/usr/include/dune/grid-glue/merging/standardmerge.hh is in libdune-grid-glue-dev 2.4.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
/**
* @file
* \brief Common base class for many merger implementations: produce pairs of entities that _may_ intersect
*/
#ifndef DUNE_GRIDGLUE_MERGING_STANDARDMERGE_HH
#define DUNE_GRIDGLUE_MERGING_STANDARDMERGE_HH
#include <iostream>
#include <iomanip>
#include <vector>
#include <stack>
#include <set>
#include <utility>
#include <map>
#include <memory>
#include <algorithm>
#include <dune/common/fvector.hh>
#include <dune/common/bitsetvector.hh>
#include <dune/common/stdstreams.hh>
#include <dune/common/timer.hh>
#include <dune/common/version.hh>
#include <dune/geometry/referenceelements.hh>
#include <dune/grid/common/grid.hh>
#include <dune/grid-glue/merging/merger.hh>
#include <dune/grid-glue/merging/computeintersection.hh>
namespace Dune {
namespace GridGlue {
/** \brief Common base class for many merger implementations: produce pairs of entities that _may_ intersect
Many merger algorithms consist of two parts: on the one hand there is a mechanism that produces pairs of
elements that may intersect. On the other hand there is an algorithm that computes the intersection of two
given elements. For the pairs-producing algorithm there appears to be a canonical choice, namely the algorithm
by Gander and Japhet described in 'An Algorithm for Non-Matching Grid Projections with Linear Complexity,
M.J. Gander and C. Japhet, Domain Decomposition Methods in Science and Engineering XVIII,
pp. 185--192, Springer-Verlag, 2009.' This class implements this algorithm, calling a pure virtual function
computeIntersection() to compute the intersection between two elements. Actual merger implementations
can derive from this class and only implement computeIntersection().
\tparam T The type used for coordinates (assumed to be the same for both grids)
\tparam grid1Dim Dimension of the grid1 grid
\tparam grid2Dim Dimension of the grid2 grid
\tparam dimworld Dimension of the world space where the coupling takes place
*/
template<class T, int grid1Dim, int grid2Dim, int dimworld>
class StandardMerge
: public Merger<T,grid1Dim,grid2Dim,dimworld>
{
public:
/* E X P O R T E D T Y P E S A N D C O N S T A N T S */
/// @brief the numeric type used in this interface
typedef T ctype;
/// @brief Type used for local coordinates on the grid1 side
typedef typename Merger<T,grid1Dim,grid2Dim,dimworld>::Grid1Coords Grid1Coords;
/// @brief Type used for local coordinates on the grid2 side
typedef typename Merger<T,grid1Dim,grid2Dim,dimworld>::Grid2Coords Grid2Coords;
/// @brief the coordinate type used in this interface
typedef Dune::FieldVector<T, dimworld> WorldCoords;
protected:
bool valid;
StandardMerge() : valid(false) {}
struct RemoteSimplicialIntersection
{
/** \brief Dimension of this intersection */
enum {intersectionDim = (grid1Dim<grid2Dim) ? grid1Dim : grid2Dim};
/** \brief Number of vertices of the intersection (it's a simplex) */
enum {nVertices = intersectionDim + 1};
/** \brief Default constructor */
RemoteSimplicialIntersection()
{
grid1Entities_.resize(1);
grid2Entities_.resize(1);
grid1Local_.resize(1);
grid2Local_.resize(1);
}
/** \brief Constructor for two given entity indices */
RemoteSimplicialIntersection(int grid1Entity, int grid2Entity)
{
grid1Entities_.resize(1);
grid2Entities_.resize(1);
grid1Local_.resize(1);
grid2Local_.resize(1);
grid1Entities_[0] = grid1Entity;
grid2Entities_[0] = grid2Entity;
}
// Local coordinates in the grid1 entity
std::vector<std::array<Dune::FieldVector<T,grid1Dim>, nVertices> > grid1Local_;
// Local coordinates in the grid2 entity
std::vector<std::array<Dune::FieldVector<T,grid2Dim>, nVertices> > grid2Local_;
//
std::vector<unsigned int> grid1Entities_;
std::vector<unsigned int> grid2Entities_;
};
/** \brief Compute the intersection between two overlapping elements
The result is a set of simplices stored in the vector intersections.
*/
virtual void computeIntersections(const Dune::GeometryType& grid1ElementType,
const std::vector<Dune::FieldVector<T,dimworld> >& grid1ElementCorners,
std::bitset<(1<<grid1Dim)>& neighborIntersects1,
unsigned int grid1Index,
const Dune::GeometryType& grid2ElementType,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2ElementCorners,
std::bitset<(1<<grid2Dim)>& neighborIntersects2,
unsigned int grid2Index,
std::vector<RemoteSimplicialIntersection>& intersections) = 0;
/** \brief Compute the intersection between two overlapping elements
* \return true if at least one intersection point was found
*/
bool computeIntersection(unsigned int candidate0, unsigned int candidate1,
const std::vector<Dune::FieldVector<T,dimworld> >& grid1Coords,
const std::vector<Dune::GeometryType>& grid1_element_types,
std::bitset<(1<<grid1Dim)>& neighborIntersects1,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2Coords,
const std::vector<Dune::GeometryType>& grid2_element_types,
std::bitset<(1<<grid2Dim)>& neighborIntersects2,
bool insert = true);
/* M E M B E R V A R I A B L E S */
/** \brief The computed intersections */
std::vector<RemoteSimplicialIntersection> intersections_;
/** \brief Temporary internal data */
std::vector<std::vector<unsigned int> > grid1ElementCorners_;
std::vector<std::vector<unsigned int> > grid2ElementCorners_;
std::vector<std::vector<int> > elementNeighbors1_;
std::vector<std::vector<int> > elementNeighbors2_;
public:
/* C O N C E P T I M P L E M E N T I N G I N T E R F A C E */
/**
* @copydoc Merger<T,grid1Dim,grid2Dim,dimworld>::build
*/
virtual void build(const std::vector<Dune::FieldVector<T,dimworld> >& grid1_Coords,
const std::vector<unsigned int>& grid1_elements,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2_coords,
const std::vector<unsigned int>& grid2_elements,
const std::vector<Dune::GeometryType>& grid2_element_types
);
/* Q U E S T I O N I N G T H E M E R G E D G R I D */
/// @brief get the number of simplices in the merged grid
/// The indices are then in 0..nSimplices()-1
unsigned int nSimplices() const;
void clear()
{
// Delete old internal data, from a possible previous run
purge(intersections_);
purge(grid1ElementCorners_);
purge(grid2ElementCorners_);
valid = false;
}
void enableFallback(bool fallback)
{
m_enableFallback = fallback;
}
void enableBruteForce(bool bruteForce)
{
m_enableBruteForce = bruteForce;
}
private:
/**
* Enable fallback in case the advancing-front algorithm does not find an intersection.
*/
bool m_enableFallback = false;
/**
* Enable brute force implementation instead of advancing-front algorithm.
*/
bool m_enableBruteForce = false;
/** clear arbitrary containers */
template<typename V>
static void purge(V & v)
{
v.clear();
V v2(v);
v.swap(v2);
}
/* M A P P I N G O N I N D E X B A S I S */
/**
* @brief get number of grid1 parents to the intersection idx
* @param idx index of the merged grid simplex
* @return amount of parent simplices
*/
unsigned int grid1Parents(unsigned int idx) const;
/**
* @brief get number of grid2 parents to the intersection idx
* @param idx index of the merged grid simplex
* @return amount of parent simplices
*/
unsigned int grid2Parents(unsigned int idx) const;
/**
* @brief get index of grid1 parent simplex for given merged grid simplex
* @param idx index of the merged grid simplex
* @return index of the grid1 parent simplex
*/
unsigned int grid1Parent(unsigned int idx, unsigned int parId = 0) const;
/**
* @brief get index of grid2 parent simplex for given merged grid simplex
* @param idx index of the merged grid simplex
* @return index of the grid2 parent simplex
*/
unsigned int grid2Parent(unsigned int idx, unsigned int parId = 0) const;
/* G E O M E T R I C A L I N F O R M A T I O N */
/**
* @brief get the grid1 parent's simplex local coordinates for a particular merged grid simplex corner
* (parent's index can be obtained via "grid1Parent")
* @param idx the index of the merged grid simplex
* @param corner the index of the simplex' corner
* @return local coordinates in parent grid1 simplex
*/
Grid1Coords grid1ParentLocal(unsigned int idx, unsigned int corner, unsigned int parId = 0) const;
/**
* @brief get the grid2 parent's simplex local coordinates for a particular merged grid simplex corner
* (parent's index can be obtained via "grid2Parent")
* @param idx the index of the merged grid simplex
* @param corner the index of the simplex' corner
* @return local coordinates in parent grid2 simplex
*/
Grid2Coords grid2ParentLocal(unsigned int idx, unsigned int corner, unsigned int parId = 0) const;
/**
* Do a brute-force search to find one pair of intersecting elements
* to start or continue the advancing-front type algorithm.
*/
void generateSeed(std::vector<int>& seeds,
Dune::BitSetVector<1>& isHandled2,
std::stack<unsigned>& candidates2,
const std::vector<Dune::FieldVector<T, dimworld> >& grid1Coords,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T, dimworld> >& grid2Coords,
const std::vector<Dune::GeometryType>& grid2_element_types);
/**
* Insert intersections into this->intersection_ and return index
*/
int insertIntersections(unsigned int candidate1, unsigned int candidate2,std::vector<RemoteSimplicialIntersection>& intersections);
/**
* Find a grid2 element intersecting the candidate1 grid1 element by brute force search
*/
int bruteForceSearch(int candidate1,
const std::vector<Dune::FieldVector<T,dimworld> >& grid1Coords,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2Coords,
const std::vector<Dune::GeometryType>& grid2_element_types);
/**
* Get the index of the intersection in intersections_ (= size if it is a new intersection)
*/
std::pair<bool, unsigned int>
intersectionIndex(unsigned int grid1Index, unsigned int grid2Index,
RemoteSimplicialIntersection& intersection);
/**
* get the neighbor relations between the given elements
*/
template <int gridDim>
void computeNeighborsPerElement(const std::vector<Dune::GeometryType>& gridElementTypes,
const std::vector<std::vector<unsigned int> >& gridElementCorners,
std::vector<std::vector<int> >& elementNeighbors);
void buildAdvancingFront(
const std::vector<Dune::FieldVector<T,dimworld> >& grid1_Coords,
const std::vector<unsigned int>& grid1_elements,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2_coords,
const std::vector<unsigned int>& grid2_elements,
const std::vector<Dune::GeometryType>& grid2_element_types
);
void buildBruteForce(
const std::vector<Dune::FieldVector<T,dimworld> >& grid1_Coords,
const std::vector<unsigned int>& grid1_elements,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2_coords,
const std::vector<unsigned int>& grid2_elements,
const std::vector<Dune::GeometryType>& grid2_element_types
);
};
/* IMPLEMENTATION */
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
bool StandardMerge<T,grid1Dim,grid2Dim,dimworld>::computeIntersection(unsigned int candidate0, unsigned int candidate1,
const std::vector<Dune::FieldVector<T,dimworld> >& grid1Coords,
const std::vector<Dune::GeometryType>& grid1_element_types,
std::bitset<(1<<grid1Dim)>& neighborIntersects1,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2Coords,
const std::vector<Dune::GeometryType>& grid2_element_types,
std::bitset<(1<<grid2Dim)>& neighborIntersects2,
bool insert)
{
// Select vertices of the grid1 element
int grid1NumVertices = grid1ElementCorners_[candidate0].size();
std::vector<Dune::FieldVector<T,dimworld> > grid1ElementCorners(grid1NumVertices);
for (int i=0; i<grid1NumVertices; i++)
grid1ElementCorners[i] = grid1Coords[grid1ElementCorners_[candidate0][i]];
// Select vertices of the grid2 element
int grid2NumVertices = grid2ElementCorners_[candidate1].size();
std::vector<Dune::FieldVector<T,dimworld> > grid2ElementCorners(grid2NumVertices);
for (int i=0; i<grid2NumVertices; i++)
grid2ElementCorners[i] = grid2Coords[grid2ElementCorners_[candidate1][i]];
// ///////////////////////////////////////////////////////
// Compute the intersection between the two elements
// ///////////////////////////////////////////////////////
std::vector<RemoteSimplicialIntersection> intersections(0);
// compute the intersections
computeIntersections(grid1_element_types[candidate0], grid1ElementCorners,
neighborIntersects1, candidate0,
grid2_element_types[candidate1], grid2ElementCorners,
neighborIntersects2, candidate1,
intersections);
// insert intersections if needed
if(insert && intersections.size() > 0)
insertIntersections(candidate0,candidate1,intersections);
// Have we found an intersection?
return (intersections.size() > 0 || neighborIntersects1.any() || neighborIntersects2.any());
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
int StandardMerge<T,grid1Dim,grid2Dim,dimworld>::bruteForceSearch(int candidate1,
const std::vector<Dune::FieldVector<T,dimworld> >& grid1Coords,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2Coords,
const std::vector<Dune::GeometryType>& grid2_element_types)
{
std::bitset<(1<<grid1Dim)> neighborIntersects1;
std::bitset<(1<<grid2Dim)> neighborIntersects2;
for (std::size_t i=0; i<grid1_element_types.size(); i++) {
bool intersectionFound = computeIntersection(i, candidate1,
grid1Coords, grid1_element_types, neighborIntersects1,
grid2Coords, grid2_element_types, neighborIntersects2,
false);
// if there is an intersection, i is our new seed candidate on the grid1 side
if (intersectionFound)
return i;
}
return -1;
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
template<int gridDim>
void StandardMerge<T,grid1Dim,grid2Dim,dimworld>::
computeNeighborsPerElement(const std::vector<Dune::GeometryType>& gridElementTypes,
const std::vector<std::vector<unsigned int> >& gridElementCorners,
std::vector<std::vector<int> >& elementNeighbors)
{
typedef std::vector<unsigned int> FaceType;
typedef std::map<FaceType, std::pair<unsigned int, unsigned int> > FaceSetType;
///////////////////////////////////////////////////////////////////////////////////////
// First: grid 1
///////////////////////////////////////////////////////////////////////////////////////
FaceSetType faces;
elementNeighbors.resize(gridElementTypes.size());
for (size_t i=0; i<gridElementTypes.size(); i++)
#if DUNE_VERSION_NEWER(DUNE_GEOMETRY,2,3)
elementNeighbors[i].resize(Dune::ReferenceElements<T,gridDim>::general(gridElementTypes[i]).size(1), -1);
#else
elementNeighbors[i].resize(Dune::GenericReferenceElements<T,gridDim>::general(gridElementTypes[i]).size(1), -1);
#endif
for (size_t i=0; i<gridElementTypes.size(); i++) { //iterate over all elements
#if DUNE_VERSION_NEWER(DUNE_GEOMETRY,2,3)
const Dune::ReferenceElement<T,gridDim>& refElement = Dune::ReferenceElements<T,gridDim>::general(gridElementTypes[i]);
#else
const Dune::GenericReferenceElement<T,gridDim>& refElement = Dune::GenericReferenceElements<T,gridDim>::general(gridElementTypes[i]);
#endif
for (size_t j=0; j<(size_t)refElement.size(1); j++) { // iterate over all faces of the element
FaceType face;
// extract element face
for (size_t k=0; k<(size_t)refElement.size(j,1,gridDim); k++)
face.push_back(gridElementCorners[i][refElement.subEntity(j,1,k,gridDim)]);
// sort the face vertices to get rid of twists and other permutations
std::sort(face.begin(), face.end());
typename FaceSetType::iterator faceHandle = faces.find(face);
if (faceHandle == faces.end()) {
// face has not been visited before
faces.insert(std::make_pair(face, std::make_pair(i,j)));
} else {
// face has been visited before: store the mutual neighbor information
elementNeighbors[i][j] = faceHandle->second.first;
elementNeighbors[faceHandle->second.first][faceHandle->second.second] = i;
faces.erase(faceHandle);
}
}
}
}
// /////////////////////////////////////////////////////////////////////
// Compute the intersection of all pairs of elements
// Linear algorithm by Gander and Japhet, Proc. of DD18
// /////////////////////////////////////////////////////////////////////
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
void StandardMerge<T,grid1Dim,grid2Dim,dimworld>::build(const std::vector<Dune::FieldVector<T,dimworld> >& grid1Coords,
const std::vector<unsigned int>& grid1_elements,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2Coords,
const std::vector<unsigned int>& grid2_elements,
const std::vector<Dune::GeometryType>& grid2_element_types
)
{
std::cout << "StandardMerge building merged grid..." << std::endl;
Dune::Timer watch;
clear();
// clear global intersection list
intersections_.clear();
this->counter = 0;
// /////////////////////////////////////////////////////////////////////
// Copy element corners into a data structure with block-structure.
// This is not as efficient but a lot easier to use.
// We may think about efficiency later.
// /////////////////////////////////////////////////////////////////////
// first the grid1 side
grid1ElementCorners_.resize(grid1_element_types.size());
unsigned int grid1CornerCounter = 0;
for (std::size_t i=0; i<grid1_element_types.size(); i++) {
// Select vertices of the grid1 element
#if DUNE_VERSION_NEWER(DUNE_GEOMETRY,2,3)
int numVertices = Dune::ReferenceElements<T,grid1Dim>::general(grid1_element_types[i]).size(grid1Dim);
#else
int numVertices = Dune::GenericReferenceElements<T,grid1Dim>::general(grid1_element_types[i]).size(grid1Dim);
#endif
grid1ElementCorners_[i].resize(numVertices);
for (int j=0; j<numVertices; j++)
grid1ElementCorners_[i][j] = grid1_elements[grid1CornerCounter++];
}
// then the grid2 side
grid2ElementCorners_.resize(grid2_element_types.size());
unsigned int grid2CornerCounter = 0;
for (std::size_t i=0; i<grid2_element_types.size(); i++) {
// Select vertices of the grid2 element
#if DUNE_VERSION_NEWER(DUNE_GEOMETRY,2,3)
int numVertices = Dune::ReferenceElements<T,grid2Dim>::general(grid2_element_types[i]).size(grid2Dim);
#else
int numVertices = Dune::GenericReferenceElements<T,grid2Dim>::general(grid2_element_types[i]).size(grid2Dim);
#endif
grid2ElementCorners_[i].resize(numVertices);
for (int j=0; j<numVertices; j++)
grid2ElementCorners_[i][j] = grid2_elements[grid2CornerCounter++];
}
////////////////////////////////////////////////////////////////////////
// Compute the face neighbors for each element
////////////////////////////////////////////////////////////////////////
computeNeighborsPerElement<grid1Dim>(grid1_element_types, grid1ElementCorners_, elementNeighbors1_);
computeNeighborsPerElement<grid2Dim>(grid2_element_types, grid2ElementCorners_, elementNeighbors2_);
std::cout << "setup took " << watch.elapsed() << " seconds." << std::endl;
if (m_enableBruteForce)
buildBruteForce(grid1Coords, grid1_elements, grid1_element_types, grid2Coords, grid2_elements, grid2_element_types);
else
buildAdvancingFront(grid1Coords, grid1_elements, grid1_element_types, grid2Coords, grid2_elements, grid2_element_types);
valid = true;
std::cout << "intersection construction took " << watch.elapsed() << " seconds." << std::endl;
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
void StandardMerge<T,grid1Dim,grid2Dim,dimworld>::buildAdvancingFront(
const std::vector<Dune::FieldVector<T,dimworld> >& grid1Coords,
const std::vector<unsigned int>& grid1_elements,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2Coords,
const std::vector<unsigned int>& grid2_elements,
const std::vector<Dune::GeometryType>& grid2_element_types
)
{
////////////////////////////////////////////////////////////////////////
// Data structures for the advancing-front algorithm
////////////////////////////////////////////////////////////////////////
std::stack<unsigned int> candidates1;
std::stack<unsigned int> candidates2;
std::vector<int> seeds(grid2_element_types.size(), -1);
// /////////////////////////////////////////////////////////////////////
// Do a brute-force search to find one pair of intersecting elements
// to start the advancing-front type algorithm with.
// /////////////////////////////////////////////////////////////////////
// Set flag if element has been handled
Dune::BitSetVector<1> isHandled2(grid2_element_types.size());
// Set flag if the element has been entered in the queue
Dune::BitSetVector<1> isCandidate2(grid2_element_types.size());
generateSeed(seeds, isHandled2, candidates2, grid1Coords, grid1_element_types, grid2Coords, grid2_element_types);
// /////////////////////////////////////////////////////////////////////
// Main loop
// /////////////////////////////////////////////////////////////////////
std::set<unsigned int> isHandled1;
std::set<unsigned int> isCandidate1;
while (!candidates2.empty()) {
// Get the next element on the grid2 side
unsigned int currentCandidate2 = candidates2.top();
int seed = seeds[currentCandidate2];
assert(seed >= 0);
candidates2.pop();
isHandled2[currentCandidate2] = true;
// Start advancing front algorithm on the grid1 side from the 'seed' element that
// we stored along with the current grid2 element
candidates1.push(seed);
isHandled1.clear();
isCandidate1.clear();
while (!candidates1.empty()) {
unsigned int currentCandidate1 = candidates1.top();
candidates1.pop();
isHandled1.insert(currentCandidate1);
// Test whether there is an intersection between currentCandidate0 and currentCandidate1
std::bitset<(1<<grid1Dim)> neighborIntersects1;
std::bitset<(1<<grid2Dim)> neighborIntersects2;
bool intersectionFound = computeIntersection(currentCandidate1, currentCandidate2,
grid1Coords,grid1_element_types, neighborIntersects1,
grid2Coords,grid2_element_types, neighborIntersects2);
for (size_t i=0; i<neighborIntersects2.size(); i++)
if (neighborIntersects2[i] && elementNeighbors2_[currentCandidate2][i] != -1)
seeds[elementNeighbors2_[currentCandidate2][i]] = currentCandidate1;
// add neighbors of candidate0 to the list of elements to be checked
if (intersectionFound) {
for (size_t i=0; i<elementNeighbors1_[currentCandidate1].size(); i++) {
int neighbor = elementNeighbors1_[currentCandidate1][i];
if (neighbor == -1) // do nothing at the grid boundary
continue;
if (isHandled1.find(neighbor) == isHandled1.end()
&& isCandidate1.find(neighbor) == isCandidate1.end()) {
candidates1.push(neighbor);
isCandidate1.insert(neighbor);
}
}
}
}
// We have now found all intersections of elements in the grid1 side with currentCandidate2
// Now we add all neighbors of currentCandidate2 that have not been treated yet as new
// candidates.
// Do we have an unhandled neighbor with a seed?
bool seedFound = !candidates2.empty();
for (size_t i=0; i<elementNeighbors2_[currentCandidate2].size(); i++) {
int neighbor = elementNeighbors2_[currentCandidate2][i];
if (neighbor == -1) // do nothing at the grid boundary
continue;
// Add all unhandled intersecting neighbors to the queue
if (!isHandled2[neighbor][0] && !isCandidate2[neighbor][0] && seeds[neighbor]>-1) {
isCandidate2[neighbor][0] = true;
candidates2.push(neighbor);
seedFound = true;
}
}
if (seedFound || !m_enableFallback)
continue;
// There is no neighbor with a seed, so we need to be a bit more aggressive...
// get all neighbors of currentCandidate2, but not currentCandidate2 itself
for (size_t i=0; i<elementNeighbors2_[currentCandidate2].size(); i++) {
int neighbor = elementNeighbors2_[currentCandidate2][i];
if (neighbor == -1) // do nothing at the grid boundary
continue;
if (!isHandled2[neighbor][0] && !isCandidate2[neighbor][0]) {
// Get a seed element for the new grid2 element
// Look for an element on the grid1 side that intersects the new grid2 element.
int seed = -1;
// Look among the ones that have been tested during the last iteration.
for (typename std::set<unsigned int>::iterator seedIt = isHandled1.begin();
seedIt != isHandled1.end(); ++seedIt) {
std::bitset<(1<<grid1Dim)> neighborIntersects1;
std::bitset<(1<<grid2Dim)> neighborIntersects2;
bool intersectionFound = computeIntersection(*seedIt, neighbor,
grid1Coords, grid1_element_types, neighborIntersects1,
grid2Coords, grid2_element_types, neighborIntersects2,
false);
// if the intersection is nonempty, *seedIt is our new seed candidate on the grid1 side
if (intersectionFound) {
seed = *seedIt;
Dune::dwarn << "Algorithm entered first fallback method and found a new seed in the build algorithm." <<
"Probably, the neighborIntersects bitsets computed in computeIntersection specialization is wrong." << std::endl;
break;
}
}
if (seed < 0) {
// The fast method didn't find a grid1 element that intersects with
// the new grid2 candidate. We have to do a brute-force search.
seed = bruteForceSearch(neighbor,
grid1Coords,grid1_element_types,
grid2Coords,grid2_element_types);
Dune::dwarn << "Algorithm entered second fallback method. This probably should not happen." << std::endl;
}
// We have tried all we could: the candidate is 'handled' now
isCandidate2[neighbor] = true;
// still no seed? Then the new grid2 candidate isn't overlapped by anything
if (seed < 0)
continue;
// we have a seed now
candidates2.push(neighbor);
seeds[neighbor] = seed;
seedFound = true;
}
}
/* Do a brute-force search if there is still no seed:
* There might still be a disconnected region out there.
*/
if (!seedFound && candidates2.empty()) {
generateSeed(seeds, isHandled2, candidates2, grid1Coords, grid1_element_types, grid2Coords, grid2_element_types);
}
}
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
void StandardMerge<T,grid1Dim,grid2Dim,dimworld>::buildBruteForce(
const std::vector<Dune::FieldVector<T,dimworld> >& grid1Coords,
const std::vector<unsigned int>& grid1_elements,
const std::vector<Dune::GeometryType>& grid1_element_types,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2Coords,
const std::vector<unsigned int>& grid2_elements,
const std::vector<Dune::GeometryType>& grid2_element_types
)
{
std::bitset<(1<<grid1Dim)> neighborIntersects1;
std::bitset<(1<<grid2Dim)> neighborIntersects2;
for (unsigned i = 0; i < grid1_element_types.size(); ++i) {
for (unsigned j = 0; j < grid2_element_types.size(); ++j) {
(void) computeIntersection(i, j,
grid1Coords, grid1_element_types, neighborIntersects1,
grid2Coords, grid2_element_types, neighborIntersects2);
}
}
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
inline unsigned int StandardMerge<T,grid1Dim,grid2Dim,dimworld>::nSimplices() const
{
assert(valid);
return intersections_.size();
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
inline unsigned int StandardMerge<T,grid1Dim,grid2Dim,dimworld>::grid1Parents(unsigned int idx) const
{
assert(valid);
return (intersections_[idx].grid1Entities_).size();
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
inline unsigned int StandardMerge<T,grid1Dim,grid2Dim,dimworld>::grid2Parents(unsigned int idx) const
{
assert(valid);
return (intersections_[idx].grid2Entities_).size();
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
inline unsigned int StandardMerge<T,grid1Dim,grid2Dim,dimworld>::grid1Parent(unsigned int idx, unsigned int parId) const
{
assert(valid);
return intersections_[idx].grid1Entities_[parId];
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
inline unsigned int StandardMerge<T,grid1Dim,grid2Dim,dimworld>::grid2Parent(unsigned int idx, unsigned int parId) const
{
assert(valid);
return intersections_[idx].grid2Entities_[parId];
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
typename StandardMerge<T,grid1Dim,grid2Dim,dimworld>::Grid1Coords StandardMerge<T,grid1Dim,grid2Dim,dimworld>::grid1ParentLocal(unsigned int idx, unsigned int corner, unsigned int parId) const
{
assert(valid);
return intersections_[idx].grid1Local_[parId][corner];
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
typename StandardMerge<T,grid1Dim,grid2Dim,dimworld>::Grid2Coords StandardMerge<T,grid1Dim,grid2Dim,dimworld>::grid2ParentLocal(unsigned int idx, unsigned int corner, unsigned int parId) const
{
assert(valid);
return intersections_[idx].grid2Local_[parId][corner];
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
void StandardMerge<T,grid1Dim,grid2Dim,dimworld>::generateSeed(std::vector<int>& seeds, Dune::BitSetVector<1>& isHandled2, std::stack<unsigned>& candidates2, const std::vector<Dune::FieldVector<T, dimworld> >& grid1Coords, const std::vector<Dune::GeometryType>& grid1_element_types, const std::vector<Dune::FieldVector<T, dimworld> >& grid2Coords, const std::vector<Dune::GeometryType>& grid2_element_types)
{
for (std::size_t j=0; j<grid2_element_types.size(); j++) {
if (seeds[j] > 0 || isHandled2[j][0])
continue;
int seed = bruteForceSearch(j,grid1Coords,grid1_element_types,grid2Coords,grid2_element_types);
if (seed >= 0) {
candidates2.push(j); // the candidate and a seed for the candidate
seeds[j] = seed;
break;
} else // If the brute force search did not find any intersection we can skip this element
isHandled2[j] = true;
}
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
int StandardMerge<T,grid1Dim,grid2Dim,dimworld>::insertIntersections(unsigned int candidate1, unsigned int candidate2,
std::vector<RemoteSimplicialIntersection>& intersections)
{
typedef typename std::vector<RemoteSimplicialIntersection>::size_type size_t;
int count = 0;
for (size_t i = 0; i < intersections.size(); ++i) {
// get the intersection index of the current intersection from intersections in this->intersections
bool found;
unsigned int index;
std::tie(found, index) = intersectionIndex(candidate1,candidate2,intersections[i]);
if (found && index >= this->intersections_.size()) { //the intersection is not yet contained in this->intersections
this->intersections_.push_back(intersections[i]); // insert
++count;
} else if (found) {
// insert each grid1 element and local representation of intersections[i] with parent candidate1
for (size_t j = 0; j < intersections[i].grid1Entities_.size(); ++j) {
this->intersections_[index].grid1Entities_.push_back(candidate1);
this->intersections_[index].grid1Local_.push_back(intersections[i].grid1Local_[j]);
}
// insert each grid2 element and local representation of intersections[i] with parent candidate2
for (size_t j = 0; j < intersections[i].grid2Entities_.size(); ++j) {
this->intersections_[index].grid2Entities_.push_back(candidate2);
this->intersections_[index].grid2Local_.push_back(intersections[i].grid2Local_[j]);
}
++count;
} else {
Dune::dwarn << "Computed the same intersection twice!" << std::endl;
}
}
return count;
}
template<typename T, int grid1Dim, int grid2Dim, int dimworld>
std::pair<bool, unsigned int>
StandardMerge<T,grid1Dim,grid2Dim,dimworld>::intersectionIndex(unsigned int grid1Index, unsigned int grid2Index,
RemoteSimplicialIntersection& intersection) {
// return index in intersections_ if at least one local representation of a Remote Simplicial Intersection (RSI)
// of intersections_ is equal to the local representation of one element in intersections
std::size_t n_intersections = this->intersections_.size();
if (grid1Dim == grid2Dim)
return {true, n_intersections};
T eps = 1e-10;
for (std::size_t i = 0; i < n_intersections; ++i) {
// compare the local representation of the subelements of the RSI
for (std::size_t ei = 0; ei < this->intersections_[i].grid1Entities_.size(); ++ei) // merger subelement
{
if (this->intersections_[i].grid1Entities_[ei] == grid1Index)
{
for (std::size_t er = 0; er < intersection.grid1Entities_.size(); ++er) // list subelement
{
bool found_all = true;
// compare the local coordinate representations
for (std::size_t ci = 0; ci < this->intersections_[i].grid1Local_[ei].size(); ++ci)
{
Dune::FieldVector<T,grid1Dim> ni = this->intersections_[i].grid1Local_[ei][ci];
bool found_ni = false;
for (std::size_t cr = 0; cr < intersection.grid1Local_[er].size(); ++cr)
{
Dune::FieldVector<T,grid1Dim> nr = intersection.grid1Local_[er][cr];
found_ni = found_ni || ((ni-nr).infinity_norm() < eps);
if (found_ni)
break;
}
found_all = found_all && found_ni;
if (!found_ni)
break;
}
if (found_all && (this->intersections_[i].grid2Entities_[ei] != grid2Index))
return {true, i};
else if (found_all)
return {false, 0};
}
}
}
// compare the local representation of the subelements of the RSI
for (std::size_t ei = 0; ei < this->intersections_[i].grid2Entities_.size(); ++ei) // merger subelement
{
if (this->intersections_[i].grid2Entities_[ei] == grid2Index)
{
for (std::size_t er = 0; er < intersection.grid2Entities_.size(); ++er) // list subelement
{
bool found_all = true;
// compare the local coordinate representations
for (std::size_t ci = 0; ci < this->intersections_[i].grid2Local_[ei].size(); ++ci)
{
Dune::FieldVector<T,grid2Dim> ni = this->intersections_[i].grid2Local_[ei][ci];
bool found_ni = false;
for (std::size_t cr = 0; cr < intersection.grid2Local_[er].size(); ++cr)
{
Dune::FieldVector<T,grid2Dim> nr = intersection.grid2Local_[er][cr];
found_ni = found_ni || ((ni-nr).infinity_norm() < eps);
if (found_ni)
break;
}
found_all = found_all && found_ni;
if (!found_ni)
break;
}
if (found_all && (this->intersections_[i].grid1Entities_[ei] != grid1Index))
return {true, i};
else if (found_all)
return {false, 0};
}
}
}
}
return {true, n_intersections};
}
#define DECL extern
#define STANDARD_MERGE_INSTANTIATE(T,A,B,C) \
DECL template \
void StandardMerge<T,A,B,C>::build(const std::vector<Dune::FieldVector<T,C> >& grid1Coords, \
const std::vector<unsigned int>& grid1_elements, \
const std::vector<Dune::GeometryType>& grid1_element_types, \
const std::vector<Dune::FieldVector<T,C> >& grid2Coords, \
const std::vector<unsigned int>& grid2_elements, \
const std::vector<Dune::GeometryType>& grid2_element_types \
)
STANDARD_MERGE_INSTANTIATE(double,1,1,1);
STANDARD_MERGE_INSTANTIATE(double,2,2,2);
STANDARD_MERGE_INSTANTIATE(double,3,3,3);
#undef STANDARD_MERGE_INSTANTIATE
#undef DECL
} /* namespace GridGlue */
} /* namespace Dune */
#endif // DUNE_GRIDGLUE_MERGING_STANDARDMERGE_HH
|