This file is indexed.

/usr/include/cvc3/cnf.h is in libcvc3-dev 2.4.1-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*****************************************************************************/
/*!
 *\file cnf.h
 *\brief Basic classes for reasoning about formulas in CNF
 *
 * Author: Clark Barrett
 *
 * Created: Mon Dec 12 20:32:33 2005
 *
 * <hr>
 *
 * License to use, copy, modify, sell and/or distribute this software
 * and its documentation for any purpose is hereby granted without
 * royalty, subject to the terms and conditions defined in the \ref
 * LICENSE file provided with this distribution.
 * 
 * <hr>
 */
/*****************************************************************************/

#ifndef _cvc3__include__cnf_h_
#define _cvc3__include__cnf_h_

#include <deque>
#include "compat_hash_map.h"
#include "cvc_util.h"
#include "cdo.h"
#include "cdlist.h"
#include "theorem.h"


namespace SAT {

class Var {
  int d_index;
public:
  enum Val { UNKNOWN = -1, FALSE_VAL, TRUE_VAL};
  static Val invertValue(Val);
  Var() : d_index(-1) {}
  Var(int index) :d_index(index) {}
  operator int() { return d_index; }
  bool isNull() const { return d_index == -1; }
  void reset() { d_index = -1; }
  int getIndex() const { return d_index; }
  bool isVar() const { return d_index > 0; }
  bool operator==(const Var& var) const { return (d_index == var.d_index); }
};
inline Var::Val Var::invertValue(Var::Val v)
{ return v == Var::UNKNOWN ? Var::UNKNOWN : Var::Val(1-v); }

class Lit {
  int d_index;
  static Lit mkLit(int index) { Lit l; l.d_index = index; return l; }
public:
  Lit() : d_index(0) {}
  explicit Lit(Var v, bool positive=true) {
    if (v.isNull()) d_index = 0;
    else d_index = positive ? v+1 : -v-1;
  }
  static Lit getTrue() { return mkLit(1); }
  static Lit getFalse() { return mkLit(-1); }

  bool isNull() const { return d_index == 0; }
  bool isPositive() const { return d_index > 1; }
  bool isInverted() const { return d_index < -1; }
  bool isFalse() const { return d_index == -1; }
  bool isTrue() const { return d_index == 1; }
  bool isVar() const { return abs(d_index) > 1; }
  int getID() const { return d_index; }
  Var getVar() const {
    DebugAssert(isVar(),"Bad call to Lit::getVar");
    return abs(d_index)-1;
  }
  void reset() { d_index = 0; }
  friend Lit operator!(const Lit& lit) { return mkLit(-lit.d_index); }
};

class Clause {
  int d_satisfied:1;
  int d_unit:1;
  std::vector<Lit> d_lits; 
  CVC3::Theorem d_reason; //the theorem for the clause, used in proofs. by yeting

 public:

  Clause(): d_satisfied(0), d_unit(0) { };
    
  Clause(const Clause& clause)
    : d_satisfied(clause.d_satisfied), d_unit(clause.d_unit),
      d_lits(clause.d_lits), d_reason(clause.d_reason) { };

  typedef std::vector<Lit>::const_iterator const_iterator;
  const_iterator begin() const { return d_lits.begin(); }
  const_iterator end() const { return d_lits.end(); }

  void clear() { d_satisfied = d_unit = 0; d_lits.clear(); }
  unsigned size() const { return d_lits.size(); }
  void addLiteral(Lit l) { if (!d_satisfied) d_lits.push_back(l); }
  unsigned getMaxVar() const;
  bool isSatisfied() const { return d_satisfied != 0; }
  bool isUnit() const { return d_unit != 0; }
  bool isNull() const { return d_lits.size() == 0; }
  void setSatisfied() { d_satisfied = 1; }
  void setUnit() { d_unit = 1; }
  void print() const;
  void setClauseTheorem(CVC3::Theorem thm){ d_reason = thm;}

  CVC3::Theorem getClauseTheorem() const { return d_reason;}
};


class CNF_Formula {
protected:
  Clause* d_current;

  virtual void setNumVars(unsigned numVars) = 0;
  void copy(const CNF_Formula& cnf);

public:
  CNF_Formula() : d_current(NULL) {}
  virtual ~CNF_Formula() {}

  typedef std::deque<Clause>::const_iterator const_iterator;

  virtual bool empty() const = 0;
  virtual const Clause& operator[](int i) const = 0;
  virtual const_iterator begin() const = 0;
  virtual const_iterator end() const = 0;
  virtual unsigned numVars() const = 0;
  virtual unsigned numClauses() const = 0;
  virtual void newClause() = 0;
  virtual void registerUnit() = 0;

  void addLiteral(Lit l, bool invert=false)
    { if (l.isVar() && unsigned(l.getVar()) > numVars())
        setNumVars(l.getVar());
      d_current->addLiteral(invert ? !l : l); }
  Clause& getCurrentClause() { return *d_current; }
  void print() const;
  const CNF_Formula& operator+=(const CNF_Formula& cnf);
  const CNF_Formula& operator+=(const Clause& c);
};


class CNF_Formula_Impl :public CNF_Formula {
  std::hash_map<int, bool> d_lits;
  std::deque<Clause> d_formula;
  unsigned d_numVars;
private:
  void setNumVars(unsigned numVars) { d_numVars = numVars; }
public:
  CNF_Formula_Impl() : CNF_Formula(), d_numVars(0) {}
  CNF_Formula_Impl(const CNF_Formula& cnf) : CNF_Formula() { copy(cnf); }
  ~CNF_Formula_Impl() {};

  bool empty() const { return d_formula.empty(); }
  const Clause& operator[](int i) const { return d_formula[i]; }
  const_iterator begin() const { return d_formula.begin(); }
  const_iterator end() const { return d_formula.end(); }
  unsigned numVars() const { return d_numVars; }
  unsigned numClauses() const { return d_formula.size(); }
  void deleteLast() { DebugAssert(d_formula.size() > 0, "size == 0"); d_formula.pop_back(); }
  void newClause();
  void registerUnit();

  void simplify();
  void reset();
};


class CD_CNF_Formula :public CNF_Formula {
  CVC3::CDList<Clause> d_formula;
  CVC3::CDO<unsigned> d_numVars;
private:
  void setNumVars(unsigned numVars) { d_numVars = numVars; }
public:
  CD_CNF_Formula(CVC3::Context* context)
    : CNF_Formula(), d_formula(context), d_numVars(context, 0, 0) {}
  ~CD_CNF_Formula() {}

  bool empty() const { return d_formula.empty(); }
  const Clause& operator[](int i) const { return d_formula[i]; }
  const_iterator begin() const { return d_formula.begin(); }
  const_iterator end() const { return d_formula.end(); }
  unsigned numVars() const { return d_numVars.get(); }
  unsigned numClauses() const { return d_formula.size(); }
  void deleteLast() { d_formula.pop_back(); }

  void newClause();
  void registerUnit();
};

}

#endif