/usr/include/dune/pdelab/adaptivity/adaptivity.hh is in libdune-pdelab-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_PDELAB_ADAPTIVITY_HH
#define DUNE_PDELAB_ADAPTIVITY_HH
#include<dune/common/exceptions.hh>
#include<limits>
#include<vector>
#include<map>
#include<unordered_map>
#include<dune/common/dynmatrix.hh>
#include<dune/geometry/quadraturerules.hh>
#include<dune/pdelab/gridfunctionspace/genericdatahandle.hh>
#include<dune/pdelab/gridfunctionspace/localfunctionspace.hh>
#include<dune/pdelab/common/function.hh>
// for InterpolateBackendStandard
#include<dune/pdelab/gridfunctionspace/interpolate.hh>
// for intersectionoperator
#include<dune/pdelab/localoperator/defaultimp.hh>
#include<dune/pdelab/localoperator/flags.hh>
#include<dune/grid/io/file/vtk/subsamplingvtkwriter.hh>
namespace Dune {
namespace PDELab {
template<typename GFS>
struct LeafOffsetCache
{
typedef typename GFS::Traits::GridView::template Codim<0>::Entity Cell;
typedef LocalFunctionSpace<GFS> LFS;
// we need an additional entry because we store offsets and we also want the
// offset after the last leaf for size calculations
typedef array<std::size_t,TypeTree::TreeInfo<GFS>::leafCount + 1> LeafOffsets;
const LeafOffsets& operator[](GeometryType gt) const
{
const LeafOffsets& leaf_offsets = _leaf_offset_cache[GlobalGeometryTypeIndex::index(gt)];
// make sure we have data for this geometry type
assert(leaf_offsets.back() > 0);
return leaf_offsets;
}
void update(const Cell& e)
{
LeafOffsets& leaf_offsets = _leaf_offset_cache[GlobalGeometryTypeIndex::index(e.type())];
if (leaf_offsets.back() == 0)
{
_lfs.bind(e);
extract_lfs_leaf_sizes(_lfs,leaf_offsets.begin()+1);
// convert to offsets
std::partial_sum(leaf_offsets.begin(),leaf_offsets.end(),leaf_offsets.begin());
// sanity check
assert(leaf_offsets.back() == _lfs.size());
}
}
explicit LeafOffsetCache(const GFS& gfs)
: _lfs(gfs)
, _leaf_offset_cache(GlobalGeometryTypeIndex::size(Cell::dimension))
{}
LFS _lfs;
std::vector<LeafOffsets> _leaf_offset_cache;
};
namespace {
template<typename MassMatrices,typename Cell>
struct inverse_mass_matrix_calculator
: public TypeTree::TreeVisitor
, public TypeTree::DynamicTraversal
{
static const int dim = Cell::Geometry::mydimension;
typedef std::size_t size_type;
typedef typename MassMatrices::value_type MassMatrix;
typedef typename MassMatrix::field_type DF;
typedef typename Dune::QuadratureRule<DF,dim>::const_iterator QRIterator;
template<typename GFS, typename TreePath>
void leaf(const GFS& gfs, TreePath treePath)
{
auto& fem = gfs.finiteElementMap();
auto& fe = fem.find(_element);
size_type local_size = fe.localBasis().size();
MassMatrix& mass_matrix = _mass_matrices[_leaf_index];
mass_matrix.resize(local_size,local_size);
using Range = typename GFS::Traits::FiniteElementMap::Traits::
FiniteElement::Traits::LocalBasisType::Traits::RangeType;
std::vector<Range> phi;
phi.resize(std::max(phi.size(),local_size));
for (const auto& ip : _quadrature_rule)
{
fe.localBasis().evaluateFunction(ip.position(),phi);
const DF factor = ip.weight();
for (size_type i = 0; i < local_size; ++i)
for (size_type j = 0; j < local_size; ++j)
mass_matrix[i][j] += phi[i] * phi[j] * factor;
}
mass_matrix.invert();
++_leaf_index;
}
inverse_mass_matrix_calculator(MassMatrices& mass_matrices, const Cell& element, size_type intorder)
: _element(element)
, _mass_matrices(mass_matrices)
, _quadrature_rule(QuadratureRules<DF,dim>::rule(element.type(),intorder))
, _leaf_index(0)
{}
const Cell& _element;
MassMatrices& _mass_matrices;
const QuadratureRule<DF,dim>& _quadrature_rule;
size_type _leaf_index;
};
} // anonymous namespace
/*! @class L2Projection
*
* @brief @todo
*
* @tparam GFS Type of ansatz space
* @tparam U Container class for the solution
*/
template<class GFS, class U>
class L2Projection
{
using EntitySet = typename GFS::Traits::EntitySet;
using Element = typename EntitySet::Element;
typedef LocalFunctionSpace<GFS> LFS;
typedef typename U::ElementType DF;
public:
typedef DynamicMatrix<typename U::ElementType> MassMatrix;
typedef std::array<MassMatrix,TypeTree::TreeInfo<GFS>::leafCount> MassMatrices;
/*! @brief The constructor.
*
* @todo Doc params!
*/
explicit L2Projection(const GFS& gfs, int intorder = 2)
: _gfs(gfs)
, _intorder(intorder)
, _inverse_mass_matrices(GlobalGeometryTypeIndex::size(Element::dimension))
{}
/*! @brief Calculate the inverse local mass matrix, used in the local L2 projection
*
* @todo Doc template params
* @todo Doc params
*/
const MassMatrices& inverseMassMatrices(const Element& e)
{
auto gt = e.geometry().type();
auto& inverse_mass_matrices = _inverse_mass_matrices[GlobalGeometryTypeIndex::index(gt)];
// if the matrix isn't empty, it has already been cached
if (inverse_mass_matrices[0].N() > 0)
return inverse_mass_matrices;
inverse_mass_matrix_calculator<MassMatrices,Element> calculate_mass_matrices(
inverse_mass_matrices,
e,
_intorder
);
TypeTree::applyToTree(_gfs,calculate_mass_matrices);
return inverse_mass_matrices;
}
private:
GFS _gfs;
int _intorder;
std::vector<MassMatrices> _inverse_mass_matrices;
};
template<typename GFS, typename DOFVector, typename TransferMap>
struct backup_visitor
: public TypeTree::TreeVisitor
, public TypeTree::DynamicTraversal
{
typedef LocalFunctionSpace<GFS> LFS;
typedef LFSIndexCache<LFS> LFSCache;
typedef Dune::PDELab::LeafOffsetCache<GFS> LeafOffsetCache;
using EntitySet = typename GFS::Traits::EntitySet;
using IDSet = typename EntitySet::Traits::GridView::Grid::LocalIdSet;
using Element = typename EntitySet::Element;
typedef typename Element::Geometry Geometry;
static const int dim = Geometry::mydimension;
typedef typename DOFVector::ElementType RF;
typedef typename TransferMap::mapped_type LocalDOFVector;
typedef L2Projection<typename LFS::Traits::GridFunctionSpace,DOFVector> Projection;
typedef typename Projection::MassMatrices MassMatrices;
typedef typename Projection::MassMatrix MassMatrix;
typedef std::size_t size_type;
using DF = typename EntitySet::Traits::CoordinateField;
template<typename LFSLeaf, typename TreePath>
void leaf(const LFSLeaf& leaf_lfs, TreePath treePath)
{
auto& fem = leaf_lfs.gridFunctionSpace().finiteElementMap();
auto fine_offset = _leaf_offset_cache[_current.type()][_leaf_index];
auto coarse_offset = _leaf_offset_cache[_ancestor.type()][_leaf_index];
using Range = typename LFSLeaf::Traits::GridFunctionSpace::Traits::FiniteElementMap::
Traits::FiniteElement::Traits::LocalBasisType::Traits::RangeType;
auto& inverse_mass_matrix = _projection.inverseMassMatrices(_element)[_leaf_index];
auto coarse_phi = std::vector<Range>{};
auto fine_phi = std::vector<Range>{};
auto fine_geometry = _current.geometry();
auto coarse_geometry = _ancestor.geometry();
// iterate over quadrature points
for (const auto& ip : QuadratureRules<DF,dim>::rule(_current.type(),_int_order))
{
auto coarse_local = coarse_geometry.local(fine_geometry.global(ip.position()));
auto fe = &fem.find(_current);
fe->localBasis().evaluateFunction(ip.position(),fine_phi);
fe = &fem.find(_ancestor);
fe->localBasis().evaluateFunction(coarse_local,coarse_phi);
const DF factor = ip.weight()
* fine_geometry.integrationElement(ip.position())
/ coarse_geometry.integrationElement(coarse_local);
auto val = Range{0.0};
for (size_type i = 0; i < fine_phi.size(); ++i)
{
val.axpy(_u_fine[fine_offset + i],fine_phi[i]);
}
for (size_type i = 0; i < coarse_phi.size(); ++i)
{
auto x = Range{0.0};
for (size_type j = 0; j < inverse_mass_matrix.M(); ++j)
x.axpy(inverse_mass_matrix[i][j],coarse_phi[j]);
(*_u_coarse)[coarse_offset + i] += factor * (x * val);
}
}
++_leaf_index;
}
void operator()(const Element& element)
{
_element = element;
_lfs.bind(_element);
_lfs_cache.update();
_u_view.bind(_lfs_cache);
_u_coarse = &_transfer_map[_id_set.id(_element)];
_u_coarse->resize(_lfs.size());
_u_view.read(*_u_coarse);
_u_view.unbind();
_leaf_offset_cache.update(_element);
size_type max_level = _lfs.gridFunctionSpace().gridView().grid().maxLevel();
_ancestor = _element;
while (_ancestor.mightVanish())
{
// work around UG bug!
if (!_ancestor.hasFather())
break;
_ancestor = _ancestor.father();
_u_coarse = &_transfer_map[_id_set.id(_ancestor)];
// don't project more than once
if (_u_coarse->size() > 0)
continue;
_u_coarse->resize(_leaf_offset_cache[_ancestor.type()].back());
std::fill(_u_coarse->begin(),_u_coarse->end(),RF(0));
for (const auto& child : descendantElements(_ancestor,max_level))
{
// only evaluate on entities with data
if (child.isLeaf())
{
_current = child;
// reset leaf_index for next run over tree
_leaf_index = 0;
// load data
_lfs.bind(_current);
_leaf_offset_cache.update(_current);
_lfs_cache.update();
_u_view.bind(_lfs_cache);
_u_fine.resize(_lfs_cache.size());
_u_view.read(_u_fine);
_u_view.unbind();
// do projection on all leafs
TypeTree::applyToTree(_lfs,*this);
}
}
}
}
backup_visitor(const GFS& gfs,
Projection& projection,
const DOFVector& u,
LeafOffsetCache& leaf_offset_cache,
TransferMap& transfer_map,
std::size_t int_order = 2)
: _lfs(gfs)
, _lfs_cache(_lfs)
, _id_set(gfs.gridView().grid().localIdSet())
, _projection(projection)
, _u_view(u)
, _transfer_map(transfer_map)
, _u_coarse(nullptr)
, _leaf_offset_cache(leaf_offset_cache)
, _int_order(int_order)
, _leaf_index(0)
{}
LFS _lfs;
LFSCache _lfs_cache;
const IDSet& _id_set;
Element _element;
Element _ancestor;
Element _current;
Projection& _projection;
typename DOFVector::template ConstLocalView<LFSCache> _u_view;
TransferMap& _transfer_map;
LocalDOFVector* _u_coarse;
LeafOffsetCache& _leaf_offset_cache;
size_type _int_order;
size_type _leaf_index;
LocalDOFVector _u_fine;
};
template<typename GFS, typename DOFVector, typename CountVector>
struct replay_visitor
: public TypeTree::TreeVisitor
, public TypeTree::DynamicTraversal
{
typedef LocalFunctionSpace<GFS> LFS;
typedef LFSIndexCache<LFS> LFSCache;
typedef Dune::PDELab::LeafOffsetCache<GFS> LeafOffsetCache;
using EntitySet = typename GFS::Traits::EntitySet;
using IDSet = typename EntitySet::Traits::GridView::Grid::LocalIdSet;
using Element = typename EntitySet::Element;
using Geometry = typename Element::Geometry;
typedef typename DOFVector::ElementType RF;
typedef std::vector<RF> LocalDOFVector;
typedef std::vector<typename CountVector::ElementType> LocalCountVector;
typedef std::size_t size_type;
using DF = typename EntitySet::Traits::CoordinateField;
template<typename FiniteElement>
struct coarse_function
{
using Range = typename FiniteElement::Traits::LocalBasisType::Traits::RangeType;
template<typename X, typename Y>
void evaluate(const X& x, Y& y) const
{
_phi.resize(_finite_element.localBasis().size());
_finite_element.localBasis().evaluateFunction(_coarse_geometry.local(_fine_geometry.global(x)),_phi);
y = 0;
for (size_type i = 0; i < _phi.size(); ++i)
y.axpy(_dofs[_offset + i],_phi[i]);
}
coarse_function(const FiniteElement& finite_element, Geometry coarse_geometry, Geometry fine_geometry, const LocalDOFVector& dofs, size_type offset)
: _finite_element(finite_element)
, _coarse_geometry(coarse_geometry)
, _fine_geometry(fine_geometry)
, _dofs(dofs)
, _offset(offset)
{}
const FiniteElement& _finite_element;
Geometry _coarse_geometry;
Geometry _fine_geometry;
const LocalDOFVector& _dofs;
mutable std::vector<Range> _phi;
size_type _offset;
};
template<typename LeafLFS, typename TreePath>
void leaf(const LeafLFS& leaf_lfs, TreePath treePath)
{
using FiniteElement = typename LeafLFS::Traits::FiniteElementType;
auto& fem = leaf_lfs.gridFunctionSpace().finiteElementMap();
auto element_offset = _leaf_offset_cache[_element.type()][_leaf_index];
auto ancestor_offset = _leaf_offset_cache[_ancestor.type()][_leaf_index];
coarse_function<FiniteElement> f(fem.find(_ancestor),_ancestor.geometry(),_element.geometry(),*_u_coarse,ancestor_offset);
auto& fe = fem.find(_element);
_u_tmp.resize(fe.localBasis().size());
std::fill(_u_tmp.begin(),_u_tmp.end(),RF(0.0));
fe.localInterpolation().interpolate(f,_u_tmp);
std::copy(_u_tmp.begin(),_u_tmp.end(),_u_fine.begin() + element_offset);
++_leaf_index;
}
void operator()(const Element& element, const Element& ancestor, const LocalDOFVector& u_coarse)
{
_element = element;
_ancestor = ancestor;
_u_coarse = &u_coarse;
_lfs.bind(_element);
_leaf_offset_cache.update(_element);
_lfs_cache.update();
_u_view.bind(_lfs_cache);
// test identity using ids
if (_id_set.id(element) == _id_set.id(ancestor))
{
// no interpolation necessary, just copy the saved data
_u_view.add(*_u_coarse);
}
else
{
_u_fine.resize(_lfs_cache.size());
std::fill(_u_fine.begin(),_u_fine.end(),RF(0));
_leaf_index = 0;
TypeTree::applyToTree(_lfs,*this);
_u_view.add(_u_fine);
}
_u_view.commit();
_uc_view.bind(_lfs_cache);
_counts.resize(_lfs_cache.size(),1);
_uc_view.add(_counts);
_uc_view.commit();
}
replay_visitor(const GFS& gfs, DOFVector& u, CountVector& uc, LeafOffsetCache& leaf_offset_cache)
: _lfs(gfs)
, _lfs_cache(_lfs)
, _id_set(gfs.entitySet().gridView().grid().localIdSet())
, _u_view(u)
, _uc_view(uc)
, _leaf_offset_cache(leaf_offset_cache)
, _leaf_index(0)
{}
LFS _lfs;
LFSCache _lfs_cache;
const IDSet& _id_set;
Element _element;
Element _ancestor;
typename DOFVector::template LocalView<LFSCache> _u_view;
typename CountVector::template LocalView<LFSCache> _uc_view;
const LocalDOFVector* _u_coarse;
LeafOffsetCache& _leaf_offset_cache;
size_type _leaf_index;
LocalDOFVector _u_fine;
LocalDOFVector _u_tmp;
LocalCountVector _counts;
};
/*! @class GridAdaptor
*
* @brief Class for automatic adaptation of the grid.
*
* The GridAdaptor capsules the act of deciding which Elems to refine and coarsen,
* adapting the grid, and transfering the solution from the old grid to the new one.
* Currrently this only works for scalar solutions.
*
* @tparam Grid Type of the grid we want to adapt
* @tparam GFSU Type of ansatz space, we need to update it after adaptation
* @tparam U Container class of the solution
* @tparam Projection Projection used when Elems vanish
*/
template<class Grid, class GFSU, class U, class Projection>
class GridAdaptor
{
typedef typename Grid::LeafGridView LeafGridView;
typedef typename LeafGridView::template Codim<0>
::template Partition<Dune::Interior_Partition>::Iterator LeafIterator;
typedef typename Grid::template Codim<0>::Entity Element;
typedef typename Grid::LocalIdSet IDSet;
typedef typename IDSet::IdType ID;
public:
typedef std::unordered_map<ID,std::vector<typename U::ElementType> > MapType;
/*! @brief The constructor.
*
* @param gfs The ansatz space, we need to update it
*/
explicit GridAdaptor(const GFSU& gfs)
: _leaf_offset_cache(gfs)
{}
/* @brief @todo
*
* @param[in] u The solution that will be saved
* @param[out] transferMap The map containing the solution during adaptation
*/
void backupData(Grid& grid, GFSU& gfsu, Projection& projection, U& u, MapType& transfer_map)
{
typedef backup_visitor<GFSU,U,MapType> Visitor;
Visitor visitor(gfsu,projection,u,_leaf_offset_cache,transfer_map);
// iterate over all elems
for(const auto& cell : elements(gfsu.entitySet(),Partitions::interior))
visitor(cell);
}
/* @brief @todo
*
* @param[out] u The solution after adaptation
* @param[in] transferMap The map that contains the information for the rebuild of u
*/
void replayData(Grid& grid, GFSU& gfsu, Projection& projection, U& u, const MapType& transfer_map)
{
const IDSet& id_set = grid.localIdSet();
using CountVector = Backend::Vector<GFSU,int>;
CountVector uc(gfsu,0);
typedef replay_visitor<GFSU,U,CountVector> Visitor;
Visitor visitor(gfsu,u,uc,_leaf_offset_cache);
// iterate over all elems
for (const auto& cell : elements(gfsu.entitySet(),Partitions::interior))
{
Element ancestor = cell;
typename MapType::const_iterator map_it;
while ((map_it = transfer_map.find(id_set.id(ancestor))) == transfer_map.end())
{
if (!ancestor.hasFather())
DUNE_THROW(Exception,
"transferMap of GridAdaptor didn't contain ancestor of element with id " << id_set.id(ancestor));
ancestor = ancestor.father();
}
visitor(cell,ancestor,map_it->second);
}
typedef Dune::PDELab::AddDataHandle<GFSU,U> DOFHandle;
DOFHandle addHandle1(gfsu,u);
gfsu.entitySet().gridView().communicate(addHandle1,
Dune::InteriorBorder_InteriorBorder_Interface,Dune::ForwardCommunication);
typedef Dune::PDELab::AddDataHandle<GFSU,CountVector> CountHandle;
CountHandle addHandle2(gfsu,uc);
gfsu.entitySet().gridView().communicate(addHandle2,
Dune::InteriorBorder_InteriorBorder_Interface,Dune::ForwardCommunication);
// normalize multiple-interpolated DOFs by taking the arithmetic average
typename CountVector::iterator ucit = uc.begin();
for (typename U::iterator uit = u.begin(), uend = u.end(); uit != uend; ++uit, ++ucit)
(*uit) /= ((*ucit) > 0 ? (*ucit) : 1.0);
}
private:
LeafOffsetCache<GFSU> _leaf_offset_cache;
};
/*! grid adaptation as a function
*
* @brief adapt a grid, corresponding function space and solution vectors
*
* Assumes that the grid's elements have been marked for refinement and coarsening appropriately before
*
* @tparam Grid Type of the grid we want to adapt
* @tparam GFS Type of ansatz space, we need to update it after adaptation
* @tparam X Container class for DOF vectors
*/
template<class Grid, class GFS, class X>
void adapt_grid (Grid& grid, GFS& gfs, X& x1, int int_order)
{
typedef L2Projection<GFS,X> Projection;
Projection projection(gfs,int_order);
GridAdaptor<Grid,GFS,X,Projection> grid_adaptor(gfs);
// prepare the grid for refinement
grid.preAdapt();
// save u
typename GridAdaptor<Grid,GFS,X,Projection>::MapType transferMap1;
grid_adaptor.backupData(grid,gfs,projection,x1,transferMap1);
// adapt the grid
grid.adapt();
// update the function spaces
gfs.update(true);
// reset u
x1 = X(gfs,0.0);
grid_adaptor.replayData(grid,gfs,projection,x1,transferMap1);
// clean up
grid.postAdapt();
}
/*! grid adaptation as a function
*
* @brief adapt a grid, corresponding function space and solution vectors
*
* Assumes that the grid's elements have been marked for refinement and coarsening appropriately before
*
* @tparam Grid Type of the grid we want to adapt
* @tparam GFS Type of ansatz space, we need to update it after adaptation
* @tparam X Container class for DOF vectors
* @tparam Projection Projection used when Elems vanish
*/
template<class Grid, class GFS, class X>
void adapt_grid (Grid& grid, GFS& gfs, X& x1, X& x2, int int_order)
{
typedef L2Projection<GFS,X> Projection;
Projection projection(gfs,int_order);
GridAdaptor<Grid,GFS,X,Projection> grid_adaptor(gfs);
// prepare the grid for refinement
grid.preAdapt();
// save solution
typename GridAdaptor<Grid,GFS,X,Projection>::MapType transferMap1;
grid_adaptor.backupData(grid,gfs,projection,x1,transferMap1);
typename GridAdaptor<Grid,GFS,X,Projection>::MapType transferMap2;
grid_adaptor.backupData(grid,gfs,projection,x2,transferMap2);
// adapt the grid
grid.adapt();
// update the function spaces
gfs.update(true);
// interpolate solution
x1 = X(gfs,0.0);
grid_adaptor.replayData(grid,gfs,projection,x1,transferMap1);
x2 = X(gfs,0.0);
grid_adaptor.replayData(grid,gfs,projection,x2,transferMap2);
// clean up
grid.postAdapt();
}
#ifndef DOXYGEN
namespace impl{
// Struct for storing a GridFunctionSpace, corrosponding vectors and integration order
template <typename G, typename... X>
struct GFSWithVectors
{
// Export types
using GFS = G;
using Tuple = std::tuple<X&...>;
GFSWithVectors (GFS& gfs, int integrationOrder, X&... x) :
_gfs(gfs),
_integrationOrder(integrationOrder),
_tuple(x...)
{}
GFS& _gfs;
int _integrationOrder;
Tuple _tuple;
};
// Forward declarations needed for the recursion
template <typename Grid>
void iteratePacks(Grid& grid);
template <typename Grid, typename X, typename... XS>
void iteratePacks(Grid& grid, X& x, XS&... xs);
// This function is called after the last vector of the tuple. Here
// the next pack is called. On the way back we update the current
// function space.
template<std::size_t I = 0, typename Grid, typename X, typename... XS>
inline typename std::enable_if<I == std::tuple_size<typename X::Tuple>::value, void>::type
iterateTuple(Grid& grid, X& x, XS&... xs)
{
// Iterate next pack
iteratePacks(grid,xs...);
// On our way back we need to update the current function space
x._gfs.update(true);
}
/* In this function we store the data of the current vector (indicated
* by template parameter I) of the current pack. After recursively
* iterating through the other packs and vectors we replay the data.
*
* @tparam I std:size_t used for tmp
* @tparam Grid Grid type
* @tparam X Current pack
* @tparam ...XS Remaining packs
*/
template<std::size_t I = 0, typename Grid, typename X, typename... XS>
inline typename std::enable_if<I < std::tuple_size<typename X::Tuple>::value, void>::type
iterateTuple(Grid& grid, X& x, XS&... xs)
{
// Get some basic types
using GFS = typename X::GFS;
using Tuple = typename X::Tuple;
using V = typename std::decay<typename std::tuple_element<I,Tuple>::type>::type;
// // alternative:
// auto v = std::get<I>(x._tuple);
// using V = decltype(v);
// Setup classes for data restoring
typedef Dune::PDELab::L2Projection <GFS,V> Projection;
Projection projection(x._gfs,x._integrationOrder);
GridAdaptor<Grid,GFS,V,Projection> gridAdaptor(x._gfs);
// Store vector data
typename GridAdaptor<Grid,GFS,V,Projection>::MapType transferMap;
gridAdaptor.backupData(grid,x._gfs,projection,std::get<I>(x._tuple),transferMap);
// Recursively iterate through remaining vectors (and packs). Grid
// adaption will be done at the end of recursion.
iterateTuple<I + 1, Grid, X, XS...>(grid,x,xs...);
// Play back data. Note: At this point the function space was
// already updatet.
std::get<I>(x._tuple) = V(x._gfs,0.0);
gridAdaptor.replayData(grid,x._gfs,projection,std::get<I>(x._tuple),transferMap);
}
// This gets called after the last pack. After this function call we
// have visited every vector of every pack and we will go back through
// the recursive function calls.
template <typename Grid>
void iteratePacks(Grid& grid)
{
// Adapt the grid
grid.adapt();
}
/* Use template meta programming to iterate over packs at compile time
*
* In order to adapt our grid and all vectors of all packs we need to
* do the following:
* - Iterate over all vectors of all packs.
* - Store the data from the vectors where things could change.
* - Adapt our grid.
* - Update function spaces and restore data.
*
* The key point is that we need the object that stores the data to
* replay it. Because of that we can not just iterate over the packs
* and within each pack iterate over the vectors but we have to make
* one big recursion. Therefore we iterate over the vectors of the
* current pack.
*/
template <typename Grid, typename X, typename... XS>
void iteratePacks(Grid& grid, X& x, XS&... xs)
{
iterateTuple(grid,x,xs...);
}
} // namespace impl
#endif // DOXYGEN
/*! \brief Pack function space and vectors for grid adaption
*
* This function packs a GridFunctionSpace an integration order and an
* arbitrary number of vectors in a single struct.
*
* Important: You have to make sure that all vectors belong to the
* same function space.
*
* @tparam GFS Grid function space
* @tparam ...X Arbitrary number of corresponding vectors
*/
template <typename GFS, typename... X>
impl::GFSWithVectors<GFS,X...> transferSolutions(GFS& gfs, int integrationOrder, X&... x)
{
impl::GFSWithVectors<GFS,X...> gfsWithVectors(gfs, integrationOrder, x...);
return gfsWithVectors;
}
/*! \brief Adapt grid and multiple function spaces with corresponding vectors
*
* Assumes that the grid's elements have been marked for refinement and
* coarsement appropriately befor
*
* @tparam Grid Type of the Grid
* @tparam X Packed GFS with vectors that should be adapted
*
* Note: A pack can be created using the transferSolution function.
*/
template <typename Grid, typename... X>
void adaptGrid(Grid& grid, X&... x)
{
// Prepare the grid for refinement
grid.preAdapt();
// Iterate over packs
impl::iteratePacks(grid,x...);
// Clean up
grid.postAdapt();
}
template<typename T>
void error_fraction(const T& x, typename T::ElementType alpha, typename T::ElementType beta,
typename T::ElementType& eta_alpha, typename T::ElementType& eta_beta, int verbose=0)
{
if (verbose>0)
std::cout << "+++ error fraction: alpha=" << alpha << " beta=" << beta << std::endl;
const int steps=20; // max number of bisection steps
typedef typename T::ElementType NumberType;
NumberType total_error = x.one_norm();
NumberType max_error = x.infinity_norm();
NumberType eta_alpha_left = 0.0;
NumberType eta_alpha_right = max_error;
NumberType eta_beta_left = 0.0;
NumberType eta_beta_right = max_error;
for (int j=1; j<=steps; j++)
{
eta_alpha = 0.5*(eta_alpha_left+eta_alpha_right);
eta_beta = 0.5*(eta_beta_left+eta_beta_right);
NumberType sum_alpha=0.0;
NumberType sum_beta=0.0;
unsigned int alpha_count = 0;
unsigned int beta_count = 0;
for (typename T::const_iterator it = x.begin(),
end = x.end();
it != end;
++it)
{
if (*it >=eta_alpha) { sum_alpha += *it; alpha_count++;}
if (*it < eta_beta) { sum_beta += *it; beta_count++;}
}
if (verbose>1)
{
std::cout << "+++ " << j << " eta_alpha=" << eta_alpha << " alpha_fraction=" << sum_alpha/total_error
<< " elements: " << alpha_count << " of " << x.N() << std::endl;
std::cout << "+++ " << j << " eta_beta=" << eta_beta << " beta_fraction=" << sum_beta/total_error
<< " elements: " << beta_count << " of " << x.N() << std::endl;
}
if (std::abs(alpha-sum_alpha/total_error) <= 0.01 && std::abs(beta-sum_beta/total_error) <= 0.01) break;
if (sum_alpha>alpha*total_error)
eta_alpha_left = eta_alpha;
else
eta_alpha_right = eta_alpha;
if (sum_beta>beta*total_error)
eta_beta_right = eta_beta;
else
eta_beta_left = eta_beta;
}
if (verbose>0)
{
std::cout << "+++ refine_threshold=" << eta_alpha
<< " coarsen_threshold=" << eta_beta << std::endl;
}
}
template<typename T>
void element_fraction(const T& x, typename T::ElementType alpha, typename T::ElementType beta,
typename T::ElementType& eta_alpha, typename T::ElementType& eta_beta, int verbose=0)
{
const int steps=20; // max number of bisection steps
typedef typename T::ElementType NumberType;
NumberType total_error =x.N();
NumberType max_error = x.infinity_norm();
NumberType eta_alpha_left = 0.0;
NumberType eta_alpha_right = max_error;
NumberType eta_beta_left = 0.0;
NumberType eta_beta_right = max_error;
for (int j=1; j<=steps; j++)
{
eta_alpha = 0.5*(eta_alpha_left+eta_alpha_right);
eta_beta = 0.5*(eta_beta_left+eta_beta_right);
NumberType sum_alpha=0.0;
NumberType sum_beta=0.0;
unsigned int alpha_count = 0;
unsigned int beta_count = 0;
for (typename T::const_iterator it = x.begin(),
end = x.end();
it != end;
++it)
{
if (*it>=eta_alpha) { sum_alpha += 1.0; alpha_count++;}
if (*it< eta_beta) { sum_beta +=1.0; beta_count++;}
}
if (verbose>1)
{
std::cout << j << " eta_alpha=" << eta_alpha << " alpha_fraction=" << sum_alpha/total_error
<< " elements: " << alpha_count << " of " << x.N() << std::endl;
std::cout << j << " eta_beta=" << eta_beta << " beta_fraction=" << sum_beta/total_error
<< " elements: " << beta_count << " of " << x.N() << std::endl;
}
if (std::abs(alpha-sum_alpha/total_error) <= 0.01 && std::abs(beta-sum_beta/total_error) <= 0.01) break;
if (sum_alpha>alpha*total_error)
eta_alpha_left = eta_alpha;
else
eta_alpha_right = eta_alpha;
if (sum_beta>beta*total_error)
eta_beta_right = eta_beta;
else
eta_beta_left = eta_beta;
}
if (verbose>0)
{
std::cout << "+++ refine_threshold=" << eta_alpha
<< " coarsen_threshold=" << eta_beta << std::endl;
}
}
/** Compute error distribution
*/
template<typename T>
void error_distribution(const T& x, unsigned int bins)
{
const int steps=30; // max number of bisection steps
typedef typename T::ElementType NumberType;
NumberType total_error = x.one_norm();
NumberType total_elements = x.N();
NumberType max_error = x.infinity_norm();
std::vector<NumberType> left(bins,0.0);
std::vector<NumberType> right(bins,max_error*(1.0+1e-8));
std::vector<NumberType> eta(bins);
std::vector<NumberType> target(bins);
for (unsigned int k=0; k<bins; k++)
target[k]= (k+1)/((NumberType)bins);
for (int j=1; j<=steps; j++)
{
for (unsigned int k=0; k<bins; k++)
eta[k]= 0.5*(left[k]+right[k]);
std::vector<NumberType> sum(bins,0.0);
std::vector<int> count(bins,0);
for (typename T::const_iterator it = x.begin(),
end = x.end();
it != end;
++it)
{
for (unsigned int k=0; k<bins; k++)
if (*it<=eta[k])
{
sum[k] += *it;
count[k] += 1;
}
}
// std::cout << std::endl;
// std::cout << "// step " << j << std::endl;
// for (unsigned int k=0; k<bins; k++)
// std::cout << k+1 << " " << count[k] << " " << eta[k] << " " << right[k]-left[k]
// << " " << sum[k]/total_error << " " << target[k] << std::endl;
for (unsigned int k=0; k<bins; k++)
if (sum[k]<=target[k]*total_error)
left[k] = eta[k];
else
right[k] = eta[k];
}
std::vector<NumberType> sum(bins,0.0);
std::vector<int> count(bins,0);
for (unsigned int i=0; i<x.N(); i++)
for (unsigned int k=0; k<bins; k++)
if (x[i]<=eta[k])
{
sum[k] += x[i];
count[k] += 1;
}
std::cout << "+++ error distribution" << std::endl;
std::cout << "+++ number of elements: " << x.N() << std::endl;
std::cout << "+++ max element error: " << max_error << std::endl;
std::cout << "+++ total error: " << total_error << std::endl;
std::cout << "+++ bin #elements eta sum/total " << std::endl;
for (unsigned int k=0; k<bins; k++)
std::cout << "+++ " << k+1 << " " << count[k] << " " << eta[k] << " " << sum[k]/total_error << std::endl;
}
template<typename Grid, typename X>
void mark_grid (Grid &grid, const X& x, typename X::ElementType refine_threshold,
typename X::ElementType coarsen_threshold, int min_level = 0, int max_level = std::numeric_limits<int>::max(), int verbose=0)
{
typedef typename Grid::LeafGridView GV;
GV gv = grid.leafGridView();
unsigned int refine_cnt=0;
unsigned int coarsen_cnt=0;
typedef typename X::GridFunctionSpace GFS;
typedef LocalFunctionSpace<GFS> LFS;
typedef LFSIndexCache<LFS> LFSCache;
typedef typename X::template ConstLocalView<LFSCache> XView;
LFS lfs(x.gridFunctionSpace());
LFSCache lfs_cache(lfs);
XView x_view(x);
for(const auto& cell : elements(gv))
{
lfs.bind(cell);
lfs_cache.update();
x_view.bind(lfs_cache);
if (x_view[0]>=refine_threshold && cell.level() < max_level)
{
grid.mark(1,cell);
refine_cnt++;
}
if (x_view[0]<=coarsen_threshold && cell.level() > min_level)
{
grid.mark(-1,cell);
coarsen_cnt++;
}
x_view.unbind();
}
if (verbose>0)
std::cout << "+++ mark_grid: " << refine_cnt << " marked for refinement, "
<< coarsen_cnt << " marked for coarsening" << std::endl;
}
template<typename Grid, typename X>
void mark_grid_for_coarsening (Grid &grid, const X& x, typename X::ElementType refine_threshold,
typename X::ElementType coarsen_threshold, int verbose=0)
{
typedef typename Grid::LeafGridView GV;
GV gv = grid.leafGridView();
unsigned int coarsen_cnt=0;
typedef typename X::GridFunctionSpace GFS;
typedef LocalFunctionSpace<GFS> LFS;
typedef LFSIndexCache<LFS> LFSCache;
typedef typename X::template ConstLocalView<LFSCache> XView;
LFS lfs(x.gridFunctionSpace());
LFSCache lfs_cache(lfs);
XView x_view(x);
for(const auto& cell : elements(gv))
{
lfs.bind(cell);
lfs_cache.update();
x_view.bind(lfs_cache);
if (x_view[0]>=refine_threshold)
{
grid.mark(-1,cell);
coarsen_cnt++;
}
if (x_view[0]<=coarsen_threshold)
{
grid.mark(-1,cell);
coarsen_cnt++;
}
}
if (verbose>0)
std::cout << "+++ mark_grid_for_coarsening: "
<< coarsen_cnt << " marked for coarsening" << std::endl;
}
class TimeAdaptationStrategy
{
// strategy parameters
double scaling;
double optimistic_factor;
double coarsen_limit;
double balance_limit;
double tol;
double T;
int verbose;
bool no_adapt;
double refine_fraction_while_refinement;
double coarsen_fraction_while_refinement;
double coarsen_fraction_while_coarsening;
double timestep_decrease_factor;
double timestep_increase_factor;
// results to be reported to the user after evaluating the error
bool accept;
bool adapt_dt;
bool adapt_grid;
double newdt;
double q_s, q_t;
// state variables
bool have_decreased_time_step;
bool have_refined_grid;
// the only state variable: accumulated error
double accumulated_estimated_error_squared;
double minenergy_rate;
public:
TimeAdaptationStrategy (double tol_, double T_, int verbose_=0)
: scaling(16.0), optimistic_factor(1.0), coarsen_limit(0.5), balance_limit(0.33333),
tol(tol_), T(T_), verbose(verbose_), no_adapt(false),
refine_fraction_while_refinement(0.7),
coarsen_fraction_while_refinement(0.2),
coarsen_fraction_while_coarsening(0.2),
timestep_decrease_factor(0.5), timestep_increase_factor(1.5),
accept(false), adapt_dt(false), adapt_grid(false), newdt(1.0),
have_decreased_time_step(false), have_refined_grid(false),
accumulated_estimated_error_squared(0.0),
minenergy_rate(0.0)
{
}
void setTimeStepDecreaseFactor (double s)
{
timestep_decrease_factor=s;
}
void setTimeStepIncreaseFactor (double s)
{
timestep_increase_factor=s;
}
void setRefineFractionWhileRefinement (double s)
{
refine_fraction_while_refinement=s;
}
void setCoarsenFractionWhileRefinement (double s)
{
coarsen_fraction_while_refinement=s;
}
void setCoarsenFractionWhileCoarsening (double s)
{
coarsen_fraction_while_coarsening=s;
}
void setMinEnergyRate (double s)
{
minenergy_rate=s;
}
void setCoarsenLimit (double s)
{
coarsen_limit=s;
}
void setBalanceLimit (double s)
{
balance_limit=s;
}
void setTemporalScaling (double s)
{
scaling=s;
}
void setOptimisticFactor (double s)
{
optimistic_factor=s;
}
void setAdaptationOn ()
{
no_adapt = false;
}
void setAdaptationOff ()
{
no_adapt = true;
}
bool acceptTimeStep () const
{
return accept;
}
bool adaptDT () const
{
return adapt_dt;
}
bool adaptGrid () const
{
return adapt_grid;
}
double newDT () const
{
return newdt;
}
double qs () const
{
return q_s;
}
double qt () const
{
return q_t;
}
double endT() const
{
return T;
}
double accumulatedErrorSquared () const
{
return accumulated_estimated_error_squared;
}
// to be called when new time step is done
void startTimeStep ()
{
have_decreased_time_step = false;
have_refined_grid = false;
}
template<typename GM, typename X>
void evaluate_estimators (GM& grid, double time, double dt, const X& eta_space, const X& eta_time, double energy_timeslab)
{
accept=false;
adapt_dt=false;
adapt_grid=false;
newdt=dt;
double spatial_error = eta_space.one_norm();
double temporal_error = scaling*eta_time.one_norm();
double sum = spatial_error + temporal_error;
//double allowed = optimistic_factor*(tol*tol-accumulated_estimated_error_squared)*dt/(T-time);
double allowed = tol*tol*(energy_timeslab+minenergy_rate*dt);
q_s = spatial_error/sum;
q_t = temporal_error/sum;
// print some statistics
if (verbose>0)
std::cout << "+++"
<< " q_s=" << q_s
<< " q_t=" << q_t
<< " sum/allowed=" << sum/allowed
// << " allowed=" << allowed
<< " estimated error=" << sqrt(accumulated_estimated_error_squared+sum)
<< " energy_rate=" << energy_timeslab/dt
<< std::endl;
// for simplicity: a mode that does no adaptation at all
if (no_adapt)
{
accept = true;
accumulated_estimated_error_squared += sum;
if (verbose>1) std::cout << "+++ no adapt mode" << std::endl;
return;
}
// the adaptation strategy
if (sum<=allowed)
{
// we will accept this time step
accept = true;
if (verbose>1) std::cout << "+++ accepting time step" << std::endl;
accumulated_estimated_error_squared += sum;
// check if grid size or time step needs to be adapted
if (sum<coarsen_limit*allowed)
{
// the error is too small, i.e. the computation is inefficient
if (q_t<balance_limit)
{
// spatial error is dominating => increase time step
newdt = timestep_increase_factor*dt;
adapt_dt = true;
if (verbose>1) std::cout << "+++ spatial error dominates: increase time step" << std::endl;
}
else
{
if (q_s>balance_limit)
{
// step sizes balanced: coarsen in time
newdt = timestep_increase_factor*dt;
adapt_dt = true;
if (verbose>1) std::cout << "+++ increasing time step" << std::endl;
}
// coarsen grid in space
double eta_refine, eta_coarsen;
if (verbose>1) std::cout << "+++ mark grid for coarsening" << std::endl;
//error_distribution(eta_space,20);
Dune::PDELab::error_fraction(eta_space,coarsen_fraction_while_coarsening,
coarsen_fraction_while_coarsening,eta_refine,eta_coarsen);
Dune::PDELab::mark_grid_for_coarsening(grid,eta_space,eta_refine,eta_coarsen,verbose);
adapt_grid = true;
}
}
else
{
// modify at least the time step
if (q_t<balance_limit)
{
// spatial error is dominating => increase time step
newdt = timestep_increase_factor*dt;
adapt_dt = true;
if (verbose>1) std::cout << "+++ spatial error dominates: increase time step" << std::endl;
}
}
}
else
{
// error is too large, we need to do something
if (verbose>1) std::cout << "+++ will redo time step" << std::endl;
if (q_t>1-balance_limit)
{
// temporal error is dominating => decrease time step only
newdt = timestep_decrease_factor*dt;
adapt_dt = true;
have_decreased_time_step = true;
if (verbose>1) std::cout << "+++ decreasing time step only" << std::endl;
}
else
{
if (q_t<balance_limit)
{
if (!have_decreased_time_step)
{
// time steps size not balanced (too small)
newdt = timestep_increase_factor*dt;
adapt_dt = true;
if (verbose>1) std::cout << "+++ increasing time step" << std::endl;
}
}
else
{
// step sizes balanced: refine in time as well
newdt = timestep_decrease_factor*dt;
adapt_dt = true;
have_decreased_time_step = true;
if (verbose>1) std::cout << "+++ decreasing time step" << std::endl;
}
// refine grid in space
double eta_refine, eta_coarsen;
if (verbose>1) std::cout << "+++ BINGO mark grid for refinement and coarsening" << std::endl;
//error_distribution(eta_space,20);
Dune::PDELab::error_fraction(eta_space,refine_fraction_while_refinement,
coarsen_fraction_while_refinement,eta_refine,eta_coarsen,0);
Dune::PDELab::mark_grid(grid,eta_space,eta_refine,eta_coarsen,verbose);
adapt_grid = true;
}
}
}
};
} // namespace PDELab
} // namespace Dune
#endif
|