This file is indexed.

/usr/include/pplx/pplxtasks.h is in libcpprest-dev 2.8.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
/***
* ==++==
*
* Copyright (c) Microsoft Corporation. All rights reserved. 
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* 
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ==--==
* =+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
*
* Parallel Patterns Library - PPLx Tasks
*
* For the latest on this and related APIs, please see: https://github.com/Microsoft/cpprestsdk
*
* =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
****/

#pragma once

#ifndef _PPLXTASKS_H
#define _PPLXTASKS_H

#if (defined(_MSC_VER) && (_MSC_VER >= 1800)) && !CPPREST_FORCE_PPLX
#include <ppltasks.h>
namespace pplx = Concurrency;
#if (_MSC_VER >= 1900)
#include <concrt.h>
namespace Concurrency {
    namespace extensibility {
        typedef ::std::condition_variable condition_variable_t;
        typedef ::std::mutex critical_section_t;
        typedef ::std::unique_lock< ::std::mutex> scoped_critical_section_t;

        typedef ::Concurrency::event event_t;
        typedef ::Concurrency::reader_writer_lock reader_writer_lock_t;
        typedef ::Concurrency::reader_writer_lock::scoped_lock scoped_rw_lock_t;
        typedef ::Concurrency::reader_writer_lock::scoped_lock_read scoped_read_lock_t;

        typedef ::Concurrency::details::_ReentrantBlockingLock recursive_lock_t;
        typedef recursive_lock_t::_Scoped_lock scoped_recursive_lock_t;
    }
}
#endif // _MSC_VER >= 1900
#else

#include "pplx/pplx.h"

#if defined(__ANDROID__)
#include <jni.h>
void cpprest_init(JavaVM*);
#endif

// Cannot build using a compiler that is older than dev10 SP1
#if defined(_MSC_VER)
#if _MSC_FULL_VER < 160040219 /*IFSTRIP=IGN*/
#error ERROR: Visual Studio 2010 SP1 or later is required to build ppltasks
#endif /*IFSTRIP=IGN*/
#endif /* defined(_MSC_VER) */

#include <functional>
#include <vector>
#include <utility>
#include <exception>
#include <algorithm>

#if defined(_MSC_VER)
#if defined(__cplusplus_winrt)
#include <windows.h>
#include <ctxtcall.h>
#include <agile.h>
#include <winapifamily.h>
#ifndef _UITHREADCTXT_SUPPORT

#ifdef WINAPI_FAMILY /*IFSTRIP=IGN*/

// It is safe to include winapifamily as WINAPI_FAMILY was defined by the user
#include <winapifamily.h>

#if WINAPI_FAMILY == WINAPI_FAMILY_APP
    // UI thread context support is not required for desktop and Windows Store apps
    #define _UITHREADCTXT_SUPPORT 0
#elif WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP
    // UI thread context support is not required for desktop and Windows Store apps
    #define _UITHREADCTXT_SUPPORT 0
#else  /* WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP */
    #define _UITHREADCTXT_SUPPORT 1
#endif  /* WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP */

#else  /* WINAPI_FAMILY */
    // Not supported without a WINAPI_FAMILY setting.
    #define _UITHREADCTXT_SUPPORT 0
#endif  /* WINAPI_FAMILY */

#endif  /* _UITHREADCTXT_SUPPORT */

#if _UITHREADCTXT_SUPPORT
    #include <uithreadctxt.h>
#endif  /* _UITHREADCTXT_SUPPORT */

    #pragma detect_mismatch("_PPLTASKS_WITH_WINRT", "1")
#else /* defined(__cplusplus_winrt) */
    #pragma detect_mismatch("_PPLTASKS_WITH_WINRT", "0")
#endif /* defined(__cplusplus_winrt) */
#endif /* defined(_MSC_VER) */

#ifdef _DEBUG
    #define _DBG_ONLY(X) X
#else
    #define _DBG_ONLY(X)
#endif // #ifdef _DEBUG

// std::copy_exception changed to std::make_exception_ptr from VS 2010 to VS 11.
#ifdef _MSC_VER
#if _MSC_VER < 1700 /*IFSTRIP=IGN*/
namespace std
{
    template<class _E> exception_ptr make_exception_ptr(_E _Except)
    {
        return copy_exception(_Except);
    }
}
#endif /* _MSC_VER < 1700 */
#ifndef _PPLTASK_ASYNC_LOGGING
    #if _MSC_VER >= 1800 && defined(__cplusplus_winrt)
        #define _PPLTASK_ASYNC_LOGGING 1  // Only enable async logging under dev12 winrt
    #else
        #define _PPLTASK_ASYNC_LOGGING 0
    #endif
#endif /* !_PPLTASK_ASYNC_LOGGING */
#endif /* _MSC_VER */

#pragma pack(push,_CRT_PACKING)

#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 28197)
#pragma warning(disable: 4100) // Unreferenced formal parameter - needed for document generation
#pragma warning(disable: 4127) // constant express in if condition - we use it for meta programming
#endif /* defined(_MSC_VER) */

// All CRT public header files are required to be protected from the macro new
#pragma push_macro("new")
#undef new

// stuff ported from Dev11 CRT
// NOTE: this doesn't actually match std::declval. it behaves differently for void!
// so don't blindly change it to std::declval.
namespace stdx
{
    template<class _T>
    _T&& declval();
}

/// <summary>
///     The <c>pplx</c> namespace provides classes and functions that give you access to the Concurrency Runtime,
///     a concurrent programming framework for C++. For more information, see <see cref="Concurrency Runtime"/>.
/// </summary>
/**/
namespace pplx
{
/// <summary>
///     A type that represents the terminal state of a task. Valid values are <c>completed</c> and <c>canceled</c>.
/// </summary>
/// <seealso cref="task Class"/>
/**/
typedef task_group_status task_status;

template <typename _Type> class task;
template <> class task<void>;

// In debug builds, default to 10 frames, unless this is overridden prior to #includ'ing ppltasks.h.  In retail builds, default to only one frame.
#ifndef PPL_TASK_SAVE_FRAME_COUNT
#ifdef _DEBUG
#define PPL_TASK_SAVE_FRAME_COUNT 10
#else
#define PPL_TASK_SAVE_FRAME_COUNT 1
#endif
#endif

/// <summary>
/// Helper macro to determine how many stack frames need to be saved. When any number less or equal to 1 is specified, 
/// only one frame is captured and no stackwalk will be involved. Otherwise, the number of callstack frames will be captured.
/// </summary>
/// <ramarks>
/// This needs to be defined as a macro rather than a function so that if we're only gathering one frame, _ReturnAddress()
/// will evaluate to client code, rather than a helper function inside of _TaskCreationCallstack, itself.
/// </remarks>
#if PPL_TASK_SAVE_FRAME_COUNT > 1
#if defined(__cplusplus_winrt) && !defined(_DEBUG)
#pragma message ("WARNING: Redefinning PPL_TASK_SAVE_FRAME_COUNT under Release build for non-desktop applications is not supported; only one frame will be captured!")
#define _CAPTURE_CALLSTACK() ::pplx::details::_TaskCreationCallstack::_CaptureSingleFrameCallstack(_ReturnAddress())
#else
#define _CAPTURE_CALLSTACK() ::pplx::details::_TaskCreationCallstack::_CaptureMultiFramesCallstack(PPL_TASK_SAVE_FRAME_COUNT)
#endif
#else
#define _CAPTURE_CALLSTACK() ::pplx::details::_TaskCreationCallstack::_CaptureSingleFrameCallstack(_ReturnAddress())
#endif


/// <summary>
///     Returns an indication of whether the task that is currently executing has received a request to cancel its
///     execution. Cancellation is requested on a task if the task was created with a cancellation token, and
///     the token source associated with that token is canceled.
/// </summary>
/// <returns>
///     <c>true</c> if the currently executing task has received a request for cancellation, <c>false</c> otherwise.
/// </returns>
/// <remarks>
///     If you call this method in the body of a task and it returns <c>true</c>, you must respond with a call to
///     <see cref="cancel_current_task Function">cancel_current_task</see> to acknowledge the cancellation request,
///     after performing any cleanup you need. This will abort the execution of the task and cause it to enter into
///     the <c>canceled</c> state. If you do not respond and continue execution, or return instead of calling
///     <c>cancel_current_task</c>, the task will enter the <c>completed</c> state when it is done.
///     state.
///     <para>A task is not cancellable if it was created without a cancellation token.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="cancellation_token_source Class"/>
/// <seealso cref="cancellation_token Class"/>
/// <seealso cref="cancel_current_task Function"/>
/**/
inline bool _pplx_cdecl is_task_cancellation_requested()
{
    return ::pplx::details::_TaskCollection_t::_Is_cancellation_requested();
}

/// <summary>
///     Cancels the currently executing task. This function can be called from within the body of a task to abort the
///     task's execution and cause it to enter the <c>canceled</c> state. While it may be used in response to
///     the <see cref="is_task_cancellation_requested Function">is_task_cancellation_requested</see> function, you may
///     also use it by itself, to initiate cancellation of the task that is currently executing.
///     <para>It is not a supported scenario to call this function if you are not within the body of a <c>task</c>.
///     Doing so will result in undefined behavior such as a crash or a hang in your application.</para>
/// </summary>
/// <seealso cref="task Class"/>
/**/
inline __declspec(noreturn) void _pplx_cdecl cancel_current_task()
{
    throw task_canceled();
}

namespace details
{
    /// <summary>
    ///     Callstack container, which is used to capture and preserve callstacks in ppltasks.
    ///     Members of this class is examined by vc debugger, thus there will be no public access methods.
    ///     Please note that names of this class should be kept stable for debugger examining.
    /// </summary>
    class _TaskCreationCallstack
    {
    private:
        // If _M_SingleFrame != nullptr, there will be only one frame of callstacks, which is stored in _M_SingleFrame;
        // otherwise, _M_Frame will store all the callstack frames.
        void* _M_SingleFrame;
        std::vector<void *> _M_frames;
    public:
        _TaskCreationCallstack()
        {
            _M_SingleFrame = nullptr;
        }

        // Store one frame of callstack. This function works for both Debug / Release CRT.
        static _TaskCreationCallstack _CaptureSingleFrameCallstack(void *_SingleFrame)
        {
            _TaskCreationCallstack _csc;
            _csc._M_SingleFrame = _SingleFrame;
            return _csc;
        }

        // Capture _CaptureFrames number of callstack frames. This function only work properly for Desktop or Debug CRT.
        __declspec(noinline)
        static _TaskCreationCallstack _CaptureMultiFramesCallstack(size_t _CaptureFrames)
        {
            _TaskCreationCallstack _csc;
            _csc._M_frames.resize(_CaptureFrames);
            // skip 2 frames to make sure callstack starts from user code 
            _csc._M_frames.resize(::pplx::details::platform::CaptureCallstack(&_csc._M_frames[0], 2, _CaptureFrames));
            return _csc;
        }
    };
    typedef unsigned char _Unit_type;

    struct _TypeSelectorNoAsync {};
    struct _TypeSelectorAsyncOperationOrTask {};
    struct _TypeSelectorAsyncOperation : public _TypeSelectorAsyncOperationOrTask { };
    struct _TypeSelectorAsyncTask : public _TypeSelectorAsyncOperationOrTask { };
    struct _TypeSelectorAsyncAction {};
    struct _TypeSelectorAsyncActionWithProgress {};
    struct _TypeSelectorAsyncOperationWithProgress {};

    template<typename _Ty>
    struct _NormalizeVoidToUnitType
    {
        typedef _Ty _Type;
    };

    template<>
    struct _NormalizeVoidToUnitType<void>
    {
        typedef _Unit_type _Type;
    };

    template<typename _T>
    struct _IsUnwrappedAsyncSelector
    {
        static const bool _Value = true;
    };

    template<>
    struct _IsUnwrappedAsyncSelector<_TypeSelectorNoAsync>
    {
        static const bool _Value = false;
    };

    template <typename _Ty>
    struct _UnwrapTaskType
    {
        typedef _Ty _Type;
    };

    template <typename _Ty>
    struct _UnwrapTaskType<task<_Ty>>
    {
        typedef _Ty _Type;
    };

    template <typename _T>
    _TypeSelectorAsyncTask _AsyncOperationKindSelector(task<_T>);

    _TypeSelectorNoAsync _AsyncOperationKindSelector(...);

#if defined(__cplusplus_winrt)
    template <typename _Type>
    struct _Unhat
    {
        typedef _Type _Value;
    };

    template <typename _Type>
    struct _Unhat<_Type^>
    {
        typedef _Type _Value;
    };

    value struct _NonUserType { public: int _Dummy; };

    template <typename _Type, bool _IsValueTypeOrRefType = __is_valid_winrt_type(_Type)>
    struct _ValueTypeOrRefType
    {
        typedef _NonUserType _Value;
    };

    template <typename _Type>
    struct _ValueTypeOrRefType<_Type, true>
    {
        typedef _Type _Value;
    };

    template <typename _T1, typename _T2>
    _T2 _ProgressTypeSelector(Windows::Foundation::IAsyncOperationWithProgress<_T1,_T2>^);

    template <typename _T1>
    _T1 _ProgressTypeSelector(Windows::Foundation::IAsyncActionWithProgress<_T1>^);

    template <typename _Type>
    struct _GetProgressType
    {
        typedef decltype(_ProgressTypeSelector(stdx::declval<_Type>())) _Value;
    };

    template <typename _Type>
    struct _IsIAsyncInfo
    {
        static const bool _Value = __is_base_of(Windows::Foundation::IAsyncInfo, typename _Unhat<_Type>::_Value);
    };

    template <typename _T>
    _TypeSelectorAsyncOperation _AsyncOperationKindSelector(Windows::Foundation::IAsyncOperation<_T>^);

    _TypeSelectorAsyncAction _AsyncOperationKindSelector(Windows::Foundation::IAsyncAction^);

    template <typename _T1, typename _T2>
    _TypeSelectorAsyncOperationWithProgress _AsyncOperationKindSelector(Windows::Foundation::IAsyncOperationWithProgress<_T1, _T2>^);

    template <typename _T>
    _TypeSelectorAsyncActionWithProgress _AsyncOperationKindSelector(Windows::Foundation::IAsyncActionWithProgress<_T>^);

    template <typename _Type, bool _IsAsync = _IsIAsyncInfo<_Type>::_Value>
    struct _TaskTypeTraits
    {
        typedef typename _UnwrapTaskType<_Type>::_Type _TaskRetType;
        typedef decltype(_AsyncOperationKindSelector(stdx::declval<_Type>())) _AsyncKind;
        typedef typename _NormalizeVoidToUnitType<_TaskRetType>::_Type _NormalizedTaskRetType;

        static const bool _IsAsyncTask = _IsAsync;
        static const bool _IsUnwrappedTaskOrAsync = _IsUnwrappedAsyncSelector<_AsyncKind>::_Value;
    };

    template<typename _Type>
    struct _TaskTypeTraits<_Type, true >
    {
        typedef decltype(((_Type)nullptr)->GetResults()) _TaskRetType;
        typedef _TaskRetType _NormalizedTaskRetType;
        typedef decltype(_AsyncOperationKindSelector((_Type)nullptr)) _AsyncKind;

        static const bool _IsAsyncTask = true;
        static const bool _IsUnwrappedTaskOrAsync = _IsUnwrappedAsyncSelector<_AsyncKind>::_Value;
    };

#else  /* defined (__cplusplus_winrt) */
    template <typename _Type>
    struct _IsIAsyncInfo
    {
        static const bool _Value = false;
    };

    template <typename _Type, bool _IsAsync = false>
    struct _TaskTypeTraits
    {
        typedef typename _UnwrapTaskType<_Type>::_Type _TaskRetType;
        typedef decltype(_AsyncOperationKindSelector(stdx::declval<_Type>())) _AsyncKind;
        typedef typename _NormalizeVoidToUnitType<_TaskRetType>::_Type _NormalizedTaskRetType;

        static const bool _IsAsyncTask = false;
        static const bool _IsUnwrappedTaskOrAsync = _IsUnwrappedAsyncSelector<_AsyncKind>::_Value;
    };
#endif  /* defined (__cplusplus_winrt) */

    template <typename _Function> auto _IsCallable(_Function _Func, int) -> decltype(_Func(), std::true_type()) { (void)(_Func); return std::true_type(); }
    template <typename _Function> std::false_type _IsCallable(_Function, ...) { return std::false_type(); }

    template <>
    struct _TaskTypeTraits<void>
    {
        typedef void _TaskRetType;
        typedef _TypeSelectorNoAsync _AsyncKind;
        typedef _Unit_type _NormalizedTaskRetType;

        static const bool _IsAsyncTask = false;
        static const bool _IsUnwrappedTaskOrAsync = false;
    };

    template<typename _Type>
    task<_Type> _To_task(_Type t);
    
    template<typename _Func>
    task<void> _To_task_void(_Func f);
    
	struct _BadContinuationParamType{};

    template <typename _Function, typename _Type> auto _ReturnTypeHelper(_Type t, _Function _Func, int, int) -> decltype(_Func(_To_task(t)));
    template <typename _Function, typename _Type> auto _ReturnTypeHelper(_Type t, _Function _Func, int, ...) -> decltype(_Func(t));
    template <typename _Function, typename _Type> auto _ReturnTypeHelper(_Type t, _Function _Func, ...) -> _BadContinuationParamType;

    template <typename _Function, typename _Type> auto _IsTaskHelper(_Type t, _Function _Func, int, int) -> decltype(_Func(_To_task(t)), std::true_type());
    template <typename _Function, typename _Type> std::false_type _IsTaskHelper(_Type t, _Function _Func, int, ...);

    template <typename _Function> auto _VoidReturnTypeHelper(_Function _Func, int, int) -> decltype(_Func(_To_task_void(_Func)));
    template <typename _Function> auto _VoidReturnTypeHelper(_Function _Func, int, ...) -> decltype(_Func());

    template <typename _Function> auto _VoidIsTaskHelper(_Function _Func, int, int) -> decltype(_Func(_To_task_void(_Func)), std::true_type());
    template <typename _Function> std::false_type _VoidIsTaskHelper(_Function _Func, int, ...);

    template<typename _Function, typename _ExpectedParameterType>
    struct _FunctionTypeTraits
    {
        typedef decltype(_ReturnTypeHelper(stdx::declval<_ExpectedParameterType>(),stdx::declval<_Function>(), 0, 0)) _FuncRetType;
        static_assert(!std::is_same<_FuncRetType,_BadContinuationParamType>::value, "incorrect parameter type for the callable object in 'then'; consider _ExpectedParameterType or task<_ExpectedParameterType> (see below)");

        typedef decltype(_IsTaskHelper(stdx::declval<_ExpectedParameterType>(),stdx::declval<_Function>(), 0, 0)) _Takes_task;
    };

    template<typename _Function>
    struct _FunctionTypeTraits<_Function, void>
    {
        typedef decltype(_VoidReturnTypeHelper(stdx::declval<_Function>(), 0, 0)) _FuncRetType;
        typedef decltype(_VoidIsTaskHelper(stdx::declval<_Function>(), 0, 0)) _Takes_task;
    };

    template<typename _Function, typename _ReturnType>
    struct _ContinuationTypeTraits
    {
        typedef task<typename _TaskTypeTraits<typename _FunctionTypeTraits<_Function, _ReturnType>::_FuncRetType>::_TaskRetType> _TaskOfType;
    };

    // _InitFunctorTypeTraits is used to decide whether a task constructed with a lambda should be unwrapped. Depending on how the variable is
    // declared, the constructor may or may not perform unwrapping. For eg.
    //
    //  This declaration SHOULD NOT cause unwrapping
    //    task<task<void>> t1([]() -> task<void> {
    //        task<void> t2([]() {});
    //        return t2;
    //    });
    //
    // This declaration SHOULD cause unwrapping
    //    task<void>> t1([]() -> task<void> {
    //        task<void> t2([]() {});
    //        return t2;
    //    });
    // If the type of the task is the same as the return type of the function, no unwrapping should take place. Else normal rules apply.
    template <typename _TaskType, typename _FuncRetType>
    struct _InitFunctorTypeTraits
    {
        typedef typename _TaskTypeTraits<_FuncRetType>::_AsyncKind _AsyncKind;
        static const bool _IsAsyncTask = _TaskTypeTraits<_FuncRetType>::_IsAsyncTask;
        static const bool _IsUnwrappedTaskOrAsync = _TaskTypeTraits<_FuncRetType>::_IsUnwrappedTaskOrAsync;
    };

    template<typename T>
    struct _InitFunctorTypeTraits<T, T>
    {
        typedef _TypeSelectorNoAsync _AsyncKind;
        static const bool _IsAsyncTask = false;
        static const bool _IsUnwrappedTaskOrAsync = false;
    };

    /// <summary>
    ///     Helper object used for LWT invocation.
    /// </summary>
    struct _TaskProcThunk
    {
        _TaskProcThunk(const std::function<void ()> & _Callback) :
            _M_func(_Callback)
        {
        }

        static void _pplx_cdecl _Bridge(void *_PData)
        {
            _TaskProcThunk *_PThunk = reinterpret_cast<_TaskProcThunk *>(_PData);
            _Holder _ThunkHolder(_PThunk);
            _PThunk->_M_func();
        }
    private:

        // RAII holder
        struct _Holder
        {
            _Holder(_TaskProcThunk * _PThunk) : _M_pThunk(_PThunk)
            {
            }

            ~_Holder()
            {
                delete _M_pThunk;
            }

            _TaskProcThunk * _M_pThunk;

        private:
            _Holder& operator=(const _Holder&);
        };

        std::function<void()> _M_func;
        _TaskProcThunk& operator=(const _TaskProcThunk&);
    };

    /// <summary>
    ///     Schedule a functor with automatic inlining. Note that this is "fire and forget" scheduling, which cannot be
    ///     waited on or canceled after scheduling.
    ///     This schedule method will perform automatic inlining base on <paramref value="_InliningMode"/>.
    /// </summary>
    /// <param name="_Func">
    ///     The user functor need to be scheduled.
    /// </param>
    /// <param name="_InliningMode">
    ///     The inlining scheduling policy for current functor.
    /// </param>
    static void _ScheduleFuncWithAutoInline(const std::function<void ()> & _Func, _TaskInliningMode_t _InliningMode)
    {
        _TaskCollection_t::_RunTask(&_TaskProcThunk::_Bridge, new _TaskProcThunk(_Func), _InliningMode);
    }

    class _ContextCallback
    {
        typedef std::function<void(void)> _CallbackFunction;

#if defined (__cplusplus_winrt)

    public:

        static _ContextCallback _CaptureCurrent()
        {
            _ContextCallback _Context;
            _Context._Capture();
            return _Context;
        }

        ~_ContextCallback()
        {
            _Reset();
        }

        _ContextCallback(bool _DeferCapture = false)
        {
            if (_DeferCapture)
            {
                _M_context._M_captureMethod = _S_captureDeferred;
            }
            else
            {
                _M_context._M_pContextCallback = nullptr;
            }
        }

        // Resolves a context that was created as _S_captureDeferred based on the environment (ancestor, current context).
        void _Resolve(bool _CaptureCurrent)
        {
            if(_M_context._M_captureMethod == _S_captureDeferred)
            {
                _M_context._M_pContextCallback = nullptr;

                if (_CaptureCurrent)
                {
                    if (_IsCurrentOriginSTA())
                    {
                        _Capture();
                    }
#if _UITHREADCTXT_SUPPORT
                    else
                    {
                        // This method will fail if not called from the UI thread.
                        HRESULT _Hr = CaptureUiThreadContext(&_M_context._M_pContextCallback);
                        if (FAILED(_Hr))
                        {
                            _M_context._M_pContextCallback = nullptr;
                        }
                    }
#endif  /* _UITHREADCTXT_SUPPORT */
                }
            }
        }

        void _Capture()
        {
            HRESULT _Hr = CoGetObjectContext(IID_IContextCallback, reinterpret_cast<void **>(&_M_context._M_pContextCallback));
            if (FAILED(_Hr))
            {
                _M_context._M_pContextCallback = nullptr;
            }
        }

        _ContextCallback(const _ContextCallback& _Src)
        {
            _Assign(_Src._M_context._M_pContextCallback);
        }

        _ContextCallback(_ContextCallback&& _Src)
        {
            _M_context._M_pContextCallback = _Src._M_context._M_pContextCallback;
            _Src._M_context._M_pContextCallback = nullptr;
        }

        _ContextCallback& operator=(const _ContextCallback& _Src)
        {
            if (this != &_Src)
            {
                _Reset();
                _Assign(_Src._M_context._M_pContextCallback);
            }
            return *this;
        }

        _ContextCallback& operator=(_ContextCallback&& _Src)
        {
            if (this != &_Src)
            {
                _M_context._M_pContextCallback = _Src._M_context._M_pContextCallback;
                _Src._M_context._M_pContextCallback = nullptr;
            }
            return *this;
        }

        bool _HasCapturedContext() const
        {
            _ASSERTE(_M_context._M_captureMethod != _S_captureDeferred);
            return (_M_context._M_pContextCallback != nullptr);
        }

        void _CallInContext(_CallbackFunction _Func) const
        {
            if (!_HasCapturedContext())
            {
                _Func();
            }
            else
            {
                ComCallData callData;
                ZeroMemory(&callData, sizeof(callData));
                callData.pUserDefined = reinterpret_cast<void *>(&_Func);

                HRESULT _Hr = _M_context._M_pContextCallback->ContextCallback(&_Bridge, &callData, IID_ICallbackWithNoReentrancyToApplicationSTA, 5, nullptr);
                if (FAILED(_Hr))
                {
                    throw ::Platform::Exception::CreateException(_Hr);
                }
            }
        }

        bool operator==(const _ContextCallback& _Rhs) const
        {
            return (_M_context._M_pContextCallback == _Rhs._M_context._M_pContextCallback);
        }

        bool operator!=(const _ContextCallback& _Rhs) const
        {
            return !(operator==(_Rhs));
        }

    private:
       void _Reset()
        {
            if (_M_context._M_captureMethod != _S_captureDeferred && _M_context._M_pContextCallback != nullptr)
            {
                _M_context._M_pContextCallback->Release();
            }
        }

        void _Assign(IContextCallback *_PContextCallback)
        {
            _M_context._M_pContextCallback = _PContextCallback;
            if (_M_context._M_captureMethod != _S_captureDeferred && _M_context._M_pContextCallback != nullptr)
            {
                _M_context._M_pContextCallback->AddRef();
            }
        }

        static HRESULT __stdcall _Bridge(ComCallData *_PParam)
        {
            _CallbackFunction *pFunc = reinterpret_cast<_CallbackFunction *>(_PParam->pUserDefined);
            (*pFunc)();
            return S_OK;
        }

        // Returns the origin information for the caller (runtime / Windows Runtime apartment as far as task continuations need know)
        static bool _IsCurrentOriginSTA()
        {
            APTTYPE _AptType;
            APTTYPEQUALIFIER _AptTypeQualifier;

            HRESULT hr = CoGetApartmentType(&_AptType, &_AptTypeQualifier);
            if (SUCCEEDED(hr))
            {
                // We determine the origin of a task continuation by looking at where .then is called, so we can tell whether
                // to need to marshal the continuation back to the originating apartment. If an STA thread is in executing in
                // a neutral aparment when it schedules a continuation, we will not marshal continuations back to the STA,
                // since variables used within a neutral apartment are expected to be apartment neutral.
                switch(_AptType)
                {
                    case APTTYPE_MAINSTA:
                    case APTTYPE_STA:
                        return true;
                    default:
                        break;
                }
            }
            return false;
        }

        union
        {
            IContextCallback *_M_pContextCallback;
            size_t _M_captureMethod;
        } _M_context;

        static const size_t _S_captureDeferred = 1;
#else  /* defined (__cplusplus_winrt) */
    public:

        static _ContextCallback _CaptureCurrent()
        {
            return _ContextCallback();
        }

        _ContextCallback(bool = false)
        {
        }

        _ContextCallback(const _ContextCallback&)
        {
        }

        _ContextCallback(_ContextCallback&&)
        {
        }

        _ContextCallback& operator=(const _ContextCallback&)
        {
            return *this;
        }

        _ContextCallback& operator=(_ContextCallback&&)
        {
            return *this;
        }

        bool _HasCapturedContext() const
        {
            return false;
        }

        void _Resolve(bool) const
        {
        }

        void _CallInContext(_CallbackFunction _Func) const
        {
            _Func();
        }

        bool operator==(const _ContextCallback&) const
        {
            return true;
        }

        bool operator!=(const _ContextCallback&) const
        {
            return false;
        }

#endif  /* defined (__cplusplus_winrt) */
    };

    template<typename _Type>
    struct _ResultHolder
    {
        void Set(const _Type& _type)
        {
            _Result = _type;
        }

        _Type Get()
        {
            return _Result;
        }

        _Type _Result;
    };

#if defined (__cplusplus_winrt)

    template<typename _Type>
    struct _ResultHolder<_Type^>
    {
        void Set(_Type^ const & _type)
        {
           _M_Result = _type;
        }

        _Type^ Get()
        {
            return _M_Result.Get();
        }
    private:
        // ::Platform::Agile handle specialization of all hats
        // including ::Platform::String and ::Platform::Array
        ::Platform::Agile<_Type^> _M_Result;
    };

    //
    // The below are for composability with tasks auto-created from when_any / when_all / && / || constructs.
    //
    template<typename _Type>
    struct _ResultHolder<std::vector<_Type^>>
    {
        void Set(const std::vector<_Type^>& _type)
        {
            _Result.reserve(_type.size());

            for (auto _PTask = _type.begin(); _PTask != _type.end(); ++_PTask)
            {
                _Result.emplace_back(*_PTask);
            }
        }

        std::vector<_Type^> Get()
        {
            // Return vectory<T^> with the objects that are marshaled in the proper appartment
            std::vector<_Type^> _Return;
            _Return.reserve(_Result.size());

            for (auto _PTask = _Result.begin(); _PTask != _Result.end(); ++_PTask)
            {
                _Return.push_back(_PTask->Get()); // Platform::Agile will marshal the object to appropriate appartment if neccessary
            }

            return _Return;
        }

        std::vector< ::Platform::Agile<_Type^> > _Result;
    };

    template<typename _Type>
    struct _ResultHolder<std::pair<_Type^, void*> >
    {
        void Set(const std::pair<_Type^, size_t>& _type)
        {
            _M_Result = _type;
        }

        std::pair<_Type^, size_t> Get()
        {
            return std::make_pair(_M_Result.first.Get(), _M_Result.second);
        }
    private:
        std::pair< ::Platform::Agile<_Type^>, size_t> _M_Result;
    };

#endif  /* defined (__cplusplus_winrt) */

    // An exception thrown by the task body is captured in an exception holder and it is shared with all value based continuations rooted at the task.
    // The exception is 'observed' if the user invokes get()/wait() on any of the tasks that are sharing this exception holder. If the exception
    // is not observed by the time the internal object owned by the shared pointer destructs, the process will fail fast.
    struct _ExceptionHolder
    {
    private:
        void ReportUnhandledError()
        {
#if _MSC_VER >= 1800 && defined(__cplusplus_winrt)
            if (_M_winRTException != nullptr)
            {
                ::Platform::Details::ReportUnhandledError(_M_winRTException);
            }
#endif  /* defined (__cplusplus_winrt) */
        }
    public:
        explicit _ExceptionHolder(const std::exception_ptr& _E, const _TaskCreationCallstack &_stackTrace) :
        _M_exceptionObserved(0), _M_stdException(_E), _M_stackTrace(_stackTrace)
#if defined (__cplusplus_winrt)
            , _M_winRTException(nullptr)
#endif  /* defined (__cplusplus_winrt) */
        {
        }

#if defined (__cplusplus_winrt)
        explicit _ExceptionHolder(::Platform::Exception^ _E, const _TaskCreationCallstack &_stackTrace) :
        _M_exceptionObserved(0),  _M_winRTException(_E), _M_stackTrace(_stackTrace)
        {
        }
#endif  /* defined (__cplusplus_winrt) */

        __declspec(noinline)
        ~_ExceptionHolder()
        {
            if (_M_exceptionObserved == 0)
            {
                // If you are trapped here, it means an exception thrown in task chain didn't get handled.
                // Please add task-based continuation to handle all exceptions coming from tasks.
                // this->_M_stackTrace keeps the creation callstack of the task generates this exception.
                _REPORT_PPLTASK_UNOBSERVED_EXCEPTION();
            }
        }

        void _RethrowUserException()
        {
            if (_M_exceptionObserved == 0)
            {
                atomic_exchange(_M_exceptionObserved, 1l);
            }

#if defined (__cplusplus_winrt)
            if (_M_winRTException != nullptr)
            {
                throw _M_winRTException;
            }
#endif  /* defined (__cplusplus_winrt) */
            std::rethrow_exception(_M_stdException);
        }

        // A variable that remembers if this exception was every rethrown into user code (and hence handled by the user). Exceptions that
        // are unobserved when the exception holder is destructed will terminate the process.
        atomic_long _M_exceptionObserved;

        // Either _M_stdException or _M_winRTException is populated based on the type of exception encountered.
        std::exception_ptr _M_stdException;
#if defined (__cplusplus_winrt)
        ::Platform::Exception^ _M_winRTException;
#endif  /* defined (__cplusplus_winrt) */

        // Disassembling this value will point to a source instruction right after a call instruction. If the call is to create_task,
        // a task constructor or the then method, the task created by that method is the one that encountered this exception. If the call
        // is to task_completion_event::set_exception, the set_exception method was the source of the exception.
        // DO NOT REMOVE THIS VARIABLE. It is extremely helpful for debugging.
        _TaskCreationCallstack _M_stackTrace;

    };

#if defined (__cplusplus_winrt)
    /// <summary>
    ///     Base converter class for converting asynchronous interfaces to IAsyncOperation
    /// </summary>
    template<typename _AsyncOperationType, typename _CompletionHandlerType, typename _Result>
    ref struct _AsyncInfoImpl abstract : Windows::Foundation::IAsyncOperation<_Result>
    {
    internal:
        // The async action, action with progress or operation with progress that this stub forwards to.
        ::Platform::Agile<_AsyncOperationType> _M_asyncInfo;

        Windows::Foundation::AsyncOperationCompletedHandler<_Result>^ _M_CompletedHandler;

        _AsyncInfoImpl( _AsyncOperationType _AsyncInfo ) : _M_asyncInfo(_AsyncInfo) {}

    public:
        virtual void Cancel() { _M_asyncInfo.Get()->Cancel(); }
        virtual void Close() { _M_asyncInfo.Get()->Close(); }

        virtual property Windows::Foundation::HResult ErrorCode
        {
            Windows::Foundation::HResult get()
            {
                return _M_asyncInfo.Get()->ErrorCode;
            }
        }

        virtual property UINT Id
        {
            UINT get()
            {
                return _M_asyncInfo.Get()->Id;
            }
        }

        virtual property Windows::Foundation::AsyncStatus Status
        {
            Windows::Foundation::AsyncStatus get()
            {
                return _M_asyncInfo.Get()->Status;
            }
        }

        virtual _Result GetResults() { throw std::runtime_error("derived class must implement"); }

        virtual property Windows::Foundation::AsyncOperationCompletedHandler<_Result>^ Completed
        {
            Windows::Foundation::AsyncOperationCompletedHandler<_Result>^ get()
            {
                return _M_CompletedHandler;
            }

            void set(Windows::Foundation::AsyncOperationCompletedHandler<_Result>^ value)
            {
                _M_CompletedHandler = value;
                _M_asyncInfo.Get()->Completed = ref new _CompletionHandlerType([&](_AsyncOperationType, Windows::Foundation::AsyncStatus status) {
                    _M_CompletedHandler->Invoke(this, status);
                });
            }
        }
    };

    /// <summary>
    ///     Class _IAsyncOperationWithProgressToAsyncOperationConverter is used to convert an instance of IAsyncOperationWithProgress<T> into IAsyncOperation<T>
    /// </summary>
    template<typename _Result, typename _Progress>
    ref struct _IAsyncOperationWithProgressToAsyncOperationConverter sealed :
        _AsyncInfoImpl<Windows::Foundation::IAsyncOperationWithProgress<_Result,_Progress>^,
                      Windows::Foundation::AsyncOperationWithProgressCompletedHandler<_Result,_Progress>,
                      _Result>
    {
    internal:
        _IAsyncOperationWithProgressToAsyncOperationConverter(Windows::Foundation::IAsyncOperationWithProgress<_Result,_Progress>^ _Operation) :
            _AsyncInfoImpl<Windows::Foundation::IAsyncOperationWithProgress<_Result,_Progress>^,
                          Windows::Foundation::AsyncOperationWithProgressCompletedHandler<_Result,_Progress>,
                          _Result>(_Operation) {}

    public:
        virtual _Result GetResults() override { return _M_asyncInfo.Get()->GetResults(); }
    };

    /// <summary>
    ///     Class _IAsyncActionToAsyncOperationConverter is used to convert an instance of IAsyncAction into IAsyncOperation<_Unit_type>
    /// </summary>
    ref struct _IAsyncActionToAsyncOperationConverter sealed :
        _AsyncInfoImpl<Windows::Foundation::IAsyncAction^,
                      Windows::Foundation::AsyncActionCompletedHandler,
                      details::_Unit_type>
    {
    internal:
        _IAsyncActionToAsyncOperationConverter(Windows::Foundation::IAsyncAction^ _Operation) :
            _AsyncInfoImpl<Windows::Foundation::IAsyncAction^,
                          Windows::Foundation::AsyncActionCompletedHandler,
                          details::_Unit_type>(_Operation) {}

    public:
        virtual details::_Unit_type GetResults() override
        {
            // Invoke GetResults on the IAsyncAction to allow exceptions to be thrown to higher layers before returning a dummy value.
            _M_asyncInfo.Get()->GetResults();
            return details::_Unit_type();
        }
    };

    /// <summary>
    ///     Class _IAsyncActionWithProgressToAsyncOperationConverter is used to convert an instance of IAsyncActionWithProgress into IAsyncOperation<_Unit_type>
    /// </summary>
    template<typename _Progress>
    ref struct _IAsyncActionWithProgressToAsyncOperationConverter sealed :
        _AsyncInfoImpl<Windows::Foundation::IAsyncActionWithProgress<_Progress>^,
                      Windows::Foundation::AsyncActionWithProgressCompletedHandler<_Progress>,
                      details::_Unit_type>
    {
    internal:
        _IAsyncActionWithProgressToAsyncOperationConverter(Windows::Foundation::IAsyncActionWithProgress<_Progress>^ _Action) :
            _AsyncInfoImpl<Windows::Foundation::IAsyncActionWithProgress<_Progress>^,
                          Windows::Foundation::AsyncActionWithProgressCompletedHandler<_Progress>,
                          details::_Unit_type>(_Action) {}
    public:
        virtual details::_Unit_type GetResults() override
        {
            // Invoke GetResults on the IAsyncActionWithProgress to allow exceptions to be thrown before returning a dummy value.
            _M_asyncInfo.Get()->GetResults();
            return details::_Unit_type();
        }
    };
#endif  /* defined (__cplusplus_winrt) */
} // namespace details

/// <summary>
///     The <c>task_continuation_context</c> class allows you to specify where you would like a continuation to be executed.
///     It is only useful to use this class from a Windows Store app. For non-Windows Store apps, the task continuation's
///     execution context is determined by the runtime, and not configurable.
/// </summary>
/// <seealso cref="task Class"/>
/**/
class task_continuation_context : public details::_ContextCallback
{
public:

    /// <summary>
    ///     Creates the default task continuation context.
    /// </summary>
    /// <returns>
    ///     The default continuation context.
    /// </returns>
    /// <remarks>
    ///     The default context is used if you don't specifiy a continuation context when you call the <c>then</c> method. In Windows
    ///     applications for Windows 7 and below, as well as desktop applications on Windows 8 and higher, the runtime determines where
    ///     task continuations will execute. However, in a Windows Store app, the default continuation context for a continuation on an
    ///     apartment aware task is the apartment where <c>then</c> is invoked.
    ///     <para>An apartment aware task is a task that unwraps a Windows Runtime <c>IAsyncInfo</c> interface, or a task that is descended from such
    ///     a task. Therefore, if you schedule a continuation on an apartment aware task in a Windows Runtime STA, the continuation will execute in
    ///     that STA.</para>
    ///     <para>A continuation on a non-apartment aware task will execute in a context the Runtime chooses.</para>
    /// </remarks>
    /**/
    static task_continuation_context use_default()
    {
#if defined (__cplusplus_winrt)
        // The callback context is created with the context set to CaptureDeferred and resolved when it is used in .then()
        return task_continuation_context(true); // sets it to deferred, is resolved in the constructor of _ContinuationTaskHandle
#else  /* defined (__cplusplus_winrt) */
        return task_continuation_context();
#endif  /* defined (__cplusplus_winrt) */
    }

#if defined (__cplusplus_winrt)
    /// <summary>
    ///     Creates a task continuation context which allows the Runtime to choose the execution context for a continuation.
    /// </summary>
    /// <returns>
    ///     A task continuation context that represents an arbitrary location.
    /// </returns>
    /// <remarks>
    ///     When this continuation context is used the continuation will execute in a context the runtime chooses even if the antecedent task
    ///     is apartment aware.
    ///     <para><c>use_arbitrary</c> can be used to turn off the default behavior for a continuation on an apartment
    ///     aware task created in an STA. </para>
    ///     <para>This method is only available to Windows Store apps.</para>
    /// </remarks>
    /**/
    static task_continuation_context use_arbitrary()
    {
        task_continuation_context _Arbitrary(true);
        _Arbitrary._Resolve(false);
        return _Arbitrary;
    }

    /// <summary>
    ///     Returns a task continuation context object that represents the current execution context.
    /// </summary>
    /// <returns>
    ///     The current execution context.
    /// </returns>
    /// <remarks>
    ///     This method captures the caller's Windows Runtime context so that continuations can be executed in the right apartment.
    ///     <para>The value returned by <c>use_current</c> can be used to indicate to the Runtime that the continuation should execute in
    ///     the captured context (STA vs MTA) regardless of whether or not the antecedent task is apartment aware. An apartment aware task is
    ///     a task that unwraps a Windows Runtime <c>IAsyncInfo</c> interface, or a task that is descended from such a task. </para>
    ///     <para>This method is only available to Windows Store apps.</para>
    /// </remarks>
    /**/
    static task_continuation_context use_current()
    {
        task_continuation_context _Current(true);
        _Current._Resolve(true);
        return _Current;
    }
#endif  /* defined (__cplusplus_winrt) */

private:

    task_continuation_context(bool _DeferCapture = false) : details::_ContextCallback(_DeferCapture)
    {
    }
};

class task_options;
namespace details
{
    struct _Internal_task_options
    {
        bool _M_hasPresetCreationCallstack;
        _TaskCreationCallstack _M_presetCreationCallstack;

        void _set_creation_callstack(const _TaskCreationCallstack &_callstack)
        {
            _M_hasPresetCreationCallstack = true;
            _M_presetCreationCallstack = _callstack;
        }
        _Internal_task_options()
        {
            _M_hasPresetCreationCallstack = false;
        }
    };

    inline _Internal_task_options &_get_internal_task_options(task_options &options);
    inline const _Internal_task_options &_get_internal_task_options(const task_options &options);
}
/// <summary>
///     Represents the allowed options for creating a task
/// </summary>
class task_options
{
public:


    /// <summary>
    ///     Default list of task creation options
    /// </summary>
    task_options()
        : _M_Scheduler(get_ambient_scheduler()),
          _M_CancellationToken(cancellation_token::none()),
          _M_ContinuationContext(task_continuation_context::use_default()),
          _M_HasCancellationToken(false),
          _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a cancellation token
    /// </summary>
    task_options(cancellation_token _Token)
        : _M_Scheduler(get_ambient_scheduler()),
          _M_CancellationToken(_Token),
          _M_ContinuationContext(task_continuation_context::use_default()),
          _M_HasCancellationToken(true),
          _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a continuation context. This is valid only for continuations (then)
    /// </summary>
    task_options(task_continuation_context _ContinuationContext)
        : _M_Scheduler(get_ambient_scheduler()),
          _M_CancellationToken(cancellation_token::none()),
          _M_ContinuationContext(_ContinuationContext),
          _M_HasCancellationToken(false),
          _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a cancellation token and a continuation context. This is valid only for continuations (then)
    /// </summary>
    task_options(cancellation_token _Token, task_continuation_context _ContinuationContext)
        : _M_Scheduler(get_ambient_scheduler()),
          _M_CancellationToken(_Token),
          _M_ContinuationContext(_ContinuationContext),
          _M_HasCancellationToken(false),
          _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a scheduler with shared lifetime
    /// </summary>
    template<typename _SchedType>
    task_options(std::shared_ptr<_SchedType> _Scheduler)
        : _M_Scheduler(std::move(_Scheduler)),
          _M_CancellationToken(cancellation_token::none()),
          _M_ContinuationContext(task_continuation_context::use_default()),
          _M_HasCancellationToken(false),
          _M_HasScheduler(true)
    {
    }

    /// <summary>
    ///     Task option that specify a scheduler reference
    /// </summary>
    task_options(scheduler_interface& _Scheduler)
        : _M_Scheduler(&_Scheduler),
          _M_CancellationToken(cancellation_token::none()),
          _M_ContinuationContext(task_continuation_context::use_default()),
          _M_HasCancellationToken(false),
          _M_HasScheduler(true)
    {
    }

    /// <summary>
    ///     Task option that specify a scheduler
    /// </summary>
    task_options(scheduler_ptr _Scheduler)
        : _M_Scheduler(std::move(_Scheduler)),
          _M_CancellationToken(cancellation_token::none()),
          _M_ContinuationContext(task_continuation_context::use_default()),
          _M_HasCancellationToken(false),
          _M_HasScheduler(true)
    {
    }

    /// <summary>
    ///     Task option copy constructor
    /// </summary>
    task_options(const task_options& _TaskOptions)
        : _M_Scheduler(_TaskOptions.get_scheduler()),
          _M_CancellationToken(_TaskOptions.get_cancellation_token()),
          _M_ContinuationContext(_TaskOptions.get_continuation_context()),
          _M_HasCancellationToken(_TaskOptions.has_cancellation_token()),
          _M_HasScheduler(_TaskOptions.has_scheduler())        
    {
    }

    /// <summary>
    ///     Sets the given token in the options
    /// </summary>
    void set_cancellation_token(cancellation_token _Token)
    {
        _M_CancellationToken = _Token;
       _M_HasCancellationToken = true;
    }

    /// <summary>
    ///     Sets the given continuation context in the options
    /// </summary>
    void set_continuation_context(task_continuation_context _ContinuationContext)
    {
        _M_ContinuationContext = _ContinuationContext;
    }

    /// <summary>
    ///     Indicates whether a cancellation token was specified by the user
    /// </summary>
    bool has_cancellation_token() const
    {
        return _M_HasCancellationToken;
    }

    /// <summary>
    ///     Returns the cancellation token
    /// </summary>
    cancellation_token get_cancellation_token() const
    {
        return _M_CancellationToken;
    }

    /// <summary>
    ///     Returns the continuation context
    /// </summary>
    task_continuation_context get_continuation_context() const
    {
        return _M_ContinuationContext;
    }

    /// <summary>
    ///     Indicates whether a scheduler n was specified by the user
    /// </summary>
    bool has_scheduler() const
    {
        return _M_HasScheduler;
    }

    /// <summary>
    ///     Returns the scheduler
    /// </summary>
    scheduler_ptr get_scheduler() const
    {
        return _M_Scheduler;
    }

private:

    task_options const& operator=(task_options const& _Right);
    friend details::_Internal_task_options &details::_get_internal_task_options(task_options &);
    friend const details::_Internal_task_options &details::_get_internal_task_options(const task_options &);

    scheduler_ptr _M_Scheduler;
    cancellation_token _M_CancellationToken;
    task_continuation_context _M_ContinuationContext;
    details::_Internal_task_options _M_InternalTaskOptions;
    bool _M_HasCancellationToken;
    bool _M_HasScheduler;
};

namespace details
{
    inline _Internal_task_options & _get_internal_task_options(task_options &options)
    {
        return options._M_InternalTaskOptions;
    }
    inline const _Internal_task_options & _get_internal_task_options(const task_options &options)
    {
        return options._M_InternalTaskOptions;
    }

    struct _Task_impl_base;
    template<typename _ReturnType> struct _Task_impl;

    template<typename _ReturnType>
    struct _Task_ptr
    {
        typedef std::shared_ptr<_Task_impl<_ReturnType>> _Type;
        static _Type _Make(_CancellationTokenState * _Ct, scheduler_ptr _Scheduler_arg) { return std::make_shared<_Task_impl<_ReturnType>>(_Ct, _Scheduler_arg); }
    };

    typedef _TaskCollection_t::_TaskProcHandle_t _UnrealizedChore_t;
    typedef std::shared_ptr<_Task_impl_base> _Task_ptr_base;

    // The weak-typed base task handler for continuation tasks.
    struct _ContinuationTaskHandleBase : _UnrealizedChore_t
    {
        _ContinuationTaskHandleBase * _M_next;
        task_continuation_context _M_continuationContext;
        bool _M_isTaskBasedContinuation;

        // This field gives inlining scheduling policy for current chore.
        _TaskInliningMode_t _M_inliningMode;
        
        virtual _Task_ptr_base _GetTaskImplBase() const = 0;

        _ContinuationTaskHandleBase() : 
            _M_next(nullptr), _M_continuationContext(task_continuation_context::use_default()), _M_isTaskBasedContinuation(false), _M_inliningMode(details::_NoInline)
        {
        }

        virtual ~_ContinuationTaskHandleBase() {}
    };

#if _PPLTASK_ASYNC_LOGGING
    // GUID used for identifying causality logs from PPLTask
    const ::Platform::Guid _PPLTaskCausalityPlatformID(0x7A76B220, 0xA758, 0x4E6E, 0xB0, 0xE0, 0xD7, 0xC6, 0xD7, 0x4A, 0x88, 0xFE);

    __declspec(selectany) volatile long _isCausalitySupported = 0;

    inline bool _IsCausalitySupported()
    {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
        if (_isCausalitySupported == 0)
        {
            long _causality = 1;
            OSVERSIONINFOEX _osvi = {};
            _osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);

            // The Causality is supported on Windows version higher than Windows 8
            _osvi.dwMajorVersion = 6;
            _osvi.dwMinorVersion = 3;

            DWORDLONG _conditionMask = 0;
            VER_SET_CONDITION( _conditionMask, VER_MAJORVERSION, VER_GREATER_EQUAL );
            VER_SET_CONDITION( _conditionMask, VER_MINORVERSION, VER_GREATER_EQUAL );

            if ( ::VerifyVersionInfo(&_osvi, VER_MAJORVERSION | VER_MINORVERSION, _conditionMask)) 
            {
                _causality = 2;
            }

            _isCausalitySupported = _causality;
            return _causality == 2;
        }

        return _isCausalitySupported == 2 ? true : false;
#else
        return true;
#endif
    }

    // Stateful logger rests inside task_impl_base. 
    struct _TaskEventLogger
    {
        _Task_impl_base *_M_task;
        bool _M_scheduled;
        bool _M_taskPostEventStarted;

        // Log before scheduling task
        void _LogScheduleTask(bool _isContinuation)
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationCreation(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library, 
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), 
                    _isContinuation ? "pplx::PPLTask::ScheduleContinuationTask" : "pplx::PPLTask::ScheduleTask", 0);
                _M_scheduled = true;
            } 
        }

        // It will log the cancel event but not canceled state. _LogTaskCompleted will log the terminal state, which includes cancel state.
        void _LogCancelTask()
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationRelation(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Important, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), ::Windows::Foundation::Diagnostics::CausalityRelation::Cancel);

            } 
        }

        // Log when task reaches terminal state. Note: the task can reach a terminal state (by cancellation or exception) without having run
        void _LogTaskCompleted();

        // Log when task body (which includes user lambda and other scheduling code) begin to run
        void _LogTaskExecutionStarted() { }

        // Log when task body finish executing
        void _LogTaskExecutionCompleted()
        {
            if (_M_taskPostEventStarted && details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkCompletion(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::CompletionNotification);
            }
        }

        // Log right before user lambda being invoked
        void _LogWorkItemStarted()
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkStart(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::Execution);
            }
        }

        // Log right after user lambda being invoked
        void _LogWorkItemCompleted()
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkCompletion(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::Execution);

                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkStart(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::CompletionNotification);
                _M_taskPostEventStarted = true;
            }
        }
        
        _TaskEventLogger(_Task_impl_base *_task): _M_task(_task)
        {
            _M_scheduled = false;
            _M_taskPostEventStarted = false;
        }
    };

    // Exception safe logger for user lambda
    struct _TaskWorkItemRAIILogger
    {
        _TaskEventLogger &_M_logger;
        _TaskWorkItemRAIILogger(_TaskEventLogger &_taskHandleLogger): _M_logger(_taskHandleLogger)
        {
            _M_logger._LogWorkItemStarted();
        }

        ~_TaskWorkItemRAIILogger()
        {
            _M_logger._LogWorkItemCompleted();
        }
        _TaskWorkItemRAIILogger &operator =(const _TaskWorkItemRAIILogger &); // cannot be assigned
    };

#else
    inline void _LogCancelTask(_Task_impl_base *) {}
    struct _TaskEventLogger
    {
        void _LogScheduleTask(bool) {}
        void _LogCancelTask() {}
        void _LogWorkItemStarted() {}
        void _LogWorkItemCompleted() {}
        void _LogTaskExecutionStarted() {}
        void _LogTaskExecutionCompleted() {}
        void _LogTaskCompleted() {}
        _TaskEventLogger(_Task_impl_base *) {}
    };
    struct _TaskWorkItemRAIILogger
    {
        _TaskWorkItemRAIILogger(_TaskEventLogger &) {}
    };
#endif

    /// <summary>
    ///     The _PPLTaskHandle is the strong-typed task handle base. All user task functions need to be wrapped in this task handler
    ///     to be executable by PPL. By deriving from a different _BaseTaskHandle, it can be used for both initial tasks and continuation tasks.
    ///     For initial tasks, _PPLTaskHandle will be derived from _UnrealizedChore_t, and for continuation tasks, it will be derived from
    ///     _ContinuationTaskHandleBase. The life time of the _PPLTaskHandle object is be managed by runtime if task handle is scheduled.
    /// </summary>
    /// <typeparam name="_ReturnType">
    ///     The result type of the _Task_impl.
    /// </typeparam>
    /// <typeparam name="_DerivedTaskHandle">
    ///     The derived task handle class. The <c>operator ()</c> needs to be implemented.
    /// </typeparam>
    /// <typeparam name="_BaseTaskHandle">
    ///     The base class from which _PPLTaskHandle should be derived. This is either _UnrealizedChore_t or _ContinuationTaskHandleBase.
    /// </typeparam>
    template<typename _ReturnType, typename _DerivedTaskHandle, typename _BaseTaskHandle>
    struct _PPLTaskHandle : _BaseTaskHandle
    {
        _PPLTaskHandle(const typename _Task_ptr<_ReturnType>::_Type & _PTask) : _M_pTask(_PTask)
        {
        }

        virtual ~_PPLTaskHandle() 
        {
            // Here is the sink of all task completion code paths
            _M_pTask->_M_taskEventLogger._LogTaskCompleted();
        }

        virtual void invoke() const
        {
            // All exceptions should be rethrown to finish cleanup of the task collection. They will be caught and handled
            // by the runtime.
            _ASSERTE((bool)_M_pTask);
            if (!_M_pTask->_TransitionedToStarted())
            {
                static_cast<const _DerivedTaskHandle *>(this)->_SyncCancelAndPropagateException();
                return;
            }

            _M_pTask->_M_taskEventLogger._LogTaskExecutionStarted();
            try
            {
                // All derived task handle must implement this contract function.
                static_cast<const _DerivedTaskHandle *>(this)->_Perform();
            }
            catch(const task_canceled &)
            {
                _M_pTask->_Cancel(true);
            }
            catch(const _Interruption_exception &)
            {
                _M_pTask->_Cancel(true);
            }
#if defined (__cplusplus_winrt)
            catch(::Platform::Exception^ _E)
            {
                _M_pTask->_CancelWithException(_E);
            }
#endif  /* defined (__cplusplus_winrt) */
            catch(...)
            {
                _M_pTask->_CancelWithException(std::current_exception());
            }
            _M_pTask->_M_taskEventLogger._LogTaskExecutionCompleted();
        }

        // Cast _M_pTask pointer to "type-less" _Task_impl_base pointer, which can be used in _ContinuationTaskHandleBase.
        // The return value should be automatically optimized by R-value ref.
        _Task_ptr_base _GetTaskImplBase() const
        {
            return _M_pTask;
        }

        typename _Task_ptr<_ReturnType>::_Type _M_pTask;
    private:
        _PPLTaskHandle const & operator=(_PPLTaskHandle const&);    // no assignment operator
    };

    /// <summary>
    ///     The base implementation of a first-class task. This class contains all the non-type specific
    ///     implementation details of the task.
    /// </summary>
    /**/
    struct _Task_impl_base
    {
        enum _TaskInternalState
        {
            // Tracks the state of the task, rather than the task collection on which the task is scheduled
            _Created,
            _Started,
            _PendingCancel,
            _Completed,
            _Canceled
        };
// _M_taskEventLogger - 'this' : used in base member initializer list
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4355)
#endif
        _Task_impl_base(_CancellationTokenState * _PTokenState, scheduler_ptr _Scheduler_arg) 
                          : _M_TaskState(_Created),
                            _M_fFromAsync(false), _M_fUnwrappedTask(false),
                            _M_pRegistration(nullptr), _M_Continuations(nullptr), _M_TaskCollection(_Scheduler_arg),
                            _M_taskEventLogger(this)                           
        {
            // Set cancelation token
            _M_pTokenState = _PTokenState;
            _ASSERTE(_M_pTokenState != nullptr);
            if (_M_pTokenState != _CancellationTokenState::_None())
                _M_pTokenState->_Reference();
        }
#if defined(_MSC_VER)
#pragma warning(pop)
#endif

        virtual ~_Task_impl_base()
        {
            _ASSERTE(_M_pTokenState != nullptr);
            if (_M_pTokenState != _CancellationTokenState::_None())
            {
                _M_pTokenState->_Release();
            }
        }

        task_status _Wait()
        {
            bool _DoWait = true;

#if defined (__cplusplus_winrt)
            if (_IsNonBlockingThread())
            {
                // In order to prevent Windows Runtime STA threads from blocking the UI, calling task.wait() task.get() is illegal
                // if task has not been completed.
                if (!_IsCompleted() && !_IsCanceled())
                {
                    throw invalid_operation("Illegal to wait on a task in a Windows Runtime STA");
                }
                else
                {
                    // Task Continuations are 'scheduled' *inside* the chore that is executing on the ancestors's task group. If a continuation
                    // needs to be marshalled to a different apartment, instead of scheduling, we make a synchronous cross apartment COM
                    // call to execute the continuation. If it then happens to do something which waits on the ancestor (say it calls .get(), which
                    // task based continuations are wont to do), waiting on the task group results in on the chore that is making this
                    // synchronous callback, which causes a deadlock. To avoid this, we test the state ancestor's event , and we will NOT wait on
                    // if it has finished execution (which means now we are on the inline synchronous callback).
                    _DoWait = false;
                }
            }
#endif  /* defined (__cplusplus_winrt) */
            if (_DoWait)
            {
                // If this task was created from a Windows Runtime async operation, do not attempt to inline it. The
                // async operation will take place on a thread in the appropriate apartment Simply wait for the completed
                // event to be set.
                if (_M_fFromAsync)
                {
                    _M_TaskCollection._Wait();
                }
                else
                {
                    // Wait on the task collection to complete. The task collection is guaranteed to still be
                    // valid since the task must be still within scope so that the _Task_impl_base destructor
                    // has not yet been called. This call to _Wait potentially inlines execution of work.
                    try
                    {
                        // Invoking wait on a task collection resets the state of the task collection. This means that
                        // if the task collection itself were canceled, or had encountered an exception, only the first
                        // call to wait will receive this status. However, both cancellation and exceptions flowing through
                        // tasks set state in the task impl itself.

                        // When it returns cancelled, either work chore or the cancel thread should already have set task's state
                        // properly -- cancelled state or completed state (because there was no interruption point).
                        // For tasks with unwrapped tasks, we should not change the state of current task, since the unwrapped task are still running.
                        _M_TaskCollection._RunAndWait();
                    }
                    catch(details::_Interruption_exception&)
                    {
                        // The _TaskCollection will never be an interruption point since it has a none token.
                        _ASSERTE(false);
                    }
                    catch(task_canceled&)
                    {
                        // task_canceled is a special exception thrown by cancel_current_task. The spec states that cancel_current_task
                        // must be called from code that is executed within the task (throwing it from parallel work created by and waited
                        // upon by the task is acceptable). We can safely assume that the task wrapper _PPLTaskHandle::operator() has seen
                        // the exception and canceled the task. Swallow the exception here.
                        _ASSERTE(_IsCanceled());
                    }
#if defined (__cplusplus_winrt)
                    catch(::Platform::Exception^ _E)
                    {
                        // Its possible the task body hasn't seen the exception, if so we need to cancel with exception here.
                        if(!_HasUserException())
                        {
                            _CancelWithException(_E);
                        }
                        // Rethrow will mark the exception as observed.
                        _M_exceptionHolder->_RethrowUserException();
                    }
#endif  /* defined (__cplusplus_winrt) */
                    catch(...)
                    {
                        // Its possible the task body hasn't seen the exception, if so we need to cancel with exception here.
                        if(!_HasUserException())
                        {
                            _CancelWithException(std::current_exception());
                        }
                        // Rethrow will mark the exception as observed.
                        _M_exceptionHolder->_RethrowUserException();
                    }

                    // If the lambda body for this task (executed or waited upon in _RunAndWait above) happened to return a task
                    // which is to be unwrapped and plumbed to the output of this task, we must not only wait on the lambda body, we must
                    // wait on the **INNER** body. It is in theory possible that we could inline such if we plumb a series of things through;
                    // however, this takes the tact of simply waiting upon the completion signal.
                    if (_M_fUnwrappedTask)
                    {
                        _M_TaskCollection._Wait();
                    }
                }
            }

            if (_HasUserException())
            {
                _M_exceptionHolder->_RethrowUserException();
            }
            else if (_IsCanceled())
            {
                return canceled;
            }
            _ASSERTE(_IsCompleted());
            return completed;
        }

        /// <summary>
        ///     Requests cancellation on the task and schedules continuations if the task can be transitioned to a terminal state.
        /// </summary>
        /// <param name="_SynchronousCancel">
        ///     Set to true if the cancel takes place as a result of the task body encountering an exception, or because an ancestor or task_completion_event the task
        ///     was registered with were canceled with an exception. A synchronous cancel is one that assures the task could not be running on a different thread at
        ///     the time the cancellation is in progress. An asynchronous cancel is one where the thread performing the cancel has no control over the thread that could
        ///     be executing the task, that is the task could execute concurrently while the cancellation is in progress.
        /// </param>
        /// <param name="_UserException">
        ///     Whether an exception other than the internal runtime cancellation exceptions caused this cancellation.
        /// </param>
        /// <param name="_PropagatedFromAncestor">
        ///     Whether this exception came from an ancestor task or a task_completion_event as opposed to an exception that was encountered by the task itself. Only valid when
        ///     _UserException is set to true.
        /// </param>
        /// <param name="_ExHolder">
        ///     The exception holder that represents the exception. Only valid when _UserException is set to true.
        /// </param>
        virtual bool _CancelAndRunContinuations(bool _SynchronousCancel, bool _UserException, bool _PropagatedFromAncestor, const std::shared_ptr<_ExceptionHolder>& _ExHolder) = 0;

        bool _Cancel(bool _SynchronousCancel)
        {
            // Send in a dummy value for exception. It is not used when the first parameter is false.
            return _CancelAndRunContinuations(_SynchronousCancel, false, false, _M_exceptionHolder);
        }

        bool _CancelWithExceptionHolder(const std::shared_ptr<_ExceptionHolder>& _ExHolder, bool _PropagatedFromAncestor)
        {
            // This task was canceled because an ancestor task encountered an exception.
            return _CancelAndRunContinuations(true, true, _PropagatedFromAncestor, _ExHolder);
        }

#if defined (__cplusplus_winrt)
        bool _CancelWithException(::Platform::Exception^ _Exception)
        {
            // This task was canceled because the task body encountered an exception.
            _ASSERTE(!_HasUserException());
            return _CancelAndRunContinuations(true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationCallstack()));
        }
#endif  /* defined (__cplusplus_winrt) */

        bool _CancelWithException(const std::exception_ptr& _Exception)
        {
            // This task was canceled because the task body encountered an exception.
            _ASSERTE(!_HasUserException());
            return _CancelAndRunContinuations(true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationCallstack()));
        }

        void _RegisterCancellation(std::weak_ptr<_Task_impl_base> _WeakPtr)
        {
            _ASSERTE(details::_CancellationTokenState::_IsValid(_M_pTokenState));

            auto _CancellationCallback = [_WeakPtr](){
                // Taking ownership of the task prevents dead lock during destruction
                // if the destructor waits for the cancellations to be finished
                auto _task = _WeakPtr.lock();
                if (_task != nullptr)
                    _task->_Cancel(false);
            };

            _M_pRegistration = new details::_CancellationTokenCallback<decltype(_CancellationCallback)>(_CancellationCallback);
            _M_pTokenState->_RegisterCallback(_M_pRegistration);
        }

        void _DeregisterCancellation()
        {
            if (_M_pRegistration != nullptr)
            {
                _M_pTokenState->_DeregisterCallback(_M_pRegistration);
                _M_pRegistration->_Release();
                _M_pRegistration = nullptr;
            }
        }

        bool _IsCreated()
        {
            return (_M_TaskState == _Created);
        }

        bool _IsStarted()
        {
            return (_M_TaskState == _Started);
        }

        bool _IsPendingCancel()
        {
            return (_M_TaskState == _PendingCancel);
        }

        bool _IsCompleted()
        {
            return (_M_TaskState == _Completed);
        }

        bool _IsCanceled()
        {
            return (_M_TaskState == _Canceled);
        }

        bool _HasUserException()
        {
            return static_cast<bool>(_M_exceptionHolder);
        }

        const std::shared_ptr<_ExceptionHolder>& _GetExceptionHolder()
        {
            _ASSERTE(_HasUserException());
            return _M_exceptionHolder;
        }

        bool _IsApartmentAware()
        {
            return _M_fFromAsync;
        }

        void _SetAsync(bool _Async = true)
        {
            _M_fFromAsync = _Async;
        }

        _TaskCreationCallstack _GetTaskCreationCallstack()
        {
            return _M_pTaskCreationCallstack;
        }

        void _SetTaskCreationCallstack(const _TaskCreationCallstack &_Callstack)
        {
            _M_pTaskCreationCallstack = _Callstack;
        }

        /// <summary>
        ///     Helper function to schedule the task on the Task Collection.
        /// </summary>
        /// <param name="_PTaskHandle">
        ///     The task chore handle that need to be executed.
        /// </param>
        /// <param name="_InliningMode">
        ///     The inlining scheduling policy for current _PTaskHandle.
        /// </param>
        void _ScheduleTask(_UnrealizedChore_t * _PTaskHandle, _TaskInliningMode_t _InliningMode)
        {
            try
            {
                _M_TaskCollection._ScheduleTask(_PTaskHandle, _InliningMode);
            }
            catch(const task_canceled &)
            {
                // task_canceled is a special exception thrown by cancel_current_task. The spec states that cancel_current_task
                // must be called from code that is executed within the task (throwing it from parallel work created by and waited
                // upon by the task is acceptable). We can safely assume that the task wrapper _PPLTaskHandle::operator() has seen
                // the exception and canceled the task. Swallow the exception here.
                _ASSERTE(_IsCanceled());
            }
            catch(const _Interruption_exception &)
            {
                // The _TaskCollection will never be an interruption point since it has a none token.
                _ASSERTE(false);
            }
            catch(...)
            {
                // The exception could have come from two places:
                //   1. From the chore body, so it already should have been caught and canceled.
                //      In this case swallow the exception.
                //   2. From trying to actually schedule the task on the scheduler.
                //      In this case cancel the task with the current exception, otherwise the
                //      task will never be signaled leading to deadlock when waiting on the task.
                if (!_HasUserException())
                {
                    _CancelWithException(std::current_exception());
                }
            }
        }

        /// <summary>
        ///     Function executes a continuation. This function is recorded by a parent task implementation
        ///     when a continuation is created in order to execute later.
        /// </summary>
        /// <param name="_PTaskHandle">
        ///     The continuation task chore handle that need to be executed.
        /// </param>
        /**/
        void _RunContinuation(_ContinuationTaskHandleBase * _PTaskHandle)
        {
            _Task_ptr_base _ImplBase = _PTaskHandle->_GetTaskImplBase();
            if (_IsCanceled() && !_PTaskHandle->_M_isTaskBasedContinuation)
            {
                if (_HasUserException())
                {
                    // If the ancestor encountered an exception, transfer the exception to the continuation
                    // This traverses down the tree to propagate the exception.
                    _ImplBase->_CancelWithExceptionHolder(_GetExceptionHolder(), true);
                }
                else
                {
                    // If the ancestor was canceled, then your own execution should be canceled.
                    // This traverses down the tree to cancel it.
                    _ImplBase->_Cancel(true);
                }
            }
            else
            {
                // This can only run when the ancestor has completed or it's a task based continuation that fires when a task is canceled
                // (with or without a user exception).
                _ASSERTE(_IsCompleted() || _PTaskHandle->_M_isTaskBasedContinuation);
                _ASSERTE(!_ImplBase->_IsCanceled());
                return _ImplBase->_ScheduleContinuationTask(_PTaskHandle);
            }

            // If the handle is not scheduled, we need to manually delete it.
            delete _PTaskHandle;
        }

        // Schedule a continuation to run
        void _ScheduleContinuationTask(_ContinuationTaskHandleBase * _PTaskHandle)
        {
            
            _M_taskEventLogger._LogScheduleTask(true);
            // Ensure that the continuation runs in proper context (this might be on a Concurrency Runtime thread or in a different Windows Runtime apartment)
            if (_PTaskHandle->_M_continuationContext._HasCapturedContext())
            {
                // For those continuations need to be scheduled inside captured context, we will try to apply automatic inlining to their inline modes,
                // if they haven't been specified as _ForceInline yet. This change will encourage those continuations to be executed inline so that reduce
                // the cost of marshaling.
                // For normal continuations we won't do any change here, and their inline policies are completely decided by ._ThenImpl method.
                if (_PTaskHandle->_M_inliningMode != details::_ForceInline)
                {
                    _PTaskHandle->_M_inliningMode = details::_DefaultAutoInline;
                }
                _ScheduleFuncWithAutoInline([_PTaskHandle]() {
                    // Note that we cannot directly capture "this" pointer, instead, we should use _TaskImplPtr, a shared_ptr to the _Task_impl_base.
                    // Because "this" pointer will be invalid as soon as _PTaskHandle get deleted. _PTaskHandle will be deleted after being scheduled.
                    auto _TaskImplPtr = _PTaskHandle->_GetTaskImplBase();
                    if (details::_ContextCallback::_CaptureCurrent() == _PTaskHandle->_M_continuationContext)
                    {
                        _TaskImplPtr->_ScheduleTask(_PTaskHandle, details::_ForceInline);
                    }
                    else
                    {
                        //
                        // It's entirely possible that the attempt to marshal the call into a differing context will fail. In this case, we need to handle
                        // the exception and mark the continuation as canceled with the appropriate exception. There is one slight hitch to this:
                        //
                        // NOTE: COM's legacy behavior is to swallow SEH exceptions and marshal them back as HRESULTS. This will in effect turn an SEH into
                        // a C++ exception that gets tagged on the task. One unfortunate result of this is that various pieces of the task infrastructure will
                        // not be in a valid state after this in /EHsc (due to the lack of destructors running, etc...).
                        //
                        try
                        {
                            // Dev10 compiler needs this!
                            auto _PTaskHandle1 = _PTaskHandle;
                            _PTaskHandle->_M_continuationContext._CallInContext( [_PTaskHandle1, _TaskImplPtr](){
                                _TaskImplPtr->_ScheduleTask(_PTaskHandle1, details::_ForceInline);
                            });
                        }
#if defined (__cplusplus_winrt)
                        catch(::Platform::Exception^ _E)
                        {
                            _TaskImplPtr->_CancelWithException(_E);
                        }
#endif  /* defined (__cplusplus_winrt) */
                        catch(...)
                        {
                            _TaskImplPtr->_CancelWithException(std::current_exception());
                        }
                    }
                }, _PTaskHandle->_M_inliningMode);
            }
            else
            {
                _ScheduleTask(_PTaskHandle, _PTaskHandle->_M_inliningMode);
            }
        }

        /// <summary>
        ///     Schedule the actual continuation. This will either schedule the function on the continuation task's implementation
        ///     if the task has completed or append it to a list of functions to execute when the task actually does complete.
        /// </summary>
        /// <typeparam name="_FuncInputType">
        ///     The input type of the task.
        /// </typeparam>
        /// <typeparam name="_FuncOutputType">
        ///     The output type of the task.
        /// </typeparam>
        /**/
        void _ScheduleContinuation(_ContinuationTaskHandleBase * _PTaskHandle)
        {
            enum { _Nothing, _Schedule, _Cancel, _CancelWithException } _Do = _Nothing;

            // If the task has canceled, cancel the continuation. If the task has completed, execute the continuation right away.
            // Otherwise, add it to the list of pending continuations
            {
                ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec);
                if (_IsCompleted() || (_IsCanceled() && _PTaskHandle->_M_isTaskBasedContinuation))
                {
                    _Do = _Schedule;
                }
                else if (_IsCanceled())
                {
                    if (_HasUserException())
                    {
                        _Do = _CancelWithException;
                    }
                    else
                    {
                        _Do = _Cancel;
                    }
                }
                else
                {
                    // chain itself on the continuation chain.
                    _PTaskHandle->_M_next = _M_Continuations;
                    _M_Continuations = _PTaskHandle;
                }
            }

            // Cancellation and execution of continuations should be performed after releasing the lock. Continuations off of
            // async tasks may execute inline.
            switch (_Do)
            {
                case _Schedule:
                {
                    _PTaskHandle->_GetTaskImplBase()->_ScheduleContinuationTask(_PTaskHandle);
                    break;
                }
                case _Cancel:
                {
                    // If the ancestor was canceled, then your own execution should be canceled.
                    // This traverses down the tree to cancel it.
                    _PTaskHandle->_GetTaskImplBase()->_Cancel(true);

                    delete _PTaskHandle;
                    break;
                }
                case _CancelWithException:
                {
                    // If the ancestor encountered an exception, transfer the exception to the continuation
                    // This traverses down the tree to propagate the exception.
                    _PTaskHandle->_GetTaskImplBase()->_CancelWithExceptionHolder(_GetExceptionHolder(), true);

                    delete _PTaskHandle;
                    break;
                }
                case _Nothing:
                default:
                    // In this case, we have inserted continuation to continuation chain,
                    // nothing more need to be done, just leave.
                    break;
            }
        }

        void _RunTaskContinuations()
        {
            // The link list can no longer be modified at this point,
            // since all following up continuations will be scheduled by themselves.
            _ContinuationList _Cur = _M_Continuations, _Next;
            _M_Continuations = nullptr;
            while (_Cur)
            {
                // Current node might be deleted after running,
                // so we must fetch the next first.
                _Next = _Cur->_M_next;
                _RunContinuation(_Cur);
                _Cur = _Next;
            }
        }

#if defined (__cplusplus_winrt)
        static bool  _IsNonBlockingThread()
        {
            APTTYPE _AptType;
            APTTYPEQUALIFIER _AptTypeQualifier;

            HRESULT hr = CoGetApartmentType(&_AptType, &_AptTypeQualifier);
            //
            // If it failed, it's not a Windows Runtime/COM initialized thread. This is not a failure.
            //
            if (SUCCEEDED(hr))
            {
                switch(_AptType)
                {
                case APTTYPE_STA:
                case APTTYPE_MAINSTA:
                    return true;
                    break;
                case APTTYPE_NA:
                    switch(_AptTypeQualifier)
                    {
                    // A thread executing in a neutral apartment is either STA or MTA. To find out if this thread is allowed
                    // to wait, we check the app qualifier. If it is an STA thread executing in a neutral apartment, waiting
                    // is illegal, because the thread is responsible for pumping messages and waiting on a task could take the
                    // thread out of circulation for a while.
                    case APTTYPEQUALIFIER_NA_ON_STA:
                    case APTTYPEQUALIFIER_NA_ON_MAINSTA:
                        return true;
                        break;
                    }
                    break;
                }
            }

#if _UITHREADCTXT_SUPPORT
            // This method is used to throw an exepection in _Wait() if called within STA.  We
            // want the same behavior if _Wait is called on the UI thread.
            if (SUCCEEDED(CaptureUiThreadContext(nullptr)))
            {
                return true;
            }
#endif  /* _UITHREADCTXT_SUPPORT */

            return false;
        }

        template<typename _ReturnType, typename>
        static void _AsyncInit(const typename _Task_ptr<_ReturnType>::_Type & _OuterTask,
                               Windows::Foundation::IAsyncOperation<typename details::_ValueTypeOrRefType<_ReturnType>::_Value>^ _AsyncOp)
        {
            // This method is invoked either when a task is created from an existing async operation or
            // when a lambda that creates an async operation executes.

            // If the outer task is pending cancel, cancel the async operation before setting the completed handler. The COM reference on
            // the IAsyncInfo object will be released when all ^references to the operation go out of scope.

            // This assertion uses the existence of taskcollection to determine if the task was created from an event.
            // That is no longer valid as even tasks created from a user lambda could have no underlying taskcollection
            // when a custom scheduler is used.
            // _ASSERTE((!_OuterTask->_M_TaskCollection._IsCreated() || _OuterTask->_M_fUnwrappedTask) && !_OuterTask->_IsCanceled());

            // Pass the shared_ptr by value into the lambda instead of using 'this'.
            _AsyncOp->Completed = ref new Windows::Foundation::AsyncOperationCompletedHandler<_ReturnType>(
              [_OuterTask](Windows::Foundation::IAsyncOperation<typename details::_ValueTypeOrRefType<_ReturnType>::_Value>^ _Operation, Windows::Foundation::AsyncStatus _Status) mutable
            {
                if (_Status == Windows::Foundation::AsyncStatus::Canceled)
                {
                    _OuterTask->_Cancel(true);
                }
                else if (_Status == Windows::Foundation::AsyncStatus::Error)
                {
                    _OuterTask->_CancelWithException(::Platform::Exception::ReCreateException(static_cast<int>(_Operation->ErrorCode.Value)));
                }
                else
                {
                    _ASSERTE(_Status == Windows::Foundation::AsyncStatus::Completed);
                    _OuterTask->_FinalizeAndRunContinuations(_Operation->GetResults());
                }

                // Take away this shared pointers reference on the task instead of waiting for the delegate to be released. It could
                // be released on a different thread after a delay, and not releasing the reference here could cause the tasks to hold
                // on to resources longer than they should. As an example, without this reset, writing to a file followed by reading from
                // it using the Windows Runtime Async APIs causes a sharing violation.
                // Using const_cast is the workaround for failed mutable keywords
                const_cast<_Task_ptr<_ReturnType>::_Type &>(_OuterTask).reset();
             });
            _OuterTask->_SetUnwrappedAsyncOp(_AsyncOp);
        }
#endif  /* defined (__cplusplus_winrt) */

        template<typename _ReturnType, typename _InternalReturnType>
        static void _AsyncInit(const typename _Task_ptr<_ReturnType>::_Type& _OuterTask, const task<_InternalReturnType> & _UnwrappedTask)
        {
            _ASSERTE(_OuterTask->_M_fUnwrappedTask && !_OuterTask->_IsCanceled());
                       
            //
            // We must ensure that continuations off _OuterTask (especially exception handling ones) continue to function in the
            // presence of an exception flowing out of the inner task _UnwrappedTask. This requires an exception handling continuation
            // off the inner task which does the appropriate funnelling to the outer one. We use _Then instead of then to prevent
            // the exception from being marked as observed by our internal continuation. This continuation must be scheduled regardless
            // of whether or not the _OuterTask task is canceled.
            //
            _UnwrappedTask._Then([_OuterTask] (task<_InternalReturnType> _AncestorTask) {

                if (_AncestorTask._GetImpl()->_IsCompleted())
                {
                    _OuterTask->_FinalizeAndRunContinuations(_AncestorTask._GetImpl()->_GetResult());
                }
                else
                {
                    _ASSERTE(_AncestorTask._GetImpl()->_IsCanceled());
                    if (_AncestorTask._GetImpl()->_HasUserException())
                    {
                        // Set _PropagatedFromAncestor to false, since _AncestorTask is not an ancestor of _UnwrappedTask.
                        // Instead, it is the enclosing task.
                        _OuterTask->_CancelWithExceptionHolder(_AncestorTask._GetImpl()->_GetExceptionHolder(), false);
                    }
                    else
                    {
                        _OuterTask->_Cancel(true);
                    }
                }
            }, nullptr, details::_DefaultAutoInline);

        }

        scheduler_ptr _GetScheduler() const
        {
            return _M_TaskCollection._GetScheduler();
        }

        // Tracks the internal state of the task
        volatile _TaskInternalState _M_TaskState;
        // Set to true either if the ancestor task had the flag set to true, or if the lambda that does the work of this task returns an
        // async operation or async action that is unwrapped by the runtime.
        bool _M_fFromAsync;
        // Set to true when a continuation unwraps a task or async operation.
        bool _M_fUnwrappedTask;

        // An exception thrown by the task body is captured in an exception holder and it is shared with all value based continuations rooted at the task.
        // The exception is 'observed' if the user invokes get()/wait() on any of the tasks that are sharing this exception holder. If the exception
        // is not observed by the time the internal object owned by the shared pointer destructs, the process will fail fast.
        std::shared_ptr<_ExceptionHolder> _M_exceptionHolder;

        ::pplx::extensibility::critical_section_t _M_ContinuationsCritSec;

        // The cancellation token state.
        _CancellationTokenState * _M_pTokenState;

        // The registration on the token.
        _CancellationTokenRegistration * _M_pRegistration;

        typedef _ContinuationTaskHandleBase * _ContinuationList;
        _ContinuationList _M_Continuations;

        // The async task collection wrapper
        ::pplx::details::_TaskCollection_t _M_TaskCollection;

        // Callstack for function call (constructor or .then) that created this task impl.
        _TaskCreationCallstack _M_pTaskCreationCallstack;

        _TaskEventLogger _M_taskEventLogger;
   private:
        // Must not be copied by value:
        _Task_impl_base(const _Task_impl_base&);
        _Task_impl_base const & operator=(_Task_impl_base const&);
    };

#if _PPLTASK_ASYNC_LOGGING
    inline void _TaskEventLogger::_LogTaskCompleted()
    {
        if (_M_scheduled)
        {
            ::Windows::Foundation::AsyncStatus _State;
            if (_M_task->_IsCompleted())
                _State = ::Windows::Foundation::AsyncStatus::Completed;
            else if (_M_task->_HasUserException())
                _State = ::Windows::Foundation::AsyncStatus::Error;
            else
                _State = ::Windows::Foundation::AsyncStatus::Canceled;

            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationCompletion(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), _State);
            }
        }
    }
#endif
    
    /// <summary>
    ///     The implementation of a first-class task. This structure contains the task group used to execute
    ///     the task function and handles the scheduling. The _Task_impl is created as a shared_ptr
    ///     member of the the public task class, so its destruction is handled automatically.
    /// </summary>
    /// <typeparam name="_ReturnType">
    ///     The result type of this task.
    /// </typeparam>
    /**/
    template<typename _ReturnType>
    struct _Task_impl : public _Task_impl_base
    {
#if defined (__cplusplus_winrt)
        typedef Windows::Foundation::IAsyncOperation<typename details::_ValueTypeOrRefType<_ReturnType>::_Value> _AsyncOperationType;
#endif // defined(__cplusplus_winrt)
        _Task_impl(_CancellationTokenState * _Ct, scheduler_ptr _Scheduler_arg)
            : _Task_impl_base(_Ct, _Scheduler_arg)
        {
#if defined (__cplusplus_winrt)
            _M_unwrapped_async_op = nullptr;
#endif  /* defined (__cplusplus_winrt) */
        }

        virtual ~_Task_impl()
        {
            // We must invoke _DeregisterCancellation in the derived class destructor. Calling it in the base class destructor could cause
            // a partially initialized _Task_impl to be in the list of registrations for a cancellation token.
            _DeregisterCancellation();
        }

        virtual bool _CancelAndRunContinuations(bool _SynchronousCancel, bool _UserException, bool _PropagatedFromAncestor, const std::shared_ptr<_ExceptionHolder> & _ExceptionHolder_arg)
        {
            bool _RunContinuations = false;
            {
                ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec);
                if (_UserException)
                {
                    _ASSERTE(_SynchronousCancel && !_IsCompleted());
                    // If the state is _Canceled, the exception has to be coming from an ancestor.
                    _ASSERTE(!_IsCanceled() || _PropagatedFromAncestor);

                    // We should not be canceled with an exception more than once.
                    _ASSERTE(!_HasUserException());

                    // Mark _PropagatedFromAncestor as used.
                    (void)_PropagatedFromAncestor;

                    if (_M_TaskState == _Canceled)
                    {
                        // If the task has finished cancelling there should not be any continuation records in the array.
                        return false;
                    }
                    else
                    {
                        _ASSERTE(_M_TaskState != _Completed);
                        _M_exceptionHolder = _ExceptionHolder_arg;
                    }
                }
                else
                {
                    // Completed is a non-cancellable state, and if this is an asynchronous cancel, we're unable to do better than the last async cancel
                    // which is to say, cancellation is already initiated, so return early.
                    if (_IsCompleted() || _IsCanceled() || (_IsPendingCancel() && !_SynchronousCancel))
                    {
                        _ASSERTE(!_IsCompleted() || !_HasUserException());
                        return false;
                    }
                    _ASSERTE(!_SynchronousCancel || !_HasUserException());
                }

                if (_SynchronousCancel)
                {
                    // Be aware that this set must be done BEFORE _M_Scheduled being set, or race will happen between this and wait()
                    _M_TaskState = _Canceled;                    
                    // Cancellation completes the task, so all dependent tasks must be run to cancel them
                    // They are canceled when they begin running (see _RunContinuation) and see that their
                    // ancestor has been canceled.
                    _RunContinuations = true;
                }
                else
                {
                    _ASSERTE(!_UserException);

                    if (_IsStarted())
                    {
#if defined (__cplusplus_winrt)
                        if (_M_unwrapped_async_op != nullptr)
                        {
                            // We will only try to cancel async operation but not unwrapped tasks, since unwrapped tasks cannot be canceled without its token.
                            _M_unwrapped_async_op->Cancel();
                        }
#endif  /* defined (__cplusplus_winrt) */
                        _M_TaskCollection._Cancel();
                    }

                    // The _M_TaskState variable transitions to _Canceled when cancellation is completed (the task is not executing user code anymore).
                    // In the case of a synchronous cancel, this can happen immediately, whereas with an asynchronous cancel, the task has to move from
                    // _Started to _PendingCancel before it can move to _Canceled when it is finished executing.
                    _M_TaskState = _PendingCancel;

                    _M_taskEventLogger._LogCancelTask();
                }

                
            }

            // Only execute continuations and mark the task as completed if we were able to move the task to the _Canceled state.
            if (_RunContinuations)
            {
                _M_TaskCollection._Complete();

                if (_M_Continuations)
                {
                    // Scheduling cancellation with automatic inlining.
                    _ScheduleFuncWithAutoInline([=](){ _RunTaskContinuations(); }, details::_DefaultAutoInline);
                }
            }
            return true;
        }

        void _FinalizeAndRunContinuations(_ReturnType _Result)
        {
            _M_Result.Set(_Result);

            {
                //
                // Hold this lock to ensure continuations being concurrently either get added
                // to the _M_Continuations vector or wait for the result
                //
                ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec);

                // A task could still be in the _Created state if it was created with a task_completion_event.
                // It could also be in the _Canceled state for the same reason.
                _ASSERTE(!_HasUserException() && !_IsCompleted());
                if (_IsCanceled())
                {
                    return;
                }

                // Always transition to "completed" state, even in the face of unacknowledged pending cancellation
                _M_TaskState = _Completed;
            }
            _M_TaskCollection._Complete();
            _RunTaskContinuations();
        }

        //
        // This method is invoked when the starts executing. The task returns early if this method returns true.
        //
        bool _TransitionedToStarted()
        {
            ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec);
            // Canceled state could only result from antecedent task's canceled state, but that code path will not reach here.
            _ASSERTE(!_IsCanceled());
            if (_IsPendingCancel())
                return false;

            _ASSERTE(_IsCreated());
            _M_TaskState = _Started;
            return true;
        }

#if defined (__cplusplus_winrt)
        void _SetUnwrappedAsyncOp(_AsyncOperationType^ _AsyncOp)
        {
            ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec);
            // Cancel the async operation if the task itself is canceled, since the thread that canceled the task missed it.
            if (_IsPendingCancel())
            {
                _ASSERTE(!_IsCanceled());
                _AsyncOp->Cancel();
            }
            else
            {
                _M_unwrapped_async_op = _AsyncOp;
            }
        }
#endif  /* defined (__cplusplus_winrt) */

        // Return true if the task has reached a terminal state
        bool _IsDone()
        {     
            return _IsCompleted() || _IsCanceled();
        }

        _ReturnType _GetResult()
        {
            return _M_Result.Get();
        }

        _ResultHolder<_ReturnType>                 _M_Result;        // this means that the result type must have a public default ctor.
#if defined (__cplusplus_winrt)
        _AsyncOperationType^                        _M_unwrapped_async_op;
#endif  /* defined (__cplusplus_winrt) */
    };

    template<typename _ResultType>
    struct _Task_completion_event_impl
    {
    private:
        _Task_completion_event_impl(const _Task_completion_event_impl&);
        _Task_completion_event_impl& operator=(const _Task_completion_event_impl&);

    public:

        typedef std::vector<typename _Task_ptr<_ResultType>::_Type> _TaskList;

        _Task_completion_event_impl() :
            _M_fHasValue(false), _M_fIsCanceled(false)
        {
        }

        bool _HasUserException()
        {
            return _M_exceptionHolder != nullptr;
        }

        ~_Task_completion_event_impl()
        {
            for( auto _TaskIt = _M_tasks.begin(); _TaskIt != _M_tasks.end(); ++_TaskIt )
            {
                _ASSERTE(!_M_fHasValue && !_M_fIsCanceled);
                // Cancel the tasks since the event was never signaled or canceled.
                (*_TaskIt)->_Cancel(true);
            }
        }

        // We need to protect the loop over the array, so concurrent_vector would not have helped
        _TaskList                           _M_tasks;
        ::pplx::extensibility::critical_section_t             _M_taskListCritSec;
        _ResultHolder<_ResultType>         _M_value;
        std::shared_ptr<_ExceptionHolder>   _M_exceptionHolder;
        bool                                _M_fHasValue;
        bool                                _M_fIsCanceled;
    };

    // Utility method for dealing with void functions
    inline std::function<_Unit_type(void)> _MakeVoidToUnitFunc(const std::function<void(void)>& _Func)
    {
        return [=]() -> _Unit_type { _Func(); return _Unit_type(); };
    }

    template <typename _Type>
    std::function<_Type(_Unit_type)> _MakeUnitToTFunc(const std::function<_Type(void)>& _Func)
    {
        return [=](_Unit_type) -> _Type { return _Func(); };
    }

    template <typename _Type>
    std::function<_Unit_type(_Type)> _MakeTToUnitFunc(const std::function<void(_Type)>& _Func)
    {
        return [=](_Type t) -> _Unit_type { _Func(t); return _Unit_type(); };
    }

    inline std::function<_Unit_type(_Unit_type)> _MakeUnitToUnitFunc(const std::function<void(void)>& _Func)
    {
        return [=](_Unit_type) -> _Unit_type { _Func(); return _Unit_type(); };
    }
} // namespace details

/// <summary>
///     The <c>task_completion_event</c> class allows you to delay the execution of a task until a condition is satisfied,
///     or start a task in response to an external event.
/// </summary>
/// <typeparam name="_ResultType">
///     The result type of this <c>task_completion_event</c> class.
/// </typeparam>
/// <remarks>
///     Use a task created from a task completion event when your scenario requires you to create a task that will complete, and
///     thereby have its continuations scheduled for execution, at some point in the future. The <c>task_completion_event</c> must
///     have the same type as the task you create, and calling the set method on the task completion event with a value of that type
///     will cause the associated task to complete, and provide that value as a result to its continuations.
///     <para>If the task completion event is never signaled, any tasks created from it will be canceled when it is destructed.</para>
///     <para><c>task_completion_event</c> behaves like a smart pointer, and should be passed by value.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/**/
template<typename _ResultType>
class task_completion_event
{
public:
    /// <summary>
    ///     Constructs a <c>task_completion_event</c> object.
    /// </summary>
    /**/
    task_completion_event() 
        : _M_Impl(std::make_shared<details::_Task_completion_event_impl<_ResultType>>()) 
    {
    }

    /// <summary>
    ///     Sets the task completion event.
    /// </summary>
    /// <param name="_Result">
    ///     The result to set this event with.
    /// </param>
    /// <returns>
    ///     The method returns <c>true</c> if it was successful in setting the event. It returns <c>false</c> if the event is already set.
    /// </returns>
    /// <remarks>
    ///     In the presence of multiple or concurrent calls to <c>set</c>, only the first call will succeed and its result (if any) will be stored in the
    ///     task completion event. The remaining sets are ignored and the method will return false. When you set a task completion event, all the
    ///     tasks created from that event will immediately complete, and its continuations, if any, will be scheduled. Task completion objects that have
    ///     a <typeparamref name="_ResultType"/> other than <c>void</c> will pass the value <paramref value="_Result"/> to their continuations.
    /// </remarks>
    /**/
    bool set(_ResultType _Result) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        // Subsequent sets are ignored. This makes races to set benign: the first setter wins and all others are ignored.
        if (_IsTriggered())
        {
            return false;
        }

        _TaskList _Tasks;
        bool _RunContinuations = false;
        {
            ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec);

            if (!_IsTriggered())
            {
                _M_Impl->_M_value.Set(_Result);
                _M_Impl->_M_fHasValue = true;

                _Tasks.swap(_M_Impl->_M_tasks);
                _RunContinuations = true;
            }
        }

        if (_RunContinuations)
        {
            for( auto _TaskIt = _Tasks.begin(); _TaskIt != _Tasks.end(); ++_TaskIt )
            {
                // If current task was cancelled by a cancellation_token, it would be in cancel pending state.
                if ((*_TaskIt)->_IsPendingCancel())
                    (*_TaskIt)->_Cancel(true);
                else
                {
                    // Tasks created with task_completion_events can be marked as async, (we do this in when_any and when_all
                    // if one of the tasks involved is an async task). Since continuations of async tasks can execute inline, we
                    // need to run continuations after the lock is released.
                    (*_TaskIt)->_FinalizeAndRunContinuations(_M_Impl->_M_value.Get());
                }
            }
            if (_M_Impl->_HasUserException())
            {
                _M_Impl->_M_exceptionHolder.reset();
            }
            return true;
        }

        return false;
    }

    template<typename _E>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
    bool set_exception(_E _Except) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        // It is important that _CAPTURE_CALLSTACK() evaluate to the instruction after the call instruction for set_exception.
        return _Cancel(std::make_exception_ptr(_Except), _CAPTURE_CALLSTACK());
    }

    /// <summary>
    ///     Propagates an exception to all tasks associated with this event.
    /// </summary>
    /// <param>
    ///     The exception_ptr that indicates the exception to set this event with.
    /// </param>
    /**/
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    bool set_exception(std::exception_ptr _ExceptionPtr) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        // It is important that _CAPTURE_CALLSTACK() evaluate to the instruction after the call instruction for set_exception.
        return _Cancel(_ExceptionPtr, _CAPTURE_CALLSTACK());
    }

    /// <summary>
    ///     Internal method to cancel the task_completion_event. Any task created using this event will be marked as canceled if it has
    ///     not already been set.
    /// </summary>
    bool _Cancel() const
    {
        // Cancel with the stored exception if one exists.
        return _CancelInternal();
    }

    /// <summary>
    ///     Internal method to cancel the task_completion_event with the exception provided. Any task created using this event will be canceled
    ///     with the same exception.
    /// </summary>
    template<typename _ExHolderType>
    bool _Cancel(_ExHolderType _ExHolder, const details::_TaskCreationCallstack &_SetExceptionAddressHint = details::_TaskCreationCallstack ()) const
    {
        bool _Canceled;
        if(_StoreException(_ExHolder, _SetExceptionAddressHint))
        {
            _Canceled = _CancelInternal();
            _ASSERTE(_Canceled);
        }
        else
        {
            _Canceled = false;
        }
        return _Canceled;
    }

    /// <summary>
    ///     Internal method that stores an exception in the task completion event. This is used internally by when_any.
    ///     Note, this does not cancel the task completion event. A task completion event with a stored exception
    ///     can bet set() successfully. If it is canceled, it will cancel with the stored exception, if one is present.
    /// </summary>
    template<typename _ExHolderType>
    bool _StoreException(_ExHolderType _ExHolder, const details::_TaskCreationCallstack &_SetExceptionAddressHint = details::_TaskCreationCallstack ()) const
    {
        ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec);
        if (!_IsTriggered() && !_M_Impl->_HasUserException())
        {
            // Create the exception holder only if we have ensured there we will be successful in setting it onto the
            // task completion event. Failing to do so will result in an unobserved task exception.
            _M_Impl->_M_exceptionHolder = _ToExceptionHolder(_ExHolder, _SetExceptionAddressHint);
            return true;
        }
        return false;
    }

    /// <summary>
    ///     Tests whether current event has been either Set, or Canceled.
    /// </summary>
    bool _IsTriggered() const
    {
        return _M_Impl->_M_fHasValue || _M_Impl->_M_fIsCanceled;
    }

private:

    static std::shared_ptr<details::_ExceptionHolder> _ToExceptionHolder(const std::shared_ptr<details::_ExceptionHolder>& _ExHolder, const details::_TaskCreationCallstack&)
    {
        return _ExHolder;
    }

    static std::shared_ptr<details::_ExceptionHolder> _ToExceptionHolder(std::exception_ptr _ExceptionPtr, const details::_TaskCreationCallstack &_SetExceptionAddressHint)
    {
        return std::make_shared<details::_ExceptionHolder>(_ExceptionPtr, _SetExceptionAddressHint);
    }


    template <typename T> friend class task; // task can register itself with the event by calling the private _RegisterTask
    template <typename T> friend class task_completion_event;

    typedef typename details::_Task_completion_event_impl<_ResultType>::_TaskList _TaskList;

    /// <summary>
    ///    Cancels the task_completion_event.
    /// </summary>
    bool _CancelInternal() const
    {
        // Cancellation of task completion events is an internal only utility. Our usage is such that _CancelInternal
        // will never be invoked if the task completion event has been set.
        _ASSERTE(!_M_Impl->_M_fHasValue);
        if (_M_Impl->_M_fIsCanceled)
        {
            return false;
        }

        _TaskList _Tasks;
        bool _Cancel = false;
        {
            ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec);
            _ASSERTE(!_M_Impl->_M_fHasValue);
            if (!_M_Impl->_M_fIsCanceled)
            {
                _M_Impl->_M_fIsCanceled = true;
                _Tasks.swap(_M_Impl->_M_tasks);
                _Cancel = true;
            }
        }

        bool _UserException = _M_Impl->_HasUserException();

        if (_Cancel)
        {
            for( auto _TaskIt = _Tasks.begin(); _TaskIt != _Tasks.end(); ++_TaskIt )
            {
                // Need to call this after the lock is released. See comments in set().
                if (_UserException)
                {
                    (*_TaskIt)->_CancelWithExceptionHolder(_M_Impl->_M_exceptionHolder, true);
                }
                else
                {
                    (*_TaskIt)->_Cancel(true);
                }
            }
        }
        return _Cancel;
    }

    /// <summary>
    ///     Register a task with this event. This function is called when a task is constructed using
    ///     a task_completion_event.
    /// </summary>
    void _RegisterTask(const typename details::_Task_ptr<_ResultType>::_Type & _TaskParam)
    {
        ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec);

        //If an exception was already set on this event, then cancel the task with the stored exception.
        if(_M_Impl->_HasUserException())
        {
            _TaskParam->_CancelWithExceptionHolder(_M_Impl->_M_exceptionHolder, true);
        }
        else if (_M_Impl->_M_fHasValue)
        {
            _TaskParam->_FinalizeAndRunContinuations(_M_Impl->_M_value.Get());
        }
        else
        {
            _M_Impl->_M_tasks.push_back(_TaskParam);
        }
    }

    std::shared_ptr<details::_Task_completion_event_impl<_ResultType>> _M_Impl;
};

/// <summary>
///     The <c>task_completion_event</c> class allows you to delay the execution of a task until a condition is satisfied,
///     or start a task in response to an external event.
/// </summary>
/// <remarks>
///     Use a task created from a task completion event when your scenario requires you to create a task that will complete, and
///     thereby have its continuations scheduled for execution, at some point in the future. The <c>task_completion_event</c> must
///     have the same type as the task you create, and calling the set method on the task completion event with a value of that type
///     will cause the associated task to complete, and provide that value as a result to its continuations.
///     <para>If the task completion event is never signaled, any tasks created from it will be canceled when it is destructed.</para>
///     <para><c>task_completion_event</c> behaves like a smart pointer, and should be passed by value.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/**/
template<>
class task_completion_event<void>
{
public:
    /// <summary>
    ///     Sets the task completion event.
    /// </summary>
    /// <returns>
    ///     The method returns <c>true</c> if it was successful in setting the event. It returns <c>false</c> if the event is already set.
    /// </returns>
    /// <remarks>
    ///     In the presence of multiple or concurrent calls to <c>set</c>, only the first call will succeed and its result (if any) will be stored in the
    ///     task completion event. The remaining sets are ignored and the method will return false. When you set a task completion event, all the
    ///     tasks created from that event will immediately complete, and its continuations, if any, will be scheduled. Task completion objects that have
    ///     a <typeparamref name="_ResultType"/> other than <c>void</c> will pass the value <paramref value="_Result"/> to their continuations.
    /// </remarks>
    /**/
    bool set() const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        return _M_unitEvent.set(details::_Unit_type());
    }

    template<typename _E>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
    bool set_exception(_E _Except) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        return _M_unitEvent._Cancel(std::make_exception_ptr(_Except), _CAPTURE_CALLSTACK());
    }

    /// <summary>
    ///     Propagates an exception to all tasks associated with this event.
    /// </summary>
    /// <param>
    ///     The exception_ptr that indicates the exception to set this event with.
    /// </param>
    /**/
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK intrinsic gives us the expected result
    bool set_exception(std::exception_ptr _ExceptionPtr) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        // It is important that _CAPTURE_CALLSTACK() evaluate to the instruction after the call instruction for set_exception.
        return _M_unitEvent._Cancel(_ExceptionPtr, _CAPTURE_CALLSTACK());
    }

    /// <summary>
    ///     Cancel the task_completion_event. Any task created using this event will be marked as canceled if it has
    ///     not already been set.
    /// </summary>
    void _Cancel() const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        _M_unitEvent._Cancel();
    }

    /// <summary>
    ///     Cancel the task_completion_event with the exception holder provided. Any task created using this event will be canceled
    ///     with the same exception.
    /// </summary>
    void _Cancel(const std::shared_ptr<details::_ExceptionHolder>& _ExHolder) const
    {
        _M_unitEvent._Cancel(_ExHolder);
    }

    /// <summary>
    ///     Method that stores an exception in the task completion event. This is used internally by when_any.
    ///     Note, this does not cancel the task completion event. A task completion event with a stored exception
    ///     can bet set() successfully. If it is canceled, it will cancel with the stored exception, if one is present.
    /// </summary>
    bool _StoreException(const std::shared_ptr<details::_ExceptionHolder>& _ExHolder) const
    {
        return _M_unitEvent._StoreException(_ExHolder);
    }

    /// <summary>
    ///     Test whether current event has been either Set, or Canceled.
    /// </summary>
    bool _IsTriggered() const
    {
        return _M_unitEvent._IsTriggered();
    }

private:
    template <typename T> friend class task; // task can register itself with the event by calling the private _RegisterTask

    /// <summary>
    ///     Register a task with this event. This function is called when a task is constructed using
    ///     a task_completion_event.
    /// </summary>
    void _RegisterTask(details::_Task_ptr<details::_Unit_type>::_Type _TaskParam)
    {
        _M_unitEvent._RegisterTask(_TaskParam);
    }

    // The void event contains an event a dummy type so common code can be used for events with void and non-void results.
    task_completion_event<details::_Unit_type> _M_unitEvent;
};

namespace details
{
    //
    // Compile-time validation helpers
    //

    // Task constructor validation: issue helpful diagnostics for common user errors. Do not attempt full validation here.
    //
    // Anything callable is fine
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int,int,int,int) -> decltype(_Param(), std::true_type());

#if defined (__cplusplus_winrt)
    // Anything that has GetResults is fine: this covers all async operations
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, int,...) -> decltype(_Param->GetResults(), std::true_type());
#endif

    // Allow parameters with set: this covers task_completion_event
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, ...) -> decltype(_Param.set(stdx::declval<_ReturnType>()), std::true_type());

    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, ...) -> decltype(_Param.set(), std::true_type());

    // All else is invalid
    template<typename _ReturnType, typename _Ty>
    std::false_type _IsValidTaskCtor(_Ty _Param, ...);

    template<typename _ReturnType, typename _Ty>
    void _ValidateTaskConstructorArgs(_Ty _Param)
    {
        static_assert(std::is_same<decltype(_IsValidTaskCtor<_ReturnType>(_Param,0,0,0,0)),std::true_type>::value,
#if defined (__cplusplus_winrt)
            "incorrect argument for task constructor; can be a callable object, an asynchronous operation, or a task_completion_event"
#else  /* defined (__cplusplus_winrt) */
            "incorrect argument for task constructor; can be a callable object or a task_completion_event"
#endif  /* defined (__cplusplus_winrt) */
            );
#if defined (__cplusplus_winrt)
        static_assert(!(std::is_same<_Ty,_ReturnType>::value && details::_IsIAsyncInfo<_Ty>::_Value),
            "incorrect template argument for task; consider using the return type of the async operation");
#endif  /* defined (__cplusplus_winrt) */
    }

#if defined (__cplusplus_winrt)
    // Helpers for create_async validation
    //
    // A parameter lambda taking no arguments is valid
    template<typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, int) -> decltype(_Param(), std::true_type());

    // A parameter lambda taking an cancellation_token argument is valid
    template<typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, ...) -> decltype(_Param(cancellation_token::none()), std::true_type());

    // A parameter lambda taking a progress report argument is valid
    template<typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, ...) -> decltype(_Param(details::_ProgressReporterCtorArgType()), std::true_type());

    // A parameter lambda taking a progress report and a cancellation_token argument is valid
    template<typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, ...) -> decltype(_Param(details::_ProgressReporterCtorArgType(), cancellation_token::none()), std::true_type());

    // All else is invalid
    template<typename _Ty>
    static std::false_type _IsValidCreateAsync(_Ty _Param, ...);
#endif  /* defined (__cplusplus_winrt) */
}
/// <summary>
///     A helper class template that transforms a continuation lambda that either takes or returns void, or both, into a lambda that takes and returns a
///     non-void type (details::_Unit_type is used to substitute for void). This is to minimize the special handling required for 'void'.
/// </summary>
template<typename _InpType, typename _OutType>
class _Continuation_func_transformer
{
public:
    static auto _Perform(std::function<_OutType(_InpType)> _Func) -> decltype(_Func)
    {
        return _Func;
    }
};

template<typename _OutType>
class _Continuation_func_transformer<void, _OutType>
{
public:
    static auto _Perform(std::function<_OutType(void)> _Func) -> decltype(details::_MakeUnitToTFunc<_OutType>(_Func))
    {
        return details::_MakeUnitToTFunc<_OutType>(_Func);
    }
};

template<typename _InType>
class _Continuation_func_transformer<_InType, void>
{
public:
    static auto _Perform(std::function<void(_InType)> _Func) -> decltype(details::_MakeTToUnitFunc<_InType>(_Func))
    {
        return details::_MakeTToUnitFunc<_InType>(_Func);
    }
};

template<>
class _Continuation_func_transformer<void, void>
{
public:
    static auto _Perform(std::function<void(void)> _Func) -> decltype(details::_MakeUnitToUnitFunc(_Func))
    {
        return details::_MakeUnitToUnitFunc(_Func);
    }
};

// A helper class template that transforms an intial task lambda returns void into a lambda that returns a non-void type (details::_Unit_type is used
// to substitute for void). This is to minimize the special handling required for 'void'.
template<typename _RetType>
class _Init_func_transformer
{
public:
    static auto _Perform(std::function<_RetType(void)> _Func) -> decltype(_Func)
    {
        return _Func;
    }
};

template<>
class _Init_func_transformer<void>
{
public:
    static auto _Perform(std::function<void(void)> _Func) -> decltype(details::_MakeVoidToUnitFunc(_Func))
    {
        return details::_MakeVoidToUnitFunc(_Func);
    }
};

/// <summary>
///     The Parallel Patterns Library (PPL) <c>task</c> class. A <c>task</c> object represents work that can be executed asynchronously,
///     and concurrently with other tasks and parallel work produced by parallel algorithms in the Concurrency Runtime. It produces
///     a result of type <typeparamref name="_ResultType"/> on successful completion. Tasks of type <c>task&lt;void&gt;</c> produce no result.
///     A task can be waited upon and canceled independently of other tasks. It can also be composed with other tasks using
///     continuations(<c>then</c>), and join(<c>when_all</c>) and choice(<c>when_any</c>) patterns.
/// </summary>
/// <typeparam name="_ReturnType">
///     The result type of this task.
/// </typeparam>
/// <remarks>
///     For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.
/// </remarks>
/**/
template<typename _ReturnType>
class task
{
public:
    /// <summary>
    ///     The type of the result an object of this class produces.
    /// </summary>
    /**/
    typedef _ReturnType result_type;

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task() : _M_Impl(nullptr)
    {
        // The default constructor should create a task with a nullptr impl. This is a signal that the
        // task is not usable and should throw if any wait(), get() or then() APIs are used.
    }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <typeparam name="_Ty">
    ///     The type of the parameter from which the task is to be constructed.
    /// </typeparam>
    /// <param name="_Param">
    ///     The parameter from which the task is to be constructed. This could be a lambda, a function object, a <c>task_completion_event&lt;result_type&gt;</c>
    ///     object, or a Windows::Foundation::IAsyncInfo if you are using tasks in your Windows Store app. The lambda or function
    ///     object should be a type equivalent to <c>std::function&lt;X(void)&gt;</c>, where X can be a variable of type <c>result_type</c>,
    ///     <c>task&lt;result_type&gt;</c>, or a Windows::Foundation::IAsyncInfo in Windows Store apps.
    /// </param>
    /// <param name="_Token">
    ///     The cancellation token to associate with this task. A task created without a cancellation token cannot be canceled. It implicitly receives
    ///     the token <c>cancellation_token::none()</c>.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Ty>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    explicit task(_Ty _Param)
    {
        task_options _TaskOptions;
        details::_ValidateTaskConstructorArgs<_ReturnType,_Ty>(_Param);

        _CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler());
        // Do not move the next line out of this function. It is important that _CAPTURE_CALLSTACK() evaluate to the the call site of the task constructor.
        _SetTaskCreationCallstack(_CAPTURE_CALLSTACK());

        _TaskInitMaybeFunctor(_Param, details::_IsCallable(_Param,0));
    }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <typeparam name="_Ty">
    ///     The type of the parameter from which the task is to be constructed.
    /// </typeparam>
    /// <param name="_Param">
    ///     The parameter from which the task is to be constructed. This could be a lambda, a function object, a <c>task_completion_event&lt;result_type&gt;</c>
    ///     object, or a Windows::Foundation::IAsyncInfo if you are using tasks in your Windows Store app. The lambda or function
    ///     object should be a type equivalent to <c>std::function&lt;X(void)&gt;</c>, where X can be a variable of type <c>result_type</c>,
    ///     <c>task&lt;result_type&gt;</c>, or a Windows::Foundation::IAsyncInfo in Windows Store apps.
    /// </param>
    /// <param name="_TaskOptions">
    ///     The task options include cancellation token, scheduler etc
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Ty>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    explicit task(_Ty _Param, const task_options &_TaskOptions)
    {
        details::_ValidateTaskConstructorArgs<_ReturnType,_Ty>(_Param);

        _CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler());
        // Do not move the next line out of this function. It is important that _CAPTURE_CALLSTACK() evaluate to the the call site of the task constructor.
        _SetTaskCreationCallstack(details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : _CAPTURE_CALLSTACK());
        
        _TaskInitMaybeFunctor(_Param, details::_IsCallable(_Param,0));
    }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(const task& _Other): _M_Impl(_Other._M_Impl) {}

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(task&& _Other): _M_Impl(std::move(_Other._M_Impl)) {}

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(const task& _Other)
    {
        if (this != &_Other)
        {
            _M_Impl = _Other._M_Impl;
        }
        return *this;
    }

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(task&& _Other)
    {
        if (this != &_Other)
        {
            _M_Impl = std::move(_Other._M_Impl);
        }
        return *this;
    }

    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    auto then(const _Function& _Func) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
        task_options _TaskOptions;
        details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
        return _ThenImpl<_ReturnType, _Function>(_Func, _TaskOptions);
    }

    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_TaskOptions">
    ///     The task options include cancellation token, scheduler and continuation context. By default the former 3
    ///     options are inherited from the antecedent task
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    auto then(const _Function& _Func, task_options _TaskOptions) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
        details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
        return _ThenImpl<_ReturnType, _Function>(_Func, _TaskOptions);
    }

    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_CancellationToken">
    ///     The cancellation token to associate with the continuation task. A continuation task that is created without a cancellation token will inherit
    ///     the token of its antecedent task.
    /// </param>
    /// <param name="_ContinuationContext">
    ///     A variable that specifies where the continuation should execute. This variable is only useful when used in a Windows Store
    ///     style app. For more information, see <see cref="task_continuation_context Class">task_continuation_context</see>
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    auto then(const _Function& _Func, cancellation_token _CancellationToken, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
        task_options _TaskOptions(_CancellationToken, _ContinuationContext);
        details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
        return _ThenImpl<_ReturnType, _Function>(_Func, _TaskOptions);
    }

    /// <summary>
    ///     Waits for this task to reach a terminal state. It is possible for <c>wait</c> to execute the task inline, if all of the tasks
    ///     dependencies are satisfied, and it has not already been picked up for execution by a background worker.
    /// </summary>
    /// <returns>
    ///     A <c>task_status</c> value which could be either <c>completed</c> or <c>canceled</c>. If the task encountered an exception
    ///     during execution, or an exception was propagated to it from an antecedent task, <c>wait</c> will throw that exception.
    /// </returns>
    /**/
    task_status wait() const
    {
        if (!_M_Impl)
        {
            throw invalid_operation("wait() cannot be called on a default constructed task.");
        }

        return _M_Impl->_Wait();
    }

    /// <summary>
    ///     Returns the result this task produced. If the task is not in a terminal state, a call to <c>get</c> will wait for the task to
    ///     finish. This method does not return a value when called on a task with a <c>result_type</c> of <c>void</c>.
    /// </summary>
    /// <returns>
    ///     The result of the task.
    /// </returns>
    /// <remarks>
    ///     If the task is canceled, a call to <c>get</c> will throw a <see cref="task_canceled Class">task_canceled</see> exception. If the task
    ///     encountered an different exception or an exception was propagated to it from an antecedent task, a call to <c>get</c> will throw that exception.
    /// </remarks>
    /**/
    _ReturnType get() const
    {
        if (!_M_Impl)
        {
            throw invalid_operation("get() cannot be called on a default constructed task.");
        }

        if (_M_Impl->_Wait() == canceled)
        {
            throw task_canceled();  
        }

        return _M_Impl->_GetResult();
    }

    /// <summary>
    ///     Determines if the task is completed.
    /// </summary>
    /// <returns>
    ///     True if the task has completed, false otherwise.
    /// </returns>
    /// <remarks>
    ///     The function returns true if the task is completed or canceled (with or without user exception).
    /// </remarks>
    bool is_done() const
    {
        if (!_M_Impl)
        {
            throw invalid_operation("is_done() cannot be called on a default constructed task.");
        }

        return _M_Impl->_IsDone();
    }

    /// <summary>
    ///     Returns the scheduler for this task
    /// </summary>
    /// <returns>
    ///     A pointer to the scheduler
    /// </returns>
    scheduler_ptr scheduler() const
    {
        if (!_M_Impl)
        {
            throw invalid_operation("scheduler() cannot be called on a default constructed task.");
        }

        return _M_Impl->_GetScheduler();
    }

    /// <summary>
    ///     Determines whether the task unwraps a Windows Runtime <c>IAsyncInfo</c> interface or is descended from such a task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the task unwraps an <c>IAsyncInfo</c> interface or is descended from such a task, <c>false</c> otherwise.
    /// </returns>
    /**/
    bool is_apartment_aware() const
    {
        if (!_M_Impl)
        {
            throw invalid_operation("is_apartment_aware() cannot be called on a default constructed task.");
        }
        return _M_Impl->_IsApartmentAware();
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent the same internal task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to the same underlying task, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator==(const task<_ReturnType>& _Rhs) const
    {
        return (_M_Impl == _Rhs._M_Impl);
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent different internal tasks.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to different underlying tasks, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator!=(const task<_ReturnType>& _Rhs) const
    {
        return !operator==(_Rhs);
    }

    /// <summary>
    ///     Create an underlying task implementation.
    /// </summary>
    void _CreateImpl(details::_CancellationTokenState * _Ct, scheduler_ptr _Scheduler)
    {
        _ASSERTE(_Ct != nullptr);
        _M_Impl = details::_Task_ptr<_ReturnType>::_Make(_Ct, _Scheduler);
        if (_Ct != details::_CancellationTokenState::_None())
        {
            _M_Impl->_RegisterCancellation(_M_Impl);
        }
    }

    /// <summary>
    ///     Return the underlying implementation for this task.
    /// </summary>
    const typename details::_Task_ptr<_ReturnType>::_Type & _GetImpl() const
    {
        return _M_Impl;
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion.
    /// </summary>
    void _SetImpl(const typename details::_Task_ptr<_ReturnType>::_Type & _Impl)
    {
        _ASSERTE(!_M_Impl);
        _M_Impl = _Impl;
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion using a move instead of a copy.
    /// </summary>
    void _SetImpl(typename details::_Task_ptr<_ReturnType>::_Type && _Impl)
    {
        _ASSERTE(!_M_Impl);
        _M_Impl = std::move(_Impl);
    }

    /// <summary>
    ///     Sets a property determining whether the task is apartment aware.
    /// </summary>
    void _SetAsync(bool _Async = true)
    {
        _GetImpl()->_SetAsync(_Async);
    }

    /// <summary>
    ///     Sets a field in the task impl to the return callstack for calls to the task constructors and the then method.
    /// </summary>
    void _SetTaskCreationCallstack(const details::_TaskCreationCallstack &_callstack)
    {
        _GetImpl()->_SetTaskCreationCallstack(_callstack);
    }

    /// <summary>
    ///     An internal version of then that takes additional flags and always execute the continuation inline by default.
    ///     When _ForceInline is set to false, continuations inlining will be limited to default _DefaultAutoInline.
    ///     This function is Used for runtime internal continuations only.
    /// </summary>
    template<typename _Function>
    auto _Then(const _Function& _Func, details::_CancellationTokenState *_PTokenState, 
        details::_TaskInliningMode_t _InliningMode = details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
        // inherit from antecedent
        auto _Scheduler = _GetImpl()->_GetScheduler();

        return _ThenImpl<_ReturnType, _Function>(_Func, _PTokenState, task_continuation_context::use_default(), _Scheduler, _CAPTURE_CALLSTACK(), _InliningMode);
    }

private:
    template <typename T> friend class task;

     
    // The task handle type used to construct an 'initial task' - a task with no dependents.
    template <typename _InternalReturnType, typename _Function, typename _TypeSelection>
    struct _InitialTaskHandle : 
        details::_PPLTaskHandle<_ReturnType, _InitialTaskHandle<_InternalReturnType, _Function, _TypeSelection>, details::_UnrealizedChore_t>
    {
        _Function _M_function;
        _InitialTaskHandle(const typename details::_Task_ptr<_ReturnType>::_Type & _TaskImpl, const _Function & _func)
            : details::_PPLTaskHandle<_ReturnType, _InitialTaskHandle<_InternalReturnType, _Function, _TypeSelection>, details::_UnrealizedChore_t>::_PPLTaskHandle(_TaskImpl)
            , _M_function(_func)
        {
        }

        virtual ~_InitialTaskHandle() {}

        template <typename _Func>
        auto _LogWorkItemAndInvokeUserLambda(_Func && _func) const -> decltype(_func())
        {
            details::_TaskWorkItemRAIILogger _LogWorkItem(this->_M_pTask->_M_taskEventLogger);
            CASABLANCA_UNREFERENCED_PARAMETER(_LogWorkItem);
            return _func();
        }

        void _Perform() const
        {
            _Init(_TypeSelection());
        }

        void _SyncCancelAndPropagateException() const
        {
            this->_M_pTask->_Cancel(true);
        }

        //
        // Overload 0: returns _InternalReturnType
        //
        // This is the most basic task with no unwrapping
        //
        void _Init(details::_TypeSelectorNoAsync) const
        {
            this->_M_pTask->_FinalizeAndRunContinuations(_LogWorkItemAndInvokeUserLambda(_Init_func_transformer<_InternalReturnType>::_Perform(_M_function)));
        }

        //
        // Overload 1: returns IAsyncOperation<_InternalReturnType>^ (only uder /ZW)
        //                   or
        //             returns task<_InternalReturnType>
        //
        // This is task whose functor returns an async operation or a task which will be unwrapped for continuation
        // Depending on the output type, the right _AsyncInit gets invoked
        //
        void _Init(details::_TypeSelectorAsyncOperationOrTask) const
        {
            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(this->_M_pTask, _LogWorkItemAndInvokeUserLambda(_M_function));
        }

#if defined (__cplusplus_winrt)
        //
        // Overload 2: returns IAsyncAction^
        //
        // This is task whose functor returns an async action which will be unwrapped for continuation
        //
        void _Init(details::_TypeSelectorAsyncAction) const
        {
            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(this->_M_pTask, ref new details::_IAsyncActionToAsyncOperationConverter(_LogWorkItemAndInvokeUserLambda(_M_function)));
        }

        //
        // Overload 3: returns IAsyncOperationWithProgress<_InternalReturnType, _ProgressType>^
        //
        // This is task whose functor returns an async operation with progress which will be unwrapped for continuation
        //
        void _Init(details::_TypeSelectorAsyncOperationWithProgress) const
        {
            typedef details::_GetProgressType<decltype(_M_function())>::_Value _ProgressType;

            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(this->_M_pTask,
                    ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter<_InternalReturnType,_ProgressType>(_LogWorkItemAndInvokeUserLambda(_M_function)));
        }

        //
        // Overload 4: returns IAsyncActionWithProgress<_ProgressType>^
        //
        // This is task whose functor returns an async action with progress which will be unwrapped for continuation
        //
        void _Init(details::_TypeSelectorAsyncActionWithProgress) const
        {
            typedef details::_GetProgressType<decltype(_M_function())>::_Value _ProgressType;

            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(this->_M_pTask, 
                ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>(_LogWorkItemAndInvokeUserLambda(_M_function)));
        }
#endif  /* defined (__cplusplus_winrt) */
    };


    /// <summary>
    ///     The task handle type used to create a 'continuation task'.
    /// </summary>
    template <typename _InternalReturnType, typename _ContinuationReturnType, typename _Function, typename _IsTaskBased, typename _TypeSelection>
    struct _ContinuationTaskHandle :
        details::_PPLTaskHandle<typename details::_NormalizeVoidToUnitType<_ContinuationReturnType>::_Type,
        _ContinuationTaskHandle<_InternalReturnType, _ContinuationReturnType, _Function, _IsTaskBased, _TypeSelection>, details::_ContinuationTaskHandleBase>
    {
        typedef typename details::_NormalizeVoidToUnitType<_ContinuationReturnType>::_Type _NormalizedContinuationReturnType;

        typename details::_Task_ptr<_ReturnType>::_Type _M_ancestorTaskImpl;
        _Function _M_function;

        _ContinuationTaskHandle(const typename details::_Task_ptr<_ReturnType>::_Type & _AncestorImpl,
            const typename details::_Task_ptr<_NormalizedContinuationReturnType>::_Type & _ContinuationImpl,
            const _Function & _Func, const task_continuation_context & _Context, details::_TaskInliningMode_t _InliningMode)
                : details::_PPLTaskHandle<typename details::_NormalizeVoidToUnitType<_ContinuationReturnType>::_Type,
                    _ContinuationTaskHandle<_InternalReturnType, _ContinuationReturnType, _Function, _IsTaskBased, _TypeSelection>, details::_ContinuationTaskHandleBase>
                    ::_PPLTaskHandle(_ContinuationImpl)
                , _M_ancestorTaskImpl(_AncestorImpl)
                , _M_function(_Func)
        {
            this->_M_isTaskBasedContinuation = _IsTaskBased::value;
            this->_M_continuationContext = _Context;
            this->_M_continuationContext._Resolve(_AncestorImpl->_IsApartmentAware());
            this->_M_inliningMode = _InliningMode;
        }

        virtual ~_ContinuationTaskHandle() {}

        template <typename _Func, typename _Arg>
        auto _LogWorkItemAndInvokeUserLambda(_Func && _func, _Arg && _value) const -> decltype(_func(std::forward<_Arg>(_value)))
        {
            details::_TaskWorkItemRAIILogger _LogWorkItem(this->_M_pTask->_M_taskEventLogger);
            CASABLANCA_UNREFERENCED_PARAMETER(_LogWorkItem);
            return _func(std::forward<_Arg>(_value));
        }

        void _Perform() const
        {
            _Continue(_IsTaskBased(), _TypeSelection());
        }

        void _SyncCancelAndPropagateException() const
        {
            if (_M_ancestorTaskImpl->_HasUserException())
            {
                // If the ancestor encountered an exception, transfer the exception to the continuation
                // This traverses down the tree to propagate the exception.
                this->_M_pTask->_CancelWithExceptionHolder(_M_ancestorTaskImpl->_GetExceptionHolder(), true);
            }
            else
            {
                // If the ancestor was canceled, then your own execution should be canceled.
                // This traverses down the tree to cancel it.
                this->_M_pTask->_Cancel(true);
            }
        }

        //
        // Overload 0-0: _InternalReturnType -> _TaskType
        //
        // This is a straight task continuation which simply invokes its target with the ancestor's completion argument
        //
        void _Continue(std::false_type, details::_TypeSelectorNoAsync) const
        {
            this->_M_pTask->_FinalizeAndRunContinuations(
                _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _ContinuationReturnType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult()));
        }

        //
        // Overload 0-1: _InternalReturnType -> IAsyncOperation<_TaskType>^ (only uder /ZW)
        //               or
        //               _InternalReturnType -> task<_TaskType>
        //
        // This is a straight task continuation which returns an async operation or a task which will be unwrapped for continuation
        // Depending on the output type, the right _AsyncInit gets invoked
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncOperationOrTask) const
        {
            typedef typename details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;

            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                this->_M_pTask, 
                _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult())
            );
        }

#if defined (__cplusplus_winrt)
        //
        // Overload 0-2: _InternalReturnType -> IAsyncAction^
        //
        // This is a straight task continuation which returns an async action which will be unwrapped for continuation
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncAction) const
        {
            typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;

            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                this->_M_pTask,
                ref new details::_IAsyncActionToAsyncOperationConverter(
                    _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult())));
        }

        //
        // Overload 0-3: _InternalReturnType -> IAsyncOperationWithProgress<_TaskType, _ProgressType>^
        //
        // This is a straight task continuation which returns an async operation with progress which will be unwrapped for continuation
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncOperationWithProgress) const
        {
            typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;

            auto _OpWithProgress = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult());
            typedef details::_GetProgressType<decltype(_OpWithProgress)>::_Value _ProgressType;

            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                this->_M_pTask,
                ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter<_ContinuationReturnType, _ProgressType>(_OpWithProgress));
        }

        //
        // Overload 0-4: _InternalReturnType -> IAsyncActionWithProgress<_ProgressType>^
        //
        // This is a straight task continuation which returns an async action with progress which will be unwrapped for continuation
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncActionWithProgress) const
        {
            typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;

            auto _OpWithProgress = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult());
            typedef details::_GetProgressType<decltype(_OpWithProgress)>::_Value _ProgressType;

            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                this->_M_pTask,
                ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>(_OpWithProgress));
        }

#endif  /* defined (__cplusplus_winrt) */

        //
        // Overload 1-0: task<_InternalReturnType> -> _TaskType
        //
        // This is an exception handling type of continuation which takes the task rather than the task's result.
        //
        void _Continue(std::true_type, details::_TypeSelectorNoAsync) const
        {
            typedef task<_InternalReturnType> _FuncInputType;
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));
            this->_M_pTask->_FinalizeAndRunContinuations(
                _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_FuncInputType, _ContinuationReturnType>::_Perform(_M_function), std::move(_ResultTask)));
        }

        //
        // Overload 1-1: task<_InternalReturnType> -> IAsyncOperation<_TaskType>^
        //                                            or
        //                                            task<_TaskType>
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async operation or a task which will be unwrapped
        // for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncOperationOrTask) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(this->_M_pTask, 
                _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask)));
        }

#if defined (__cplusplus_winrt)

        //
        // Overload 1-2: task<_InternalReturnType> -> IAsyncAction^
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async action which will be unwrapped for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncAction) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(this->_M_pTask,
                ref new details::_IAsyncActionToAsyncOperationConverter(_LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask))));
        }

        //
        // Overload 1-3: task<_InternalReturnType> -> IAsyncOperationWithProgress<_TaskType, _ProgressType>^
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async operation with progress which will be unwrapped
        // for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncOperationWithProgress) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));

            typedef details::_GetProgressType<decltype(_M_function(_ResultTask))>::_Value _ProgressType;

            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(this->_M_pTask,
                    ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter<_ContinuationReturnType, _ProgressType>(
                    _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask))));
        }

        //
        // Overload 1-4: task<_InternalReturnType> -> IAsyncActionWithProgress<_ProgressType>^
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async operation with progress which will be unwrapped
        // for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncActionWithProgress) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));

            typedef details::_GetProgressType<decltype(_M_function(_ResultTask))>::_Value _ProgressType;

            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(this->_M_pTask,
                    ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>(
                    _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask))));
        }
#endif  /* defined (__cplusplus_winrt) */
    };

    /// <summary>
    ///     Initializes a task using a lambda, function pointer or function object.
    /// </summary>
    template<typename _InternalReturnType, typename _Function>
    void _TaskInitWithFunctor(const _Function& _Func)
    {
        typedef typename details::_InitFunctorTypeTraits<_InternalReturnType, decltype(_Func())> _Async_type_traits;

        _M_Impl->_M_fFromAsync = _Async_type_traits::_IsAsyncTask;
        _M_Impl->_M_fUnwrappedTask = _Async_type_traits::_IsUnwrappedTaskOrAsync;
        _M_Impl->_M_taskEventLogger._LogScheduleTask(false);
        _M_Impl->_ScheduleTask(new _InitialTaskHandle<_InternalReturnType, _Function, typename _Async_type_traits::_AsyncKind>(_GetImpl(), _Func), details::_NoInline);
    }

    /// <summary>
    ///     Initializes a task using a task completion event.
    /// </summary>
    void _TaskInitNoFunctor(task_completion_event<_ReturnType>& _Event)
    {
        _Event._RegisterTask(_M_Impl);
    }

#if defined (__cplusplus_winrt)
    /// <summary>
    ///     Initializes a task using an asynchronous operation IAsyncOperation<T>^
    /// </summary>
    void _TaskInitAsyncOp(Windows::Foundation::IAsyncOperation<typename details::_ValueTypeOrRefType<_ReturnType>::_Value>^ _AsyncOp)
    {
        _M_Impl->_M_fFromAsync = true;

        // Mark this task as started here since we can set the state in the constructor without acquiring a lock. Once _AsyncInit
        // returns a completion could execute concurrently and the task must be fully initialized before that happens.
        _M_Impl->_M_TaskState = details::_Task_impl_base::_Started;
        // Pass the shared pointer into _AsyncInit for storage in the Async Callback.
        details::_Task_impl_base::_AsyncInit<_ReturnType, _ReturnType>(_M_Impl, _AsyncOp);
    }

    /// <summary>
    ///     Initializes a task using an asynchronous operation IAsyncOperation<T>^
    /// </summary>
    void _TaskInitNoFunctor(Windows::Foundation::IAsyncOperation<typename details::_ValueTypeOrRefType<_ReturnType>::_Value>^ _AsyncOp)
    {
        _TaskInitAsyncOp(_AsyncOp);
    }

    /// <summary>
    ///     Initializes a task using an asynchronous operation with progress IAsyncOperationWithProgress<T, P>^
    /// </summary>
    template<typename _Progress>
    void _TaskInitNoFunctor(Windows::Foundation::IAsyncOperationWithProgress<typename details::_ValueTypeOrRefType<_ReturnType>::_Value, _Progress>^ _AsyncOp)
    {
        _TaskInitAsyncOp(ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter<typename details::_ValueTypeOrRefType<_ReturnType>::_Value, _Progress>(_AsyncOp));
    }
#endif  /* defined (__cplusplus_winrt) */

    /// <summary>
    ///     Initializes a task using a callable object.
    /// </summary>
    template<typename _Function>
    void _TaskInitMaybeFunctor(_Function & _Func, std::true_type)
    {
        _TaskInitWithFunctor<_ReturnType, _Function>(_Func);
    }

    /// <summary>
    ///     Initializes a task using a non-callable object.
    /// </summary>
    template<typename _Ty>
    void _TaskInitMaybeFunctor(_Ty & _Param, std::false_type)
    {
        _TaskInitNoFunctor(_Param);
    }

    template<typename _InternalReturnType, typename _Function>
    auto _ThenImpl(const _Function& _Func, const task_options& _TaskOptions) const -> typename details::_ContinuationTypeTraits<_Function, _InternalReturnType>::_TaskOfType
    {
        if (!_M_Impl)
        {
            throw invalid_operation("then() cannot be called on a default constructed task.");
        }

        details::_CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
        auto _Scheduler = _TaskOptions.has_scheduler() ? _TaskOptions.get_scheduler() : _GetImpl()->_GetScheduler();
        auto _CreationStack = details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : details::_TaskCreationCallstack();
        return _ThenImpl<_InternalReturnType, _Function>(_Func, _PTokenState, _TaskOptions.get_continuation_context(), _Scheduler, _CreationStack);
    }

    /// <summary>
    ///     The one and only implementation of then for void and non-void tasks.
    /// </summary>
    template<typename _InternalReturnType, typename _Function>
    auto _ThenImpl(const _Function& _Func, details::_CancellationTokenState *_PTokenState, const task_continuation_context& _ContinuationContext, scheduler_ptr _Scheduler, details::_TaskCreationCallstack _CreationStack,
        details::_TaskInliningMode_t _InliningMode = details::_NoInline) const -> typename details::_ContinuationTypeTraits<_Function, _InternalReturnType>::_TaskOfType
    {
        if (!_M_Impl)
        {
            throw invalid_operation("then() cannot be called on a default constructed task.");
        }

        typedef details::_FunctionTypeTraits<_Function, _InternalReturnType> _Function_type_traits;
        typedef details::_TaskTypeTraits<typename _Function_type_traits::_FuncRetType> _Async_type_traits;
        typedef typename _Async_type_traits::_TaskRetType _TaskType;

        //
        // A **nullptr** token state indicates that it was not provided by the user. In this case, we inherit the antecedent's token UNLESS this is a
        // an exception handling continuation. In that case, we break the chain with a _None. That continuation is never canceled unless the user
        // explicitly passes the same token.
        //
        if (_PTokenState == nullptr)
        {
            if (_Function_type_traits::_Takes_task::value)
            {
                _PTokenState = details::_CancellationTokenState::_None();
            }
            else
            {
                _PTokenState = _GetImpl()->_M_pTokenState;
            }
        }

        task<_TaskType> _ContinuationTask;
        _ContinuationTask._CreateImpl(_PTokenState, _Scheduler);

        _ContinuationTask._GetImpl()->_M_fFromAsync = (_GetImpl()->_M_fFromAsync || _Async_type_traits::_IsAsyncTask);
        _ContinuationTask._GetImpl()->_M_fUnwrappedTask = _Async_type_traits::_IsUnwrappedTaskOrAsync;
        _ContinuationTask._SetTaskCreationCallstack(_CreationStack);

        _GetImpl()->_ScheduleContinuation(new _ContinuationTaskHandle<_InternalReturnType, _TaskType, _Function, typename _Function_type_traits::_Takes_task, typename _Async_type_traits::_AsyncKind>(
            _GetImpl(), _ContinuationTask._GetImpl(), _Func, _ContinuationContext, _InliningMode));

        return _ContinuationTask;
    }

    // The underlying implementation for this task
    typename details::_Task_ptr<_ReturnType>::_Type _M_Impl;
};

/// <summary>
///     The Parallel Patterns Library (PPL) <c>task</c> class. A <c>task</c> object represents work that can be executed asynchronously,
///     and concurrently with other tasks and parallel work produced by parallel algorithms in the Concurrency Runtime. It produces
///     a result of type <typeparamref name="_ResultType"/> on successful completion. Tasks of type <c>task&lt;void&gt;</c> produce no result.
///     A task can be waited upon and canceled independently of other tasks. It can also be composed with other tasks using
///     continuations(<c>then</c>), and join(<c>when_all</c>) and choice(<c>when_any</c>) patterns.
/// </summary>
/// <remarks>
///     For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.
/// </remarks>
/**/
template<>
class task<void>
{
public:
    /// <summary>
    ///     The type of the result an object of this class produces.
    /// </summary>
    /**/
    typedef void result_type;

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task() : _M_unitTask()
    {
        // The default constructor should create a task with a nullptr impl. This is a signal that the
        // task is not usable and should throw if any wait(), get() or then() APIs are used.
    }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <typeparam name="_Ty">
    ///     The type of the parameter from which the task is to be constructed.
    /// </typeparam>
    /// <param name="_Param">
    ///     The parameter from which the task is to be constructed. This could be a lambda, a function object, a <c>task_completion_event&lt;result_type&gt;</c>
    ///     object, or a Windows::Foundation::IAsyncInfo if you are using tasks in your Windows Store app. The lambda or function
    ///     object should be a type equivalent to <c>std::function&lt;X(void)&gt;</c>, where X can be a variable of type <c>result_type</c>,
    ///     <c>task&lt;result_type&gt;</c>, or a Windows::Foundation::IAsyncInfo in Windows Store apps.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Ty>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    explicit task(_Ty _Param, const task_options& _TaskOptions = task_options())
    {
        details::_ValidateTaskConstructorArgs<void,_Ty>(_Param);

        _M_unitTask._CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler());
        // Do not move the next line out of this function. It is important that _CAPTURE_CALLSTACK() evaluate to the the call site of the task constructor.
        _M_unitTask._SetTaskCreationCallstack(details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : _CAPTURE_CALLSTACK());

        _TaskInitMaybeFunctor(_Param, details::_IsCallable(_Param,0));
    }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(const task& _Other): _M_unitTask(_Other._M_unitTask){}

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(task&& _Other) : _M_unitTask(std::move(_Other._M_unitTask)) {}

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(const task& _Other)
    {
        if (this != &_Other)
        {
            _M_unitTask = _Other._M_unitTask;
        }
        return *this;
    }

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(task&& _Other)
    {
        if (this != &_Other)
        {
            _M_unitTask = std::move(_Other._M_unitTask);
        }
        return *this;
    }

    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_CancellationToken">
    ///     The cancellation token to associate with the continuation task. A continuation task that is created without a cancellation token will inherit
    ///     the token of its antecedent task.
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    auto then(const _Function& _Func, task_options _TaskOptions = task_options()) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
        return _M_unitTask._ThenImpl<void, _Function>(_Func, _TaskOptions);
    }

    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_CancellationToken">
    ///     The cancellation token to associate with the continuation task. A continuation task that is created without a cancellation token will inherit
    ///     the token of its antecedent task.
    /// </param>
    /// <param name="_ContinuationContext">
    ///     A variable that specifies where the continuation should execute. This variable is only useful when used in a Windows Store
    ///     style app. For more information, see <see cref="task_continuation_context Class">task_continuation_context</see>
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _CAPTURE_CALLSTACK gives us the expected result
    auto then(const _Function& _Func, cancellation_token _CancellationToken, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        task_options _TaskOptions(_CancellationToken, _ContinuationContext);
        details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
        return _M_unitTask._ThenImpl<void, _Function>(_Func, _TaskOptions);
    }

    /// <summary>
    ///     Waits for this task to reach a terminal state. It is possible for <c>wait</c> to execute the task inline, if all of the tasks
    ///     dependencies are satisfied, and it has not already been picked up for execution by a background worker.
    /// </summary>
    /// <returns>
    ///     A <c>task_status</c> value which could be either <c>completed</c> or <c>canceled</c>. If the task encountered an exception
    ///     during execution, or an exception was propagated to it from an antecedent task, <c>wait</c> will throw that exception.
    /// </returns>
    /**/
    task_status wait() const
    {
        return _M_unitTask.wait();
    }

    /// <summary>
    ///     Returns the result this task produced. If the task is not in a terminal state, a call to <c>get</c> will wait for the task to
    ///     finish. This method does not return a value when called on a task with a <c>result_type</c> of <c>void</c>.
    /// </summary>
    /// <remarks>
    ///     If the task is canceled, a call to <c>get</c> will throw a <see cref="task_canceled Class">task_canceled</see> exception. If the task
    ///     encountered an different exception or an exception was propagated to it from an antecedent task, a call to <c>get</c> will throw that exception.
    /// </remarks>
    /**/
    void get() const
    {
        _M_unitTask.get();
    }

    /// <summary>
    ///     Determines if the task is completed.
    /// </summary>
    /// <returns>
    ///     True if the task has completed, false otherwise.
    /// </returns>
    /// <remarks>
    ///     The function returns true if the task is completed or canceled (with or without user exception).
    /// </remarks>
    bool is_done() const
    {
        return _M_unitTask.is_done();
    }

    /// <summary>
    ///     Returns the scheduler for this task
    /// </summary>
    /// <returns>
    ///     A pointer to the scheduler
    /// </returns>
    scheduler_ptr scheduler() const
    {
        return _M_unitTask.scheduler();
    }

    /// <summary>
    ///     Determines whether the task unwraps a Windows Runtime <c>IAsyncInfo</c> interface or is descended from such a task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the task unwraps an <c>IAsyncInfo</c> interface or is descended from such a task, <c>false</c> otherwise.
    /// </returns>
    /**/
    bool is_apartment_aware() const
    {
        return _M_unitTask.is_apartment_aware();
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent the same internal task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to the same underlying task, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator==(const task<void>& _Rhs) const
    {
        return (_M_unitTask == _Rhs._M_unitTask);
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent different internal tasks.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to different underlying tasks, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator!=(const task<void>& _Rhs) const
    {
        return !operator==(_Rhs);
    }

    /// <summary>
    ///     Create an underlying task implementation.
    /// </summary>
    void _CreateImpl(details::_CancellationTokenState * _Ct, scheduler_ptr _Scheduler)
    {
        _M_unitTask._CreateImpl(_Ct, _Scheduler);
    }

    /// <summary>
    ///     Return the underlying implementation for this task.
    /// </summary>
    const details::_Task_ptr<details::_Unit_type>::_Type & _GetImpl() const
    {
        return _M_unitTask._M_Impl;
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion.
    /// </summary>
    void _SetImpl(const details::_Task_ptr<details::_Unit_type>::_Type & _Impl)
    {
        _M_unitTask._SetImpl(_Impl);
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion using a move instead of a copy.
    /// </summary>
    void _SetImpl(details::_Task_ptr<details::_Unit_type>::_Type && _Impl)
    {
        _M_unitTask._SetImpl(std::move(_Impl));
    }

    /// <summary>
    ///     Sets a property determining whether the task is apartment aware.
    /// </summary>
    void _SetAsync(bool _Async = true)
    {
        _M_unitTask._SetAsync(_Async);
    }

    /// <summary>
    ///     Sets a field in the task impl to the return callstack for calls to the task constructors and the then method.
    /// </summary>
    void _SetTaskCreationCallstack(const details::_TaskCreationCallstack &_callstack)
    {
        _M_unitTask._SetTaskCreationCallstack(_callstack);
    }

    /// <summary>
    ///     An internal version of then that takes additional flags and executes the continuation inline. Used for runtime internal continuations only.
    /// </summary>
    template<typename _Function>
    auto _Then(const _Function& _Func, details::_CancellationTokenState *_PTokenState, 
        details::_TaskInliningMode_t _InliningMode = details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        // inherit from antecedent
        auto _Scheduler = _GetImpl()->_GetScheduler();

        return _M_unitTask._ThenImpl<void, _Function>(_Func, _PTokenState, task_continuation_context::use_default(), _Scheduler, _CAPTURE_CALLSTACK(), _InliningMode);
    }

private:
    template <typename T> friend class task;
    template <typename T> friend class task_completion_event;

    /// <summary>
    ///     Initializes a task using a task completion event.
    /// </summary>
    void _TaskInitNoFunctor(task_completion_event<void>& _Event)
    {
        _M_unitTask._TaskInitNoFunctor(_Event._M_unitEvent);
    }

#if defined (__cplusplus_winrt)
    /// <summary>
    ///     Initializes a task using an asynchronous action IAsyncAction^
    /// </summary>
    void _TaskInitNoFunctor(Windows::Foundation::IAsyncAction^ _AsyncAction)
    {
         _M_unitTask._TaskInitAsyncOp(ref new details::_IAsyncActionToAsyncOperationConverter(_AsyncAction));
    }

    /// <summary>
    ///     Initializes a task using an asynchronous action with progress IAsyncActionWithProgress<_P>^
    /// </summary>
    template<typename _P>
    void _TaskInitNoFunctor(Windows::Foundation::IAsyncActionWithProgress<_P>^ _AsyncActionWithProgress)
    {
        _M_unitTask._TaskInitAsyncOp(ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_P>(_AsyncActionWithProgress));
    }
#endif  /* defined (__cplusplus_winrt) */

    /// <summary>
    ///     Initializes a task using a callable object.
    /// </summary>
    template<typename _Function>
    void _TaskInitMaybeFunctor(_Function & _Func, std::true_type)
    {
        _M_unitTask._TaskInitWithFunctor<void, _Function>(_Func);
    }

    /// <summary>
    ///     Initializes a task using a non-callable object.
    /// </summary>
    template<typename _T>
    void _TaskInitMaybeFunctor(_T & _Param, std::false_type)
    {
        _TaskInitNoFunctor(_Param);
    }

    // The void task contains a task of a dummy type so common code can be used for tasks with void and non-void results.
    task<details::_Unit_type> _M_unitTask;
};

namespace details
{
    /// <summary>
    ///   The following type traits are used for the create_task function.
    /// </summary>

#if defined (__cplusplus_winrt)
    // Unwrap functions for asyncOperations
    template<typename _Ty>
    _Ty _GetUnwrappedType(Windows::Foundation::IAsyncOperation<_Ty>^);

    void _GetUnwrappedType(Windows::Foundation::IAsyncAction^);

    template<typename _Ty, typename _Progress>
    _Ty _GetUnwrappedType(Windows::Foundation::IAsyncOperationWithProgress<_Ty, _Progress>^);

    template<typename _Progress>
    void _GetUnwrappedType(Windows::Foundation::IAsyncActionWithProgress<_Progress>^);
#endif  /* defined (__cplusplus_winrt) */

    // Unwrap task<T>
    template<typename _Ty>
    _Ty _GetUnwrappedType(task<_Ty>);

    // Unwrap all supportted types
    template<typename _Ty>
    auto _GetUnwrappedReturnType(_Ty _Arg, int) -> decltype(_GetUnwrappedType(_Arg));
    // fallback
    template<typename _Ty>
    _Ty _GetUnwrappedReturnType(_Ty, ...);

    /// <summary>
    ///   <c>_GetTaskType</c> functions will retrieve task type <c>T</c> in <c>task[T](Arg)</c>,
    ///   for given constructor argument <c>Arg</c> and its property "callable".
    ///   It will automatically unwrap argument to get the final return type if necessary.
    /// </summary>

    // Non-Callable
    template<typename _Ty>
    _Ty _GetTaskType(task_completion_event<_Ty>, std::false_type);

    // Non-Callable
    template<typename _Ty>
    auto _GetTaskType(_Ty _NonFunc, std::false_type) -> decltype(_GetUnwrappedType(_NonFunc));

    // Callable
    template<typename _Ty>
    auto _GetTaskType(_Ty _Func, std::true_type) -> decltype(_GetUnwrappedReturnType(_Func(), 0));

    // Special callable returns void
    void _GetTaskType(std::function<void()>, std::true_type);
    struct _BadArgType{};

    template<typename _Ty>
    auto _FilterValidTaskType(_Ty _Param, int) -> decltype(_GetTaskType(_Param, _IsCallable(_Param, 0)));

    template<typename _Ty>
    _BadArgType _FilterValidTaskType(_Ty _Param, ...);

    template<typename _Ty>
    struct _TaskTypeFromParam
    {
        typedef decltype(_FilterValidTaskType(stdx::declval<_Ty>(), 0)) _Type;
    };
} // namespace details

/// <summary>
///     Creates a PPL <see cref="task Class">task</see> object. <c>create_task</c> can be used anywhere you would have used a task constructor.
///     It is provided mainly for convenience, because it allows use of the <c>auto</c> keyword while creating tasks.
/// </summary>
/// <typeparam name="_Ty">
///     The type of the parameter from which the task is to be constructed.
/// </typeparam>
/// <param name="_Param">
///     The parameter from which the task is to be constructed. This could be a lambda or function object, a <c>task_completion_event</c>
///     object, a different <c>task</c> object, or a Windows::Foundation::IAsyncInfo interface if you are using tasks in your Windows Store app.
/// </param>
/// <returns>
///     A new task of type <c>T</c>, that is inferred from <paramref name="_Param"/>.
/// </returns>
/// <remarks>
///     The first overload behaves like a task constructor that takes a single parameter.
///     <para>The second overload associates the cancellation token provided with the newly created task. If you use this overload you are not
///     allowed to pass in a different <c>task</c> object as the first parameter.</para>
///     <para>The type of the returned task is inferred from the first parameter to the function. If <paramref name="_Param"/> is a <c>task_completion_event&lt;T&gt;</c>,
///     a <c>task&lt;T&gt;</c>, or a functor that returns either type <c>T</c> or <c>task&lt;T&gt;</c>, the type of the created task is <c>task&lt;T&gt;</c>.</para>
///     <para>In a Windows Store app, if <paramref name="_Param"/> is of type Windows::Foundation::IAsyncOperation&lt;T&gt;^ or
///     Windows::Foundation::IAsyncOperationWithProgress&lt;T,P&gt;^, or a functor that returns either of those types, the created task will be of type <c>task&lt;T&gt;</c>.
///     If <paramref name="_Param"/> is of type Windows::Foundation::IAsyncAction^ or Windows::Foundation::IAsyncActionWithProgress&lt;P&gt;^, or a functor
///     that returns either of those types, the created task will have type <c>task&lt;void&gt;</c>.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _Ty>
__declspec(noinline)
auto create_task(_Ty _Param, task_options _TaskOptions = task_options()) -> task<typename details::_TaskTypeFromParam<_Ty>::_Type>
{
    static_assert(!std::is_same<typename details::_TaskTypeFromParam<_Ty>::_Type,details::_BadArgType>::value,
#if defined (__cplusplus_winrt)
            "incorrect argument for create_task; can be a callable object, an asynchronous operation, or a task_completion_event"
#else  /* defined (__cplusplus_winrt) */
            "incorrect argument for create_task; can be a callable object or a task_completion_event"
#endif  /* defined (__cplusplus_winrt) */
    );
    details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
    task<typename details::_TaskTypeFromParam<_Ty>::_Type> _CreatedTask(_Param, _TaskOptions);
    return _CreatedTask;
}

/// <summary>
///     Creates a PPL <see cref="task Class">task</see> object. <c>create_task</c> can be used anywhere you would have used a task constructor.
///     It is provided mainly for convenience, because it allows use of the <c>auto</c> keyword while creating tasks.
/// </summary>
/// <typeparam name="_Ty">
///     The type of the parameter from which the task is to be constructed.
/// </typeparam>
/// <param name="_Param">
///     The parameter from which the task is to be constructed. This could be a lambda or function object, a <c>task_completion_event</c>
///     object, a different <c>task</c> object, or a Windows::Foundation::IAsyncInfo interface if you are using tasks in your Windows Store app.
/// </param>
/// <param name="_Token">
///     The cancellation token to associate with the task. When the source for this token is canceled, cancellation will be requested on the task.
/// </param>
/// <returns>
///     A new task of type <c>T</c>, that is inferred from <paramref name="_Param"/>.
/// </returns>
/// <remarks>
///     The first overload behaves like a task constructor that takes a single parameter.
///     <para>The second overload associates the cancellation token provided with the newly created task. If you use this overload you are not
///     allowed to pass in a different <c>task</c> object as the first parameter.</para>
///     <para>The type of the returned task is inferred from the first parameter to the function. If <paramref name="_Param"/> is a <c>task_completion_event&lt;T&gt;</c>,
///     a <c>task&lt;T&gt;</c>, or a functor that returns either type <c>T</c> or <c>task&lt;T&gt;</c>, the type of the created task is <c>task&lt;T&gt;</c>.</para>
///     <para>In a Windows Store app, if <paramref name="_Param"/> is of type Windows::Foundation::IAsyncOperation&lt;T&gt;^ or
///     Windows::Foundation::IAsyncOperationWithProgress&lt;T,P&gt;^, or a functor that returns either of those types, the created task will be of type <c>task&lt;T&gt;</c>.
///     If <paramref name="_Param"/> is of type Windows::Foundation::IAsyncAction^ or Windows::Foundation::IAsyncActionWithProgress&lt;P&gt;^, or a functor
///     that returns either of those types, the created task will have type <c>task&lt;void&gt;</c>.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
__declspec(noinline)
task<_ReturnType> create_task(const task<_ReturnType>& _Task)
{
    task<_ReturnType> _CreatedTask(_Task);
    return _CreatedTask;
}

#if defined (__cplusplus_winrt)
namespace details
{
    template<typename _T>
    task<_T> _To_task_helper(Windows::Foundation::IAsyncOperation<_T>^ op)
    {
        return task<_T>(op);
    }

    template<typename _T, typename _Progress>
    task<_T> _To_task_helper(Windows::Foundation::IAsyncOperationWithProgress<_T, _Progress>^ op)
    {
        return task<_T>(op);
    }

    inline task<void> _To_task_helper(Windows::Foundation::IAsyncAction^ op)
    {
        return task<void>(op);
    }

    template<typename _Progress>
    task<void> _To_task_helper(Windows::Foundation::IAsyncActionWithProgress<_Progress>^ op)
    {
        return task<void>(op);
    }

    template<typename _ProgressType>
    class _ProgressDispatcherBase
    {
    public:

        virtual ~_ProgressDispatcherBase()
        {
        }

        virtual void _Report(const _ProgressType& _Val) = 0;
    };

    template<typename _ProgressType, typename _ClassPtrType>
    class _ProgressDispatcher : public _ProgressDispatcherBase<_ProgressType>
    {
    public:

        virtual ~_ProgressDispatcher()
        {
        }

        _ProgressDispatcher(_ClassPtrType _Ptr) : _M_ptr(_Ptr)
        {
        }

        virtual void _Report(const _ProgressType& _Val)
        {
            _M_ptr->_FireProgress(_Val);
        }

    private:

        _ClassPtrType _M_ptr;
    };
    class _ProgressReporterCtorArgType{};
} // namespace details

/// <summary>
///     The progress reporter class allows reporting progress notifications of a specific type. Each progress_reporter object is bound
///     to a particular asynchronous action or operation.
/// </summary>
/// <typeparam name="_ProgressType">
///     The payload type of each progress notification reported through the progress reporter.
/// </typeparam>
/// <remarks>
///     This type is only available to Windows Store apps.
/// </remarks>
/// <seealso cref="create_async Function"/>
/**/
template<typename _ProgressType>
class progress_reporter
{
    typedef std::shared_ptr<details::_ProgressDispatcherBase<_ProgressType>> _PtrType;

public:

    /// <summary>
    ///     Sends a progress report to the asynchronous action or operation to which this progress reporter is bound.
    /// </summary>
    /// <param name="_Val">
    ///     The payload to report through a progress notification.
    /// </param>
    /**/
    void report(const _ProgressType& _Val) const
    {
        _M_dispatcher->_Report(_Val);
    }

    template<typename _ClassPtrType>
    static progress_reporter _CreateReporter(_ClassPtrType _Ptr)
    {
        progress_reporter _Reporter;
        details::_ProgressDispatcherBase<_ProgressType> *_PDispatcher = new details::_ProgressDispatcher<_ProgressType, _ClassPtrType>(_Ptr);
        _Reporter._M_dispatcher = _PtrType(_PDispatcher);
        return _Reporter;
    }
    progress_reporter() {}

private:
    progress_reporter(details::_ProgressReporterCtorArgType);

    _PtrType _M_dispatcher;
};

namespace details
{
    //
    // maps internal definitions for AsyncStatus and defines states that are not client visible
    //
    enum _AsyncStatusInternal
    {
        _AsyncCreated = -1,  // externally invisible
        // client visible states (must match AsyncStatus exactly)
        _AsyncStarted = 0,   // Windows::Foundation::AsyncStatus::Started,
        _AsyncCompleted = 1, // Windows::Foundation::AsyncStatus::Completed,
        _AsyncCanceled = 2, // Windows::Foundation::AsyncStatus::Canceled,
        _AsyncError = 3,     // Windows::Foundation::AsyncStatus::Error,
        // non-client visible internal states
        _AsyncCancelPending,
        _AsyncClosed,
        _AsyncUndefined
    };

    //
    // designates whether the "GetResults" method returns a single result (after complete fires) or multiple results
    // (which are progressively consumable between Start state and before Close is called)
    //
    enum _AsyncResultType
    {
        SingleResult    = 0x0001,
        MultipleResults = 0x0002
    };

    // ***************************************************************************
    // Template type traits and helpers for async production APIs:
    //

    struct _ZeroArgumentFunctor { };
    struct _OneArgumentFunctor { };
    struct _TwoArgumentFunctor { };

    // ****************************************
    // CLASS TYPES:

    // ********************
    // TWO ARGUMENTS:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType (_Class::*)(_Arg1, _Arg2) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2ClassHelperThunk(_ReturnType (_Class::*)(_Arg1, _Arg2) const);

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType (_Class::*)(_Arg1, _Arg2) const);

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType (_Class::*)(_Arg1, _Arg2) const);

    // ********************
    // ONE ARGUMENT:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType (_Class::*)(_Arg1) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    void _Arg2ClassHelperThunk(_ReturnType (_Class::*)(_Arg1) const);

    template<typename _Class, typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType (_Class::*)(_Arg1) const);

    template<typename _Class, typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType (_Class::*)(_Arg1) const);

    // ********************
    // ZERO ARGUMENT:

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg1ClassHelperThunk(_ReturnType (_Class::*)() const);

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg2ClassHelperThunk(_ReturnType (_Class::*)() const);

    // void arg:
    template<typename _Class, typename _ReturnType>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType (_Class::*)() const);

    template<typename _Class, typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType (_Class::*)() const);

    // ****************************************
    // POINTER TYPES:

    // ********************
    // TWO ARGUMENTS:

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    // ********************
    // ONE ARGUMENT:

    template<typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg2PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg2PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg2PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall *)(_Arg1));

    // ********************
    // ZERO ARGUMENT:

    template<typename _ReturnType>
    void _Arg1PFNHelperThunk(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    void _Arg2PFNHelperThunk(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    void _Arg1PFNHelperThunk(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    void _Arg2PFNHelperThunk(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    void _Arg1PFNHelperThunk(_ReturnType(__fastcall *)());

    template<typename _ReturnType>
    void _Arg2PFNHelperThunk(_ReturnType(__fastcall *)());

    template<typename _ReturnType>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall *)());

    template<typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall *)());

    template<typename _T>
    struct _FunctorArguments
    {
        static const size_t _Count = 0;
    };

    template<>
    struct _FunctorArguments<_OneArgumentFunctor>
    {
        static const size_t _Count = 1;
    };

    template<>
    struct _FunctorArguments<_TwoArgumentFunctor>
    {
        static const size_t _Count = 2;
    };

    template<typename _T>
    struct _FunctorTypeTraits
    {
        typedef decltype(_ArgumentCountHelper(&(_T::operator()))) _ArgumentCountType;
        static const size_t _ArgumentCount = _FunctorArguments<_ArgumentCountType>::_Count;

        typedef decltype(_ReturnTypeClassHelperThunk(&(_T::operator()))) _ReturnType;
        typedef decltype(_Arg1ClassHelperThunk(&(_T::operator()))) _Argument1Type;
        typedef decltype(_Arg2ClassHelperThunk(&(_T::operator()))) _Argument2Type;
    };

    template<typename _T>
    struct _FunctorTypeTraits<_T *>
    {
        typedef decltype(_ArgumentCountHelper(stdx::declval<_T*>())) _ArgumentCountType;
        static const size_t _ArgumentCount = _FunctorArguments<_ArgumentCountType>::_Count;

        typedef decltype(_ReturnTypePFNHelperThunk(stdx::declval<_T*>())) _ReturnType;
        typedef decltype(_Arg1PFNHelperThunk(stdx::declval<_T*>())) _Argument1Type;
        typedef decltype(_Arg2PFNHelperThunk(stdx::declval<_T*>())) _Argument2Type;
    };

    template<typename _T>
    struct _ProgressTypeTraits
    {
        static const bool _TakesProgress = false;
        typedef void _ProgressType;
    };

    template<typename _T>
    struct _ProgressTypeTraits<progress_reporter<_T>>
    {
        static const bool _TakesProgress = true;
        typedef typename _T _ProgressType;
    };


    template<typename _T, size_t count = _FunctorTypeTraits<_T>::_ArgumentCount>
    struct _CAFunctorOptions
    {
        static const bool _TakesProgress = false;
        static const bool _TakesToken = false;
        typedef void _ProgressType;
    };

    template<typename _T>
    struct _CAFunctorOptions<_T, 1>
    {
    private:

        typedef typename _FunctorTypeTraits<_T>::_Argument1Type _Argument1Type;

    public:

        static const bool _TakesProgress = _ProgressTypeTraits<_Argument1Type>::_TakesProgress;
        static const bool _TakesToken = !_TakesProgress;
        typedef typename _ProgressTypeTraits<_Argument1Type>::_ProgressType _ProgressType;
    };

    template<typename _T>
    struct _CAFunctorOptions<_T, 2>
    {
    private:

        typedef typename _FunctorTypeTraits<_T>::_Argument1Type _Argument1Type;

    public:

        static const bool _TakesProgress = true;
        static const bool _TakesToken = true;
        typedef typename _ProgressTypeTraits<_Argument1Type>::_ProgressType _ProgressType;
    };

    ref class _Zip
    {
    };

    // ***************************************************************************
    // Async Operation Task Generators
    //

    //
    // Functor returns an IAsyncInfo - result needs to be wrapped in a task:
    //
    template<typename _AsyncSelector, typename _ReturnType>
    struct _SelectorTaskGenerator
    {
        template<typename _Function>
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(), _taskOptinos);
        }

        template<typename _Function>
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(_Cts.get_token()), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(_Progress), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(_Progress, _Cts.get_token()), _taskOptinos);
        }
    };

    template<typename _AsyncSelector>
    struct _SelectorTaskGenerator<_AsyncSelector, void>
    {
        template<typename _Function>
        static task<void> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(), _taskOptinos);
        }

        template<typename _Function>
        static task<void> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(_Cts.get_token()), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(_Progress), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(_Progress, _Cts.get_token()), _taskOptinos);
        }
    };

    //
    // Functor returns a result - it needs to be wrapped in a task:
    //
    template<typename _ReturnType>
    struct _SelectorTaskGenerator<_TypeSelectorNoAsync, _ReturnType>
    {

#pragma warning(push)
#pragma warning(disable: 4702)
        template<typename _Function>
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>( [=]() -> _ReturnType {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func();
            }, _taskOptinos);
        }
#pragma warning(pop)

        template<typename _Function>
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>( [=]() -> _ReturnType {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func(_Cts.get_token());
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>( [=]() -> _ReturnType {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func(_Progress);
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>( [=]() -> _ReturnType {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func(_Progress, _Cts.get_token());
            }, _taskOptinos);
        }
    };

    template<>
    struct _SelectorTaskGenerator<_TypeSelectorNoAsync, void>
    {
        template<typename _Function>
        static task<void> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>( [=]() {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                _Func();
            }, _taskOptinos);
        }

        template<typename _Function>
        static task<void> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>( [=]() {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                _Func(_Cts.get_token());
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>( [=]() {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                _Func(_Progress);
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>( [=]() {
                _Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                _Func(_Progress, _Cts.get_token());
            }, _taskOptinos);
        }
    };

    //
    // Functor returns a task - the task can directly be returned:
    //
    template<typename _ReturnType>
    struct _SelectorTaskGenerator<_TypeSelectorAsyncTask, _ReturnType>
    {
        template<typename _Function>
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func();
        }

        template<typename _Function>
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func(_Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func(_Progress);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func(_Progress, _Cts.get_token());
        }
    };

    template<>
    struct _SelectorTaskGenerator<_TypeSelectorAsyncTask, void>
    {
        template<typename _Function>
        static task<void> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func();
        }

        template<typename _Function>
        static task<void> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func(_Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func(_Progress);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _Func(_Progress, _Cts.get_token());
        }
    };

    template<typename _Generator, bool _TakesToken, bool TakesProgress>
    struct _TaskGenerator
    {
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, false, false>
    {
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            return _Generator::_GenerateTask_0(_Func, _Cts, _callstack);
        }
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, true, false>
    {
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            return _Generator::_GenerateTask_1C(_Func, _Cts, _callstack);
        }
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, false, true>
    {
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            return _Generator::_GenerateTask_1P(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _callstack);
        }
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, true, true>
    {
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            return _Generator::_GenerateTask_2PC(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _callstack);
        }
    };

    // ***************************************************************************
    // Async Operation Attributes Classes
    //
    // These classes are passed through the hierarchy of async base classes in order to hold multiple attributes of a given async construct in
    // a single container. An attribute class must define:
    //
    // Mandatory:
    // -------------------------
    //
    // _AsyncBaseType           : The Windows Runtime interface which is being implemented.
    // _CompletionDelegateType  : The Windows Runtime completion delegate type for the interface.
    // _ProgressDelegateType    : If _TakesProgress is true, the Windows Runtime progress delegate type for the interface. If it is false, an empty Windows Runtime type.
    // _ReturnType              : The return type of the async construct (void for actions / non-void for operations)
    //
    // _TakesProgress           : An indication as to whether or not
    //
    // _Generate_Task           : A function adapting the user's function into what's necessary to produce the appropriate task
    //
    // Optional:
    // -------------------------
    //

    template<typename _Function, typename _ProgressType, typename _ReturnType, typename _TaskTraits, bool _TakesToken, bool _TakesProgress>
    struct _AsyncAttributes
    {
    };

    template<typename _Function, typename _ProgressType, typename _ReturnType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, _ReturnType, _TaskTraits, _TakesToken, true>
    {
        typedef typename Windows::Foundation::IAsyncOperationWithProgress<_ReturnType, _ProgressType> _AsyncBaseType;
        typedef typename Windows::Foundation::AsyncOperationProgressHandler<_ReturnType, _ProgressType> _ProgressDelegateType;
        typedef typename Windows::Foundation::AsyncOperationWithProgressCompletedHandler<_ReturnType, _ProgressType> _CompletionDelegateType;
        typedef typename _ReturnType _ReturnType;
        typedef typename _ProgressType _ProgressType;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, true> _TaskGenerator;

        static const bool _TakesProgress = true;
        static const bool _TakesToken = _TakesToken;

        template<typename _Function, typename _ClassPtr>
        static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack);
        }
    };

    template<typename _Function, typename _ProgressType, typename _ReturnType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, _ReturnType, _TaskTraits, _TakesToken, false>
    {
        typedef typename Windows::Foundation::IAsyncOperation<_ReturnType> _AsyncBaseType;
        typedef _Zip _ProgressDelegateType;
        typedef typename Windows::Foundation::AsyncOperationCompletedHandler<_ReturnType> _CompletionDelegateType;
        typedef typename _ReturnType _ReturnType;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, false> _TaskGenerator;

        static const bool _TakesProgress = false;
        static const bool _TakesToken = _TakesToken;

        template<typename _Function, typename _ClassPtr>
        static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack);
        }
    };

    template<typename _Function, typename _ProgressType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, void, _TaskTraits, _TakesToken, true>
    {
        typedef typename Windows::Foundation::IAsyncActionWithProgress<_ProgressType> _AsyncBaseType;
        typedef typename Windows::Foundation::AsyncActionProgressHandler<_ProgressType> _ProgressDelegateType;
        typedef typename Windows::Foundation::AsyncActionWithProgressCompletedHandler<_ProgressType> _CompletionDelegateType;
        typedef void _ReturnType;
        typedef typename _ProgressType _ProgressType;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, true> _TaskGenerator;

        static const bool _TakesProgress = true;
        static const bool _TakesToken = _TakesToken;

        template<typename _Function, typename _ClassPtr>
        static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack);
        }
    };

    template<typename _Function, typename _ProgressType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, void, _TaskTraits, _TakesToken, false>
    {
        typedef typename Windows::Foundation::IAsyncAction _AsyncBaseType;
        typedef _Zip _ProgressDelegateType;
        typedef typename Windows::Foundation::AsyncActionCompletedHandler _CompletionDelegateType;
        typedef void _ReturnType;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, false> _TaskGenerator;

        static const bool _TakesProgress = false;
        static const bool _TakesToken = _TakesToken;

        template<typename _Function, typename _ClassPtr>
        static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack);
        }
    };

    template<typename _Function>
    struct _AsyncLambdaTypeTraits
    {
        typedef typename _FunctorTypeTraits<_Function>::_ReturnType _ReturnType;
        typedef typename _FunctorTypeTraits<_Function>::_Argument1Type _Argument1Type;
        typedef typename _CAFunctorOptions<_Function>::_ProgressType _ProgressType;

        static const bool _TakesProgress = _CAFunctorOptions<_Function>::_TakesProgress;
        static const bool _TakesToken = _CAFunctorOptions<_Function>::_TakesToken;

        typedef typename _TaskTypeTraits<_ReturnType> _TaskTraits;
        typedef typename _AsyncAttributes<_Function, _ProgressType, typename _TaskTraits::_TaskRetType, _TaskTraits, _TakesToken, _TakesProgress> _AsyncAttributes;
    };

    // ***************************************************************************
    // AsyncInfo (and completion) Layer:
    //

    //
    // Internal base class implementation for async operations (based on internal Windows representation for ABI level async operations)
    //
    template < typename _Attributes, _AsyncResultType resultType = SingleResult >
    ref class _AsyncInfoBase abstract : _Attributes::_AsyncBaseType
    {
    internal:

        _AsyncInfoBase() : 
            _M_currentStatus(_AsyncStatusInternal::_AsyncCreated), 
            _M_errorCode(S_OK),
            _M_completeDelegate(nullptr),
            _M_CompleteDelegateAssigned(0),
            _M_CallbackMade(0)
        {
            _M_id = ::pplx::details::platform::GetNextAsyncId();
        }

    public:
        virtual typename _Attributes::_ReturnType GetResults()
        {
            throw ::Platform::Exception::CreateException(E_UNEXPECTED);
        }

        virtual property unsigned int Id
        {
            unsigned int get()
            {
                _CheckValidStateForAsyncInfoCall();

                return _M_id;
            }

            void set(unsigned int id)
            {
                _CheckValidStateForAsyncInfoCall();

                if (id == 0)
                {
                    throw ::Platform::Exception::CreateException(E_INVALIDARG);
                }
                else if (_M_currentStatus != _AsyncStatusInternal::_AsyncCreated)
                {
                    throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL);
                }

                _M_id = id;
            }
        }

        virtual property Windows::Foundation::AsyncStatus Status
        {
            Windows::Foundation::AsyncStatus get()
            {
                _CheckValidStateForAsyncInfoCall();

                _AsyncStatusInternal _Current = _M_currentStatus;

                //
                // Map our internal cancel pending to cancelled. This way "pending cancelled" looks to the outside as "cancelled" but
                // can still transition to "completed" if the operation completes without acknowledging the cancellation request
                //
                switch(_Current)
                {
                    case _AsyncCancelPending:
                        _Current = _AsyncCanceled;
                        break;
                    case _AsyncCreated:
                        _Current = _AsyncStarted;
                        break;
                    default:
                        break;
                }

                return static_cast<Windows::Foundation::AsyncStatus>(_Current);
            }
        }

        virtual property Windows::Foundation::HResult ErrorCode
        {
            Windows::Foundation::HResult get()
            {
                _CheckValidStateForAsyncInfoCall();

                Windows::Foundation::HResult _Hr;
                _Hr.Value = _M_errorCode;
                return _Hr;
            }
        }

        virtual property typename _Attributes::_ProgressDelegateType^ Progress
        {
            typename typename _Attributes::_ProgressDelegateType^ get()
            {
                return _GetOnProgress();
            }

            void set(typename _Attributes::_ProgressDelegateType^ _ProgressHandler)
            {
                _PutOnProgress(_ProgressHandler);
            }
        }

        virtual void Cancel()
        {
            if (_TransitionToState(_AsyncCancelPending))
            {
                _OnCancel();
            }
        }

        virtual void Close()
        {
            if (_TransitionToState(_AsyncClosed))
            {
                _OnClose();
            }
            else
            {
                if (_M_currentStatus != _AsyncClosed) // Closed => Closed transition is just ignored
                {
                    throw ::Platform::Exception::CreateException(E_ILLEGAL_STATE_CHANGE);
                }
            }
        }

        virtual property typename _Attributes::_CompletionDelegateType^ Completed
        {
            typename _Attributes::_CompletionDelegateType^ get()
            {
                _CheckValidStateForDelegateCall();
                return _M_completeDelegate;
            }

            void set(typename _Attributes::_CompletionDelegateType^ _CompleteHandler)
            {
                _CheckValidStateForDelegateCall();
                // this delegate property is "write once"
                if (InterlockedIncrement(&_M_CompleteDelegateAssigned) == 1)
                {
                    _M_completeDelegateContext = _ContextCallback::_CaptureCurrent();
                    _M_completeDelegate = _CompleteHandler;
                    // Guarantee that the write of _M_completeDelegate is ordered with respect to the read of state below
                    // as perceived from _FireCompletion on another thread.
                    MemoryBarrier();
                    if (_IsTerminalState())
                    {
                        _FireCompletion();
                    }
                }
                else
                {
                    throw ::Platform::Exception::CreateException(E_ILLEGAL_DELEGATE_ASSIGNMENT);
                }
            }
        }


    protected private:

        // _Start - this is not externally visible since async operations "hot start" before returning to the caller
        void _Start()
        {
            if (_TransitionToState(_AsyncStarted))
            {
                _OnStart();
            }
            else
            {
                throw ::Platform::Exception::CreateException(E_ILLEGAL_STATE_CHANGE);
            }
        }


        void _FireCompletion()
        {
            _TryTransitionToCompleted();

            // we guarantee that completion can only ever be fired once
            if (_M_completeDelegate != nullptr && InterlockedIncrement(&_M_CallbackMade) == 1)
            {
                _M_completeDelegateContext._CallInContext([=] {
                    _M_completeDelegate((_Attributes::_AsyncBaseType^)this, this->Status);
                    _M_completeDelegate = nullptr;
                });
            }
        }

        virtual typename _Attributes::_ProgressDelegateType^ _GetOnProgress()
        {
            throw ::Platform::Exception::CreateException(E_UNEXPECTED);
        }

        virtual void _PutOnProgress(typename _Attributes::_ProgressDelegateType^ _ProgressHandler)
        {
            throw ::Platform::Exception::CreateException(E_UNEXPECTED);
        }

        bool _TryTransitionToCompleted()
        {
            return _TransitionToState(_AsyncStatusInternal::_AsyncCompleted);
        }

        bool _TryTransitionToCancelled()
        {
            return _TransitionToState(_AsyncStatusInternal::_AsyncCanceled);
        }

        bool _TryTransitionToError(const HRESULT error)
        {
            _InterlockedCompareExchange(reinterpret_cast<volatile LONG*>(&_M_errorCode), error, S_OK);
            return _TransitionToState(_AsyncStatusInternal::_AsyncError);
        }

        // This method checks to see if the delegate properties can be
        // modified in the current state and generates the appropriate
        // error hr in the case of violation.
        inline void _CheckValidStateForDelegateCall()
        {
            if (_M_currentStatus == _AsyncClosed)
            {
                throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL);
            }
        }

        // This method checks to see if results can be collected in the
        // current state and generates the appropriate error hr in
        // the case of a violation.
        inline void _CheckValidStateForResultsCall()
        {
            _AsyncStatusInternal _Current = _M_currentStatus;

            if (_Current == _AsyncError)
            {
                throw ::Platform::Exception::CreateException(_M_errorCode);
            }
#pragma warning(push)
#pragma warning(disable: 4127) // Conditional expression is constant
            // single result illegal before transition to Completed or Cancelled state
            if (resultType == SingleResult)
#pragma warning(pop)
            {
                if (_Current != _AsyncCompleted)
                {
                    throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL);
                }
            }
            // multiple results can be called after Start has been called and before/after Completed
            else if (_Current != _AsyncStarted &&
                     _Current != _AsyncCancelPending &&
                     _Current != _AsyncCanceled &&
                     _Current != _AsyncCompleted)
            {
                throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL);
            }
        }

        // This method can be called by derived classes periodically to determine
        // whether the asynchronous operation should continue processing or should
        // be halted.
        inline bool _ContinueAsyncOperation()
        {
            return (_M_currentStatus == _AsyncStarted);
        }

        // These two methods are used to allow the async worker implementation do work on
        // state transitions. No real "work" should be done in these methods. In other words
        // they should not block for a long time on UI timescales.
        virtual void _OnStart() = 0;
        virtual void _OnClose() = 0;
        virtual void _OnCancel() = 0;

    private:

        // This method is used to check if calls to the AsyncInfo properties
        // (id, status, errorcode) are legal in the current state. It also
        // generates the appropriate error hr to return in the case of an
        // illegal call.
        inline void _CheckValidStateForAsyncInfoCall()
        {
            _AsyncStatusInternal _Current = _M_currentStatus;
            if (_Current == _AsyncClosed)
            {
                throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL);
            }
            else if (_Current == _AsyncCreated)
            {
                throw ::Platform::Exception::CreateException(E_ASYNC_OPERATION_NOT_STARTED);
            }

        }

        inline bool _TransitionToState(const _AsyncStatusInternal _NewState)
        {
            _AsyncStatusInternal _Current = _M_currentStatus;

            // This enforces the valid state transitions of the asynchronous worker object
            // state machine.
            switch(_NewState)
            {
            case _AsyncStatusInternal::_AsyncStarted:
                if (_Current != _AsyncCreated)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncCompleted:
                if (_Current != _AsyncStarted && _Current != _AsyncCancelPending)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncCancelPending:
                if (_Current != _AsyncStarted)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncCanceled:
                if (_Current != _AsyncStarted && _Current != _AsyncCancelPending)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncError:
                if (_Current != _AsyncStarted && _Current != _AsyncCancelPending)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncClosed:
                if (!_IsTerminalState(_Current))
                {
                    return false;
                }
                break;
            default:
                return false;
                break;
            }

            // attempt the transition to the new state
            // Note: if currentStatus_ == _Current, then there was no intervening write
            // by the async work object and the swap succeeded.
            _AsyncStatusInternal _RetState = static_cast<_AsyncStatusInternal>(
                    _InterlockedCompareExchange(reinterpret_cast<volatile LONG*>(&_M_currentStatus),
                                                _NewState,
                                                static_cast<LONG>(_Current)));

            // ICE returns the former state, if the returned state and the
            // state we captured at the beginning of this method are the same,
            // the swap succeeded.
            return (_RetState == _Current);
        }

        inline bool _IsTerminalState()
        {
            return _IsTerminalState(_M_currentStatus);
        }

        inline bool _IsTerminalState(_AsyncStatusInternal status)
        {
            return (status == _AsyncError ||
                    status == _AsyncCanceled ||
                    status == _AsyncCompleted ||
                    status == _AsyncClosed);
        }

    private:

        _ContextCallback        _M_completeDelegateContext;
        typename _Attributes::_CompletionDelegateType^  volatile _M_completeDelegate;
        _AsyncStatusInternal volatile                   _M_currentStatus;
        HRESULT volatile                                _M_errorCode;
        unsigned int                                    _M_id;
        long volatile                                   _M_CompleteDelegateAssigned;
        long volatile                                   _M_CallbackMade;
    };

    // ***************************************************************************
    // Progress Layer (optional):
    //

    template< typename _Attributes, bool _HasProgress, _AsyncResultType _ResultType = SingleResult >
    ref class _AsyncProgressBase abstract : _AsyncInfoBase<_Attributes, _ResultType>
    {
    };

    template< typename _Attributes, _AsyncResultType _ResultType>
    ref class _AsyncProgressBase<_Attributes, true, _ResultType> abstract : _AsyncInfoBase<_Attributes, _ResultType>
    {
    internal:

        _AsyncProgressBase() : _AsyncInfoBase<_Attributes, _ResultType>(),
            _M_progressDelegate(nullptr)
        {
        }

        virtual typename _Attributes::_ProgressDelegateType^ _GetOnProgress() override
        {
            _CheckValidStateForDelegateCall();
            return _M_progressDelegate;
        }

        virtual void _PutOnProgress(typename _Attributes::_ProgressDelegateType^ _ProgressHandler) override
        {
            _CheckValidStateForDelegateCall();
            _M_progressDelegate = _ProgressHandler;
            _M_progressDelegateContext = _ContextCallback::_CaptureCurrent();
        }

        void _FireProgress(const typename _Attributes::_ProgressType& _ProgressValue)
        {
            if (_M_progressDelegate != nullptr)
            {
                _M_progressDelegateContext._CallInContext([=] {
                    _M_progressDelegate((_Attributes::_AsyncBaseType^)this, _ProgressValue);
                });
            }
        }

    private:

        _ContextCallback _M_progressDelegateContext;
        typename _Attributes::_ProgressDelegateType^ _M_progressDelegate;
    };

    template<typename _Attributes, _AsyncResultType _ResultType = SingleResult>
    ref class _AsyncBaseProgressLayer abstract : _AsyncProgressBase<_Attributes, _Attributes::_TakesProgress, _ResultType>
    {
    };

    // ***************************************************************************
    // Task Adaptation Layer:
    //

    //
    // _AsyncTaskThunkBase provides a bridge between IAsync<Action/Operation> and task.
    //
    template<typename _Attributes, typename _ReturnType>
    ref class _AsyncTaskThunkBase abstract : _AsyncBaseProgressLayer<_Attributes>
    {
    public:

        virtual _ReturnType GetResults() override
        {
            _CheckValidStateForResultsCall();
            return _M_task.get();
        }

    internal:

        typedef task<_ReturnType> _TaskType;

        _AsyncTaskThunkBase(const _TaskType& _Task)
            : _M_task(_Task)
        {
        }

        _AsyncTaskThunkBase()
        {
        }

    protected:

        virtual void _OnStart() override
        {
            _M_task.then( [=](_TaskType _Antecedent) {
                try
                {
                    _Antecedent.get();
                }
                catch(task_canceled&)
                {
                    _TryTransitionToCancelled();
                }
                catch(::Platform::Exception^ _Ex)
                {
                    _TryTransitionToError(_Ex->HResult);
                }
                catch(...)
                {
                    _TryTransitionToError(E_FAIL);
                }
                _FireCompletion();
            });
        }

    internal:

        _TaskType _M_task;
        cancellation_token_source _M_cts;
    };

    template<typename _Attributes>
    ref class _AsyncTaskThunk : _AsyncTaskThunkBase<_Attributes, typename _Attributes::_ReturnType>
    {
    internal:

        _AsyncTaskThunk(const _TaskType& _Task) :
            _AsyncTaskThunkBase(_Task)
        {
        }

        _AsyncTaskThunk()
        {
        }

    protected:

        virtual void _OnClose() override
        {
        }

        virtual void _OnCancel() override
        {
            _M_cts.cancel();
        }
    };

    // ***************************************************************************
    // Async Creation Layer:
    //
    template<typename _Function>
    ref class _AsyncTaskGeneratorThunk sealed : _AsyncTaskThunk<typename _AsyncLambdaTypeTraits<_Function>::_AsyncAttributes>
    {
    internal:

        typedef typename _AsyncLambdaTypeTraits<_Function>::_AsyncAttributes _Attributes;
        typedef typename _AsyncTaskThunk<_Attributes> _Base;
        typedef typename _Attributes::_AsyncBaseType _AsyncBaseType;

        _AsyncTaskGeneratorThunk(const _Function& _Func, const _TaskCreationCallstack &_callstack) : _M_func(_Func), _M_creationCallstack(_callstack)
        {
            // Virtual call here is safe as the class is declared 'sealed'
            _Start();
        }

    protected:

        //
        // The only thing we must do different from the base class is we must spin the hot task on transition from Created->Started. Otherwise,
        // let the base thunk handle everything.
        //

        virtual void _OnStart() override
        {
            //
            // Call the appropriate task generator to actually produce a task of the expected type. This might adapt the user lambda for progress reports,
            // wrap the return result in a task, or allow for direct return of a task depending on the form of the lambda.
            //
            _M_task = _Attributes::_Generate_Task(_M_func, this, _M_cts, _M_creationCallstack);
            _Base::_OnStart();
        }

        virtual void _OnCancel() override
        {
            _Base::_OnCancel();
        }

    private:
        _TaskCreationCallstack _M_creationCallstack;
        _Function _M_func;
    };
} // namespace details

/// <summary>
///     Creates a Windows Runtime asynchronous construct based on a user supplied lambda or function object. The return type of <c>create_async</c> is
///     one of either <c>IAsyncAction^</c>, <c>IAsyncActionWithProgress&lt;TProgress&gt;^</c>, <c>IAsyncOperation&lt;TResult&gt;^</c>, or
///     <c>IAsyncOperationWithProgress&lt;TResult, TProgress&gt;^</c> based on the signature of the lambda passed to the method.
/// </summary>
/// <param name="_Func">
///     The lambda or function object from which to create a Windows Runtime asynchronous construct.
/// </param>
/// <returns>
///     An asynchronous construct represented by an IAsyncAction^, IAsyncActionWithProgress&lt;TProgress&gt;^, IAsyncOperation&lt;TResult&gt;^, or an
///     IAsyncOperationWithProgress&lt;TResult, TProgress&gt;^. The interface returned depends on the signature of the lambda passed into the function.
/// </returns>
/// <remarks>
///     The return type of the lambda determines whether the construct is an action or an operation.
///     <para>Lambdas that return void cause the creation of actions. Lambdas that return a result of type <c>TResult</c> cause the creation of
///     operations of TResult.</para>
///     <para>The lambda may also return a <c>task&lt;TResult&gt;</c> which encapsulates the aysnchronous work within itself or is the continuation of
///     a chain of tasks that represent the asynchronous work. In this case, the lambda itself is executed inline, since the tasks are the ones that
///     execute asynchronously, and the return type of the lambda is unwrapped to produce the asynchronous construct returned by <c>create_async</c>.
///     This implies that a lambda that returns a task&lt;void&gt; will cause the creation of actions, and a lambda that returns a task&lt;TResult&gt; will
///     cause the creation of operations of TResult.</para>
///     <para>The lambda may take either zero, one or two arguments. The valid arguments are <c>progress_reporter&lt;TProgress&gt;</c> and
///     <c>cancellation_token</c>, in that order if both are used. A lambda without arguments causes the creation of an asynchronous construct without
///     the capability for progress reporting. A lambda that takes a progress_reporter&lt;TProgress&gt; will cause <c>create_async</c> to return an asynchronous
///     construct which reports progress of type TProgress each time the <c>report</c> method of the progress_reporter object is called. A lambda that
///     takes a cancellation_token may use that token to check for cancellation, or pass it to tasks that it creates so that cancellation of the
///     asynchronous construct causes cancellation of those tasks.</para>
///     <para>If the body of the lambda or function object returns a result (and not a task&lt;TResult&gt;), the lamdba will be executed
///     asynchronously within the process MTA in the context of a task the Runtime implicitly creates for it. The <c>IAsyncInfo::Cancel</c> method will
///     cause cancellation of the implicit task.</para>
///     <para>If the body of the lambda returns a task, the lamba executes inline, and by declaring the lambda to take an argument of type
///     <c>cancellation_token</c> you can trigger cancellation of any tasks you create within the lambda by passing that token in when you create them.
///     You may also use the <c>register_callback</c> method on the token to cause the Runtime to invoke a callback when you call <c>IAsyncInfo::Cancel</c> on
///     the async operation or action produced..</para>
///     <para>This function is only available to Windows Store apps.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="progress_reporter Class"/>
/// <seealso cref="cancelation_token Class"/>
/**/
template<typename _Function>
__declspec(noinline)
details::_AsyncTaskGeneratorThunk<_Function> ^create_async(const _Function& _Func)
{
    static_assert(std::is_same<decltype(details::_IsValidCreateAsync(_Func,0,0,0,0)),std::true_type>::value,
        "argument to create_async must be a callable object taking zero, one or two arguments");
    return ref new details::_AsyncTaskGeneratorThunk<_Function>(_Func, _CAPTURE_CALLSTACK());
}

#endif  /* defined (__cplusplus_winrt) */

namespace details
{
    // Helper struct for when_all operators to know when tasks have completed
    template<typename _Type>
    struct _RunAllParam
    {
        _RunAllParam() : _M_completeCount(0), _M_numTasks(0)
        {
        }

        void _Resize(size_t _Len, bool _SkipVector = false)
        {
            _M_numTasks = _Len;
            if (!_SkipVector)
            {
                _M_vector._Result.resize(_Len);
            }
        }

        task_completion_event<_Unit_type>       _M_completed;
        _ResultHolder<std::vector<_Type> >      _M_vector;
        _ResultHolder<_Type>                    _M_mergeVal;
        atomic_size_t                           _M_completeCount;
        size_t                                  _M_numTasks;
    };

    template<typename _Type>
    struct _RunAllParam<std::vector<_Type> >
    {
        _RunAllParam() : _M_completeCount(0), _M_numTasks(0)
        {
        }

        void _Resize(size_t _Len, bool _SkipVector = false)
        {
            _M_numTasks = _Len;
            
            if (!_SkipVector)
            {
                _M_vector.resize(_Len);
            }
        }

        task_completion_event<_Unit_type>       _M_completed;
        std::vector<_ResultHolder<std::vector<_Type> > >  _M_vector;
        atomic_size_t                           _M_completeCount;
        size_t                                  _M_numTasks;
    };

    // Helper struct specialization for void
    template<>
    struct _RunAllParam<_Unit_type>
    {
        _RunAllParam() : _M_completeCount(0), _M_numTasks(0)
        {
        }

        void _Resize(size_t _Len)
        {
            _M_numTasks = _Len;
        }

        task_completion_event<_Unit_type> _M_completed;
        atomic_size_t _M_completeCount;
        size_t _M_numTasks;
    };

    inline void _JoinAllTokens_Add(const cancellation_token_source& _MergedSrc, _CancellationTokenState *_PJoinedTokenState)
    {
        if (_PJoinedTokenState != nullptr && _PJoinedTokenState != _CancellationTokenState::_None())
        {
            cancellation_token _T = cancellation_token::_FromImpl(_PJoinedTokenState);
            _T.register_callback( [=](){
                _MergedSrc.cancel();
                });
        }
    }

    template<typename _ElementType, typename _Function, typename _TaskType>
    void _WhenAllContinuationWrapper(_RunAllParam<_ElementType>* _PParam, _Function _Func, task<_TaskType>& _Task)
    {
        if (_Task._GetImpl()->_IsCompleted())
        {
            _Func();
            if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
            {
                // Inline execute its direct continuation, the _ReturnTask
                _PParam->_M_completed.set(_Unit_type());
                // It's safe to delete it since all usage of _PParam in _ReturnTask has been finished.
                delete _PParam;
            }
        }
        else
        {
            _ASSERTE(_Task._GetImpl()->_IsCanceled());
            if (_Task._GetImpl()->_HasUserException())
            {
                // _Cancel will return false if the TCE is already canceled with or without exception
                _PParam->_M_completed._Cancel(_Task._GetImpl()->_GetExceptionHolder());
            }
            else
            {
                _PParam->_M_completed._Cancel();
            }

            if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
            {
                delete _PParam;
            }
        }
    }

    template<typename _ElementType, typename _Iterator>
    struct _WhenAllImpl
    {
        static task<std::vector<_ElementType>> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
        {
            _CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;

            auto _PParam = new _RunAllParam<_ElementType>();
            cancellation_token_source _MergedSource;

            // Step1: Create task completion event.
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_MergedSource.get_token());
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options);
            // The return task must be created before step 3 to enforce inline execution.
            auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type) -> std::vector<_ElementType> {
                return _PParam->_M_vector.Get();
            }, nullptr);

            // Step2: Combine and check tokens, and count elements in range.
            if (_PTokenState)
            {
                _JoinAllTokens_Add(_MergedSource, _PTokenState);
                _PParam->_Resize(static_cast<size_t>(std::distance(_Begin, _End)));
            }
            else
            {
                size_t _TaskNum = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    _TaskNum++;
                    _JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState);
                }
                _PParam->_Resize(_TaskNum);
            }

            // Step3: Check states of previous tasks.
            if( _Begin == _End )
            {
                _PParam->_M_completed.set(_Unit_type());
                delete _PParam;
            }
            else
            {
                size_t _Index = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    if (_PTask->is_apartment_aware())
                    {
                        _ReturnTask._SetAsync();
                    }

                    _PTask->_Then([_PParam, _Index](task<_ElementType> _ResultTask) {

                        auto _PParamCopy = _PParam;
                        auto _IndexCopy = _Index;
                        auto _Func = [_PParamCopy, _IndexCopy, &_ResultTask](){
                            _PParamCopy->_M_vector._Result[_IndexCopy] = _ResultTask._GetImpl()->_GetResult();
                        };

                        _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
                    }, _CancellationTokenState::_None()); 

                    _Index++;
                }
            }

            return _ReturnTask;
        }
    };

    template<typename _ElementType, typename _Iterator>
    struct _WhenAllImpl<std::vector<_ElementType>, _Iterator>
    {
        static task<std::vector<_ElementType>> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
        {
            _CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;

            auto _PParam = new _RunAllParam<std::vector<_ElementType>>();
            cancellation_token_source _MergedSource;

            // Step1: Create task completion event.
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_MergedSource.get_token());
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options);
            // The return task must be created before step 3 to enforce inline execution.
            auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type) -> std::vector<_ElementType> {
                _ASSERTE(_PParam->_M_completeCount ==  _PParam->_M_numTasks);
                std::vector<_ElementType> _Result;
                for(size_t _I = 0; _I < _PParam->_M_numTasks; _I++)
                {
                    const std::vector<_ElementType>& _Vec = _PParam->_M_vector[_I].Get();
                    _Result.insert(_Result.end(), _Vec.begin(), _Vec.end());
                }
                return _Result;
            }, nullptr);

            // Step2: Combine and check tokens, and count elements in range.
            if (_PTokenState)
            {
                _JoinAllTokens_Add(_MergedSource, _PTokenState);
                _PParam->_Resize(static_cast<size_t>(std::distance(_Begin, _End)));
            }
            else
            {
                size_t _TaskNum = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    _TaskNum++;
                    _JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState);
                }
                _PParam->_Resize(_TaskNum);
            }

            // Step3: Check states of previous tasks.
            if( _Begin == _End )
            {
                _PParam->_M_completed.set(_Unit_type());
                delete _PParam;
            }
            else
            {
                size_t _Index = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    if (_PTask->is_apartment_aware())
                    {
                        _ReturnTask._SetAsync();
                    }

                    _PTask->_Then([_PParam, _Index](task<std::vector<_ElementType>> _ResultTask) {

                        auto _PParamCopy = _PParam;
                        auto _IndexCopy = _Index;
                        auto _Func = [_PParamCopy, _IndexCopy, &_ResultTask]() {
                            _PParamCopy->_M_vector[_IndexCopy].Set(_ResultTask._GetImpl()->_GetResult());
                        };

                        _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
                    }, _CancellationTokenState::_None());

                    _Index++;
                }
            }

            return  _ReturnTask;
        }
    };

    template<typename _Iterator>
    struct _WhenAllImpl<void, _Iterator>
    {
        static task<void> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
        {
            _CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;

            auto _PParam = new _RunAllParam<_Unit_type>();
            cancellation_token_source _MergedSource;

            // Step1: Create task completion event.
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_MergedSource.get_token());
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options);
            // The return task must be created before step 3 to enforce inline execution.
            auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type) {
            }, nullptr);

            // Step2: Combine and check tokens, and count elements in range.
            if (_PTokenState)
            {
                _JoinAllTokens_Add(_MergedSource, _PTokenState);
                _PParam->_Resize(static_cast<size_t>(std::distance(_Begin, _End)));
            }
            else
            {
                size_t _TaskNum = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    _TaskNum++;
                    _JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState);
                }
                _PParam->_Resize(_TaskNum);
            }

            // Step3: Check states of previous tasks.
            if( _Begin == _End )
            {
                _PParam->_M_completed.set(_Unit_type());
                delete _PParam;
            }
            else
            {
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    if (_PTask->is_apartment_aware())
                    {
                        _ReturnTask._SetAsync();
                    }

                    _PTask->_Then([_PParam](task<void> _ResultTask) {
                        auto _Func = [](){};
                        _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
                    }, _CancellationTokenState::_None());
                }
            }

            return _ReturnTask;
        }
    };

    template<typename _ReturnType>
    task<std::vector<_ReturnType>> _WhenAllVectorAndValue(const task<std::vector<_ReturnType>>& _VectorTask, const task<_ReturnType>& _ValueTask,
                                                          bool _OutputVectorFirst)
    {
        auto _PParam = new _RunAllParam<_ReturnType>();
        cancellation_token_source _MergedSource;

        // Step1: Create task completion event.
        task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _MergedSource.get_token());
        // The return task must be created before step 3 to enforce inline execution.
        auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type) -> std::vector<_ReturnType> {
            _ASSERTE(_PParam->_M_completeCount == 2);
            auto _Result = _PParam->_M_vector.Get(); // copy by value
            auto _mergeVal = _PParam->_M_mergeVal.Get();

            if (_OutputVectorFirst == true)
            {                
                _Result.push_back(_mergeVal);
            }
            else
            {
                _Result.insert(_Result.begin(), _mergeVal);
            }
            return _Result;
        }, nullptr);

        // Step2: Combine and check tokens.
        _JoinAllTokens_Add(_MergedSource, _VectorTask._GetImpl()->_M_pTokenState);
        _JoinAllTokens_Add(_MergedSource, _ValueTask._GetImpl()->_M_pTokenState);

        // Step3: Check states of previous tasks.
        _PParam->_Resize(2, true);

        if (_VectorTask.is_apartment_aware() || _ValueTask.is_apartment_aware())
        {
            _ReturnTask._SetAsync();
        }
        _VectorTask._Then([_PParam](task<std::vector<_ReturnType>> _ResultTask) {
            auto _PParamCopy = _PParam;
            auto _Func = [_PParamCopy, &_ResultTask]() {
                auto _ResultLocal = _ResultTask._GetImpl()->_GetResult();
                _PParamCopy->_M_vector.Set(_ResultLocal);
            };

            _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
        }, _CancellationTokenState::_None());
        _ValueTask._Then([_PParam](task<_ReturnType> _ResultTask) {
            auto _PParamCopy = _PParam;
            auto _Func = [_PParamCopy, &_ResultTask]() {
                auto _ResultLocal = _ResultTask._GetImpl()->_GetResult();
                _PParamCopy->_M_mergeVal.Set(_ResultLocal);
            };

            _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
        }, _CancellationTokenState::_None());

        return _ReturnTask;
    }
} // namespace details

/// <summary>
///     Creates a task that will complete successfully when all of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_Iterator">
///     The type of the input iterator.
/// </typeparam>
/// <param name="_Begin">
///     The position of the first element in the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_End">
///     The position of the first element beyond the range of elements to be combined into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when all of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template <typename _Iterator>
auto when_all(_Iterator _Begin, _Iterator _End, const task_options& _TaskOptions = task_options()) 
    -> decltype (details::_WhenAllImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(_TaskOptions, _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAllImpl<_ElementType, _Iterator>::_Perform(_TaskOptions, _Begin, _End);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<_ReturnType> & _Lhs, const task<_ReturnType> & _Rhs)
{
    task<_ReturnType> _PTasks[2] = {_Lhs, _Rhs};
    return when_all(_PTasks, _PTasks+2);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<std::vector<_ReturnType>> & _Lhs, const task<_ReturnType> & _Rhs)
{
    return details::_WhenAllVectorAndValue(_Lhs, _Rhs, true);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<_ReturnType> & _Lhs, const task<std::vector<_ReturnType>> & _Rhs)
{
    return details::_WhenAllVectorAndValue(_Rhs, _Lhs, false);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<std::vector<_ReturnType>> & _Lhs, const task<std::vector<_ReturnType>> & _Rhs)
{
    task<std::vector<_ReturnType>> _PTasks[2] = {_Lhs, _Rhs};
    return when_all(_PTasks, _PTasks+2);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
inline task<void> operator&&(const task<void> & _Lhs, const task<void> & _Rhs)
{
    task<void> _PTasks[2] = {_Lhs, _Rhs};
    return when_all(_PTasks, _PTasks+2);
}

namespace details
{
    // Helper struct for when_any operators to know when tasks have completed
    template <typename _CompletionType>
    struct _RunAnyParam
    {
        _RunAnyParam() : _M_exceptionRelatedToken(nullptr), _M_completeCount(0), _M_numTasks(0), _M_fHasExplicitToken(false)
        {
        }
        ~_RunAnyParam()
        {
            if (_CancellationTokenState::_IsValid(_M_exceptionRelatedToken))
                _M_exceptionRelatedToken->_Release();
        }
        task_completion_event<_CompletionType>      _M_Completed;
        cancellation_token_source                   _M_cancellationSource;
        _CancellationTokenState *                   _M_exceptionRelatedToken;
        atomic_size_t                               _M_completeCount;
        size_t                                      _M_numTasks;
        bool                                        _M_fHasExplicitToken;
    };

    template<typename _CompletionType, typename _Function, typename _TaskType>
    void _WhenAnyContinuationWrapper(_RunAnyParam<_CompletionType> * _PParam, const _Function & _Func, task<_TaskType>& _Task)
    {
        bool _IsTokenCancled = !_PParam->_M_fHasExplicitToken && _Task._GetImpl()->_M_pTokenState != _CancellationTokenState::_None() && _Task._GetImpl()->_M_pTokenState->_IsCanceled();
        if (_Task._GetImpl()->_IsCompleted() && !_IsTokenCancled)
        {
            _Func();
            if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
            {
                delete _PParam;
            }
        }
        else
        {
            _ASSERTE(_Task._GetImpl()->_IsCanceled() || _IsTokenCancled);
            if (_Task._GetImpl()->_HasUserException() && !_IsTokenCancled)
            {
                if (_PParam->_M_Completed._StoreException(_Task._GetImpl()->_GetExceptionHolder()))
                {
                    // This can only enter once.
                    _PParam->_M_exceptionRelatedToken = _Task._GetImpl()->_M_pTokenState;
                    _ASSERTE(_PParam->_M_exceptionRelatedToken);
                    // Deref token will be done in the _PParam destructor.
                    if (_PParam->_M_exceptionRelatedToken != _CancellationTokenState::_None())
                    {
                        _PParam->_M_exceptionRelatedToken->_Reference();
                    }
                }
            }
            
            if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
            {
                // If no one has be completed so far, we need to make some final cancellation decision.
                if (!_PParam->_M_Completed._IsTriggered())
                {
                    // If we already explicit token, we can skip the token join part.
                    if (!_PParam->_M_fHasExplicitToken)
                    {
                        if (_PParam->_M_exceptionRelatedToken)
                        {
                            _JoinAllTokens_Add(_PParam->_M_cancellationSource, _PParam->_M_exceptionRelatedToken);
                        }
                        else
                        {
                            // If haven't captured any exception token yet, there was no exception for all those tasks,
                            // so just pick a random token (current one) for normal cancellation.
                            _JoinAllTokens_Add(_PParam->_M_cancellationSource, _Task._GetImpl()->_M_pTokenState);
                        }
                    }
                    // Do exception cancellation or normal cancellation based on whether it has stored exception.
                    _PParam->_M_Completed._Cancel();
                }
                delete _PParam;
            }
        }
    }

    template<typename _ElementType, typename _Iterator>
    struct _WhenAnyImpl
    {
        static task<std::pair<_ElementType, size_t>> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
        {
            if( _Begin == _End )
            {
                throw invalid_operation("when_any(begin, end) cannot be called on an empty container.");
            }
            _CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
            auto _PParam = new _RunAnyParam<std::pair<std::pair<_ElementType, size_t>, _CancellationTokenState *>>();
            
            if (_PTokenState)
            {
                _JoinAllTokens_Add(_PParam->_M_cancellationSource, _PTokenState);
                _PParam->_M_fHasExplicitToken = true;
            }
            
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_PParam->_M_cancellationSource.get_token());
            task<std::pair<std::pair<_ElementType, size_t>, _CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _Options); 

            // Keep a copy ref to the token source
            auto _CancellationSource = _PParam->_M_cancellationSource;

            _PParam->_M_numTasks = static_cast<size_t>(std::distance(_Begin, _End));
            size_t _Index = 0;
            for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
            {
                if (_PTask->is_apartment_aware())
                {
                    _Any_tasks_completed._SetAsync();
                }

                _PTask->_Then([_PParam, _Index](task<_ElementType> _ResultTask) {
                    auto _PParamCopy = _PParam; // Dev10
                    auto _IndexCopy = _Index; // Dev10
                    auto _Func = [&_ResultTask, _PParamCopy, _IndexCopy]() {
                        _PParamCopy->_M_Completed.set(std::make_pair(std::make_pair(_ResultTask._GetImpl()->_GetResult(), _IndexCopy),  _ResultTask._GetImpl()->_M_pTokenState));
                    };

                    _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
                }, _CancellationTokenState::_None());

                _Index++;
            }

            // All _Any_tasks_completed._SetAsync() must be finished before this return continuation task being created.
            return _Any_tasks_completed._Then([=](std::pair<std::pair<_ElementType, size_t>, _CancellationTokenState *> _Result) -> std::pair<_ElementType, size_t> {
                _ASSERTE(_Result.second);
                if (!_PTokenState)
                {
                    _JoinAllTokens_Add(_CancellationSource, _Result.second);
                }
                return _Result.first;
            }, nullptr);
        }
    };

    template<typename _Iterator>
    struct _WhenAnyImpl<void, _Iterator>
    {
        static task<size_t> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
        {
            if( _Begin == _End )
            {
                throw invalid_operation("when_any(begin, end) cannot be called on an empty container.");
            }

            _CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
            auto _PParam = new _RunAnyParam<std::pair<size_t, _CancellationTokenState *>>();
            
            if (_PTokenState)
            {
                _JoinAllTokens_Add(_PParam->_M_cancellationSource, _PTokenState);
                _PParam->_M_fHasExplicitToken = true;
            }

            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_PParam->_M_cancellationSource.get_token());
            task<std::pair<size_t, _CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _Options);

            // Keep a copy ref to the token source
            auto _CancellationSource = _PParam->_M_cancellationSource;

            _PParam->_M_numTasks = static_cast<size_t>(std::distance(_Begin, _End));
            size_t _Index = 0;
            for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
            {
                if (_PTask->is_apartment_aware())
                {
                    _Any_tasks_completed._SetAsync();
                }

                _PTask->_Then([_PParam, _Index](task<void> _ResultTask) {
                    auto _PParamCopy = _PParam; // Dev10
                    auto _IndexCopy = _Index; // Dev10
                    auto _Func = [&_ResultTask, _PParamCopy, _IndexCopy]() {
                        _PParamCopy->_M_Completed.set(std::make_pair(_IndexCopy, _ResultTask._GetImpl()->_M_pTokenState));
                    };
                    _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
                }, _CancellationTokenState::_None());

                _Index++;
            }

            // All _Any_tasks_completed._SetAsync() must be finished before this return continuation task being created.
            return _Any_tasks_completed._Then([=](std::pair<size_t, _CancellationTokenState *> _Result) -> size_t {
                _ASSERTE(_Result.second);
                if (!_PTokenState)
                {
                    _JoinAllTokens_Add(_CancellationSource, _Result.second);
                }
                return _Result.first;
            }, nullptr);
        }
    };
} // namespace details

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_Iterator">
///     The type of the input iterator.
/// </typeparam>
/// <param name="_Begin">
///     The position of the first element in the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_End">
///     The position of the first element beyond the range of elements to be combined into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when any one of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::pair&lt;T, size_t&gt;&gt;></c>, where the first element of the pair is the result
///     of the completing task, and the second element is the index of the task that finished. If the input tasks are of type <c>void</c>
///     the output is a <c>task&lt;size_t&gt;</c>, where the result is the index of the completing task.
/// </returns>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _Iterator>
auto when_any(_Iterator _Begin, _Iterator _End, const task_options& _TaskOptions = task_options())
    -> decltype (details::_WhenAnyImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(_TaskOptions, _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAnyImpl<_ElementType, _Iterator>::_Perform(_TaskOptions, _Begin, _End);
}

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_Iterator">
///     The type of the input iterator.
/// </typeparam>
/// <param name="_Begin">
///     The position of the first element in the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_End">
///     The position of the first element beyond the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_CancellationToken">
///     The cancellation token which controls cancellation of the returned task. If you do not provide a cancellation token, the resulting
///     task will receive the cancellation token of the task that causes it to complete.
/// </param>
/// <returns>
///     A task that completes successfully when any one of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::pair&lt;T, size_t&gt;&gt;></c>, where the first element of the pair is the result
///     of the completing task, and the second element is the index of the task that finished. If the input tasks are of type <c>void</c>
///     the output is a <c>task&lt;size_t&gt;</c>, where the result is the index of the completing task.
/// </returns>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _Iterator>
auto when_any(_Iterator _Begin, _Iterator _End, cancellation_token _CancellationToken)
    -> decltype (details::_WhenAnyImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAnyImpl<_ElementType, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End);
}

/// <summary>
///     Creates a task that will complete successfully when either of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</c></para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<_ReturnType> operator||(const task<_ReturnType> & _Lhs, const task<_ReturnType> & _Rhs)
{
    auto _PParam = new details::_RunAnyParam<std::pair<_ReturnType, size_t>>();

    task<std::pair<_ReturnType, size_t>> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
    // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called,
    // So that _PParam can be used before it getting deleted.
    auto _ReturnTask = _Any_tasks_completed._Then([=](std::pair<_ReturnType, size_t> _Ret) -> _ReturnType {
        _ASSERTE(_Ret.second);
        _JoinAllTokens_Add(_PParam->_M_cancellationSource, reinterpret_cast<details::_CancellationTokenState *>(_Ret.second));
        return _Ret.first;
    }, nullptr);

    if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware())
    {
        _ReturnTask._SetAsync();
    }

    _PParam->_M_numTasks = 2;
    auto _Continuation = [_PParam](task<_ReturnType> _ResultTask) {
        //  Dev10 compiler bug
        auto _PParamCopy = _PParam;
        auto _Func = [&_ResultTask, _PParamCopy]() {
            _PParamCopy->_M_Completed.set(std::make_pair(_ResultTask._GetImpl()->_GetResult(), reinterpret_cast<size_t>(_ResultTask._GetImpl()->_M_pTokenState)));
        };
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
    };

    _Lhs._Then(_Continuation, details::_CancellationTokenState::_None());
    _Rhs._Then(_Continuation, details::_CancellationTokenState::_None());

    return _ReturnTask;
}

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</c></para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator||(const task<std::vector<_ReturnType>> & _Lhs, const task<_ReturnType> & _Rhs)
{
    auto _PParam = new details::_RunAnyParam<std::pair<std::vector<_ReturnType>, details::_CancellationTokenState *>>();

    task<std::pair<std::vector<_ReturnType>, details::_CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());

    // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called,
    // So that _PParam can be used before it getting deleted.
    auto _ReturnTask = _Any_tasks_completed._Then([=](std::pair<std::vector<_ReturnType>, details::_CancellationTokenState *> _Ret) -> std::vector<_ReturnType> {
        _ASSERTE(_Ret.second);
        _JoinAllTokens_Add(_PParam->_M_cancellationSource, _Ret.second);
        return _Ret.first;
    }, nullptr);

    if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware())
    {
        _ReturnTask._SetAsync();
    }

    _PParam->_M_numTasks = 2;
    _Lhs._Then([_PParam](task<std::vector<_ReturnType>> _ResultTask) {
        //  Dev10 compiler bug
        auto _PParamCopy = _PParam;
        auto _Func = [&_ResultTask, _PParamCopy]() {
            auto _Result = _ResultTask._GetImpl()->_GetResult();
            _PParamCopy->_M_Completed.set(std::make_pair(_Result, _ResultTask._GetImpl()->_M_pTokenState));
        };
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
    }, details::_CancellationTokenState::_None());

    
    _Rhs._Then([_PParam](task<_ReturnType> _ResultTask) 
    {
        auto _PParamCopy = _PParam;
        auto _Func = [&_ResultTask, _PParamCopy]() {
            auto _Result = _ResultTask._GetImpl()->_GetResult();

            std::vector<_ReturnType> _Vec;
            _Vec.push_back(_Result);
            _PParamCopy->_M_Completed.set(std::make_pair(_Vec, _ResultTask._GetImpl()->_M_pTokenState));
        };
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
    }, details::_CancellationTokenState::_None());

    return _ReturnTask;
}

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</c></para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator||(const task<_ReturnType> & _Lhs, const task<std::vector<_ReturnType>> & _Rhs)
{
    return _Rhs || _Lhs;
}

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</c></para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
inline task<void> operator||(const task<void> & _Lhs, const task<void> & _Rhs)
{
    auto _PParam = new details::_RunAnyParam<std::pair<details::_Unit_type, details::_CancellationTokenState *>>();

    task<std::pair<details::_Unit_type, details::_CancellationTokenState *>> _Any_task_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
    // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called,
    // So that _PParam can be used before it getting deleted.
    auto _ReturnTask = _Any_task_completed._Then([=](std::pair<details::_Unit_type, details::_CancellationTokenState *> _Ret) { 
        _ASSERTE(_Ret.second);
        details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _Ret.second);
    }, nullptr);

    if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware())
    {
        _ReturnTask._SetAsync();
    }

    _PParam->_M_numTasks = 2;
    auto _Continuation = [_PParam](task<void> _ResultTask) mutable {
        //  Dev10 compiler needs this.
        auto _PParam1 = _PParam;
        auto _Func = [&_ResultTask, _PParam1]() {
            _PParam1->_M_Completed.set(std::make_pair(details::_Unit_type(), _ResultTask._GetImpl()->_M_pTokenState));
        };
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
    };

    _Lhs._Then(_Continuation, details::_CancellationTokenState::_None());
    _Rhs._Then(_Continuation, details::_CancellationTokenState::_None());

    return _ReturnTask;
}

template<typename _Ty>
task<_Ty> task_from_result(_Ty _Param, const task_options& _TaskOptions = task_options())
{
    task_completion_event<_Ty> _Tce;
    _Tce.set(_Param);
    return create_task(_Tce, _TaskOptions);
}

// Work around VS 2010 compiler bug
#if _MSC_VER == 1600
inline task<bool> task_from_result(bool _Param)
{
    task_completion_event<bool> _Tce;
    _Tce.set(_Param);
    return create_task(_Tce, task_options());
}
#endif
inline task<void> task_from_result(const task_options& _TaskOptions = task_options())
{
    task_completion_event<void> _Tce;
    _Tce.set();
    return create_task(_Tce, _TaskOptions);
}

template<typename _TaskType, typename _ExType>
task<_TaskType> task_from_exception(_ExType _Exception, const task_options& _TaskOptions = task_options())
{
    task_completion_event<_TaskType> _Tce;
    _Tce.set_exception(_Exception);
    return create_task(_Tce, _TaskOptions);
}

namespace details
{
    /// <summary>
    /// A convenient extension to Concurrency: loop until a condition is no longer met
    /// </summary>
    /// <param name="func">
    ///   A function representing the body of the loop. It will be invoked at least once and 
    ///   then repetitively as long as it returns true.
    /// </param>
    inline
    task<bool> do_while(std::function<task<bool>(void)> func)
    {
        task<bool> first = func();
        return first.then([=](bool guard) -> task<bool> {
            if (guard)
                return do_while(func);
            else
                return first;
            });
    }

} // namespace details

} // namespace Concurrency

#pragma pop_macro("new")

#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#pragma pack(pop)

#endif // (defined(_MSC_VER) && (_MSC_VER >= 1800))

#ifndef _CONCRT_H
#ifndef _LWRCASE_CNCRRNCY
#define _LWRCASE_CNCRRNCY
// Note to reader: we're using lower-case namespace names everywhere, but the 'Concurrency' namespace
// is capitalized for historical reasons. The alias let's us pretend that style issue doesn't exist.
namespace Concurrency {}
namespace concurrency = Concurrency;
#endif
#endif

#endif // _PPLXTASKS_H