hep4RotationInterface::tolerance;
}
inline double HepRotationZ::setTolerance(double tol) {
return Hep4RotationInterface::setTolerance(tol);
}
} // namespace CLHEP
|