This file is indexed.

/usr/include/dune/pdelab/adaptivity/adaptivity.hh is in libdune-pdelab-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_PDELAB_ADAPTIVITY_HH
#define DUNE_PDELAB_ADAPTIVITY_HH

#include<dune/common/exceptions.hh>

#include<limits>
#include<vector>
#include<map>
#include<unordered_map>
#include<dune/common/dynmatrix.hh>
#include<dune/geometry/quadraturerules.hh>
#include<dune/pdelab/gridfunctionspace/genericdatahandle.hh>
#include<dune/pdelab/gridfunctionspace/localfunctionspace.hh>

#include<dune/pdelab/common/function.hh>
// for InterpolateBackendStandard
#include<dune/pdelab/gridfunctionspace/interpolate.hh>
// for intersectionoperator
#include<dune/pdelab/localoperator/defaultimp.hh>
#include<dune/pdelab/localoperator/flags.hh>

#include<dune/grid/io/file/vtk/subsamplingvtkwriter.hh>

namespace Dune {
  namespace PDELab {


    template<typename GFS>
    struct LeafOffsetCache
    {

      typedef typename GFS::Traits::GridView::template Codim<0>::Entity Cell;
      typedef LocalFunctionSpace<GFS> LFS;

        // we need an additional entry because we store offsets and we also want the
        // offset after the last leaf for size calculations
      typedef array<std::size_t,TypeTree::TreeInfo<GFS>::leafCount + 1> LeafOffsets;

      const LeafOffsets& operator[](GeometryType gt) const
      {
        const LeafOffsets& leaf_offsets = _leaf_offset_cache[GlobalGeometryTypeIndex::index(gt)];
        // make sure we have data for this geometry type
        assert(leaf_offsets.back() > 0);
        return leaf_offsets;
      }

      void update(const Cell& e)
      {
        LeafOffsets& leaf_offsets = _leaf_offset_cache[GlobalGeometryTypeIndex::index(e.type())];
        if (leaf_offsets.back() == 0)
          {
            _lfs.bind(e);
            extract_lfs_leaf_sizes(_lfs,leaf_offsets.begin()+1);
            // convert to offsets
            std::partial_sum(leaf_offsets.begin(),leaf_offsets.end(),leaf_offsets.begin());
            // sanity check
            assert(leaf_offsets.back() == _lfs.size());
          }
      }

      explicit LeafOffsetCache(const GFS& gfs)
        : _lfs(gfs)
        , _leaf_offset_cache(GlobalGeometryTypeIndex::size(Cell::dimension))
      {}

      LFS _lfs;
      std::vector<LeafOffsets> _leaf_offset_cache;

    };


    namespace {

      template<typename MassMatrices,typename Cell>
      struct inverse_mass_matrix_calculator
        : public TypeTree::TreeVisitor
        , public TypeTree::DynamicTraversal
      {

        static const int dim  = Cell::Geometry::mydimension;
        typedef std::size_t size_type;
        typedef typename MassMatrices::value_type MassMatrix;
        typedef typename MassMatrix::field_type DF;
        typedef typename Dune::QuadratureRule<DF,dim>::const_iterator QRIterator;

        template<typename GFS, typename TreePath>
        void leaf(const GFS& gfs, TreePath treePath)
        {
          auto& fem = gfs.finiteElementMap();
          auto& fe = fem.find(_element);
          size_type local_size = fe.localBasis().size();

          MassMatrix& mass_matrix = _mass_matrices[_leaf_index];
          mass_matrix.resize(local_size,local_size);

          using Range = typename GFS::Traits::FiniteElementMap::Traits::
            FiniteElement::Traits::LocalBasisType::Traits::RangeType;
          std::vector<Range> phi;
          phi.resize(std::max(phi.size(),local_size));

          for (const auto& ip : _quadrature_rule)
            {
              fe.localBasis().evaluateFunction(ip.position(),phi);
              const DF factor = ip.weight();

              for (size_type i = 0; i < local_size; ++i)
                for (size_type j = 0; j < local_size; ++j)
                  mass_matrix[i][j] += phi[i] * phi[j] * factor;
            }

          mass_matrix.invert();
          ++_leaf_index;

        }

        inverse_mass_matrix_calculator(MassMatrices& mass_matrices, const Cell& element, size_type intorder)
          : _element(element)
          , _mass_matrices(mass_matrices)
          , _quadrature_rule(QuadratureRules<DF,dim>::rule(element.type(),intorder))
          , _leaf_index(0)
        {}

        const Cell& _element;
        MassMatrices& _mass_matrices;
        const QuadratureRule<DF,dim>& _quadrature_rule;
        size_type _leaf_index;

      };

    } // anonymous namespace


    /*! @class L2Projection
     *
     * @brief @todo
     *
     * @tparam GFS Type of ansatz space
     * @tparam U   Container class for the solution
     */
    template<class GFS, class U>
    class L2Projection
    {
      using EntitySet = typename GFS::Traits::EntitySet;
      using Element = typename EntitySet::Element;
      typedef LocalFunctionSpace<GFS> LFS;
      typedef typename U::ElementType DF;

    public:

      typedef DynamicMatrix<typename U::ElementType> MassMatrix;
      typedef std::array<MassMatrix,TypeTree::TreeInfo<GFS>::leafCount> MassMatrices;

      /*! @brief The constructor.
       *
       * @todo Doc params!
       */
      explicit L2Projection(const GFS& gfs, int intorder = 2)
        : _gfs(gfs)
        , _intorder(intorder)
        , _inverse_mass_matrices(GlobalGeometryTypeIndex::size(Element::dimension))
      {}

      /*! @brief Calculate the inverse local mass matrix, used in the local L2 projection
       *
       * @todo Doc template params
       * @todo Doc params
       */
      const MassMatrices& inverseMassMatrices(const Element& e)
      {
        auto gt = e.geometry().type();
        auto& inverse_mass_matrices = _inverse_mass_matrices[GlobalGeometryTypeIndex::index(gt)];
        // if the matrix isn't empty, it has already been cached
        if (inverse_mass_matrices[0].N() > 0)
          return inverse_mass_matrices;

        inverse_mass_matrix_calculator<MassMatrices,Element> calculate_mass_matrices(
          inverse_mass_matrices,
          e,
          _intorder
          );

        TypeTree::applyToTree(_gfs,calculate_mass_matrices);

        return inverse_mass_matrices;
      }

    private:

      GFS _gfs;
      int _intorder;
      std::vector<MassMatrices> _inverse_mass_matrices;
    };


    template<typename GFS, typename DOFVector, typename TransferMap>
    struct backup_visitor
      : public TypeTree::TreeVisitor
      , public TypeTree::DynamicTraversal
    {

      typedef LocalFunctionSpace<GFS> LFS;
      typedef LFSIndexCache<LFS> LFSCache;
      typedef Dune::PDELab::LeafOffsetCache<GFS> LeafOffsetCache;

      using EntitySet = typename GFS::Traits::EntitySet;
      using IDSet = typename EntitySet::Traits::GridView::Grid::LocalIdSet;
      using Element = typename EntitySet::Element;
      typedef typename Element::Geometry Geometry;
      static const int dim = Geometry::mydimension;
      typedef typename DOFVector::ElementType RF;
      typedef typename TransferMap::mapped_type LocalDOFVector;


      typedef L2Projection<typename LFS::Traits::GridFunctionSpace,DOFVector> Projection;
      typedef typename Projection::MassMatrices MassMatrices;
      typedef typename Projection::MassMatrix MassMatrix;

      typedef std::size_t size_type;
      using DF = typename EntitySet::Traits::CoordinateField;

      template<typename LFSLeaf, typename TreePath>
      void leaf(const LFSLeaf& leaf_lfs, TreePath treePath)
      {

        auto& fem = leaf_lfs.gridFunctionSpace().finiteElementMap();
        auto fine_offset = _leaf_offset_cache[_current.type()][_leaf_index];
        auto coarse_offset = _leaf_offset_cache[_ancestor.type()][_leaf_index];

        using Range = typename LFSLeaf::Traits::GridFunctionSpace::Traits::FiniteElementMap::
          Traits::FiniteElement::Traits::LocalBasisType::Traits::RangeType;

        auto& inverse_mass_matrix = _projection.inverseMassMatrices(_element)[_leaf_index];

        auto coarse_phi = std::vector<Range>{};
        auto fine_phi = std::vector<Range>{};

        auto fine_geometry = _current.geometry();
        auto coarse_geometry = _ancestor.geometry();

        // iterate over quadrature points
        for (const auto& ip : QuadratureRules<DF,dim>::rule(_current.type(),_int_order))
          {
            auto coarse_local = coarse_geometry.local(fine_geometry.global(ip.position()));
            auto fe = &fem.find(_current);
            fe->localBasis().evaluateFunction(ip.position(),fine_phi);
            fe = &fem.find(_ancestor);
            fe->localBasis().evaluateFunction(coarse_local,coarse_phi);
            const DF factor = ip.weight()
              * fine_geometry.integrationElement(ip.position())
              / coarse_geometry.integrationElement(coarse_local);

            auto val = Range{0.0};
            for (size_type i = 0; i < fine_phi.size(); ++i)
              {
                val.axpy(_u_fine[fine_offset + i],fine_phi[i]);
              }

            for (size_type i = 0; i < coarse_phi.size(); ++i)
              {
                auto x = Range{0.0};
                for (size_type j = 0; j < inverse_mass_matrix.M(); ++j)
                  x.axpy(inverse_mass_matrix[i][j],coarse_phi[j]);
                (*_u_coarse)[coarse_offset + i] += factor * (x * val);
              }
          }

        ++_leaf_index;
      }

      void operator()(const Element& element)
      {
        _element = element;

        _lfs.bind(_element);
        _lfs_cache.update();
        _u_view.bind(_lfs_cache);
        _u_coarse = &_transfer_map[_id_set.id(_element)];
        _u_coarse->resize(_lfs.size());
        _u_view.read(*_u_coarse);
        _u_view.unbind();

        _leaf_offset_cache.update(_element);

        size_type max_level = _lfs.gridFunctionSpace().gridView().grid().maxLevel();

        _ancestor = _element;
        while (_ancestor.mightVanish())
          {
            // work around UG bug!
            if (!_ancestor.hasFather())
              break;

            _ancestor = _ancestor.father();

            _u_coarse = &_transfer_map[_id_set.id(_ancestor)];
            // don't project more than once
            if (_u_coarse->size() > 0)
              continue;
            _u_coarse->resize(_leaf_offset_cache[_ancestor.type()].back());
            std::fill(_u_coarse->begin(),_u_coarse->end(),RF(0));

            for (const auto& child : descendantElements(_ancestor,max_level))
              {
                // only evaluate on entities with data
                if (child.isLeaf())
                  {
                    _current = child;
                    // reset leaf_index for next run over tree
                    _leaf_index = 0;
                    // load data
                    _lfs.bind(_current);
                    _leaf_offset_cache.update(_current);
                    _lfs_cache.update();
                    _u_view.bind(_lfs_cache);
                    _u_fine.resize(_lfs_cache.size());
                    _u_view.read(_u_fine);
                    _u_view.unbind();
                    // do projection on all leafs
                    TypeTree::applyToTree(_lfs,*this);
                  }
              }
          }
      }

      backup_visitor(const GFS& gfs,
                     Projection& projection,
                     const DOFVector& u,
                     LeafOffsetCache& leaf_offset_cache,
                     TransferMap& transfer_map,
                     std::size_t int_order = 2)
        : _lfs(gfs)
        , _lfs_cache(_lfs)
        , _id_set(gfs.gridView().grid().localIdSet())
        , _projection(projection)
        , _u_view(u)
        , _transfer_map(transfer_map)
        , _u_coarse(nullptr)
        , _leaf_offset_cache(leaf_offset_cache)
        , _int_order(int_order)
        , _leaf_index(0)
      {}

      LFS _lfs;
      LFSCache _lfs_cache;
      const IDSet& _id_set;
      Element _element;
      Element _ancestor;
      Element _current;
      Projection& _projection;
      typename DOFVector::template ConstLocalView<LFSCache> _u_view;
      TransferMap& _transfer_map;
      LocalDOFVector* _u_coarse;
      LeafOffsetCache& _leaf_offset_cache;
      size_type _int_order;
      size_type _leaf_index;
      LocalDOFVector _u_fine;

    };



    template<typename GFS, typename DOFVector, typename CountVector>
    struct replay_visitor
      : public TypeTree::TreeVisitor
      , public TypeTree::DynamicTraversal
    {

      typedef LocalFunctionSpace<GFS> LFS;
      typedef LFSIndexCache<LFS> LFSCache;
      typedef Dune::PDELab::LeafOffsetCache<GFS> LeafOffsetCache;

      using EntitySet = typename GFS::Traits::EntitySet;
      using IDSet = typename EntitySet::Traits::GridView::Grid::LocalIdSet;
      using Element = typename EntitySet::Element;
      using Geometry = typename Element::Geometry;
      typedef typename DOFVector::ElementType RF;
      typedef std::vector<RF> LocalDOFVector;
      typedef std::vector<typename CountVector::ElementType> LocalCountVector;

      typedef std::size_t size_type;
      using DF = typename EntitySet::Traits::CoordinateField;

      template<typename FiniteElement>
      struct coarse_function
      {
        using Range = typename FiniteElement::Traits::LocalBasisType::Traits::RangeType;

        template<typename X, typename Y>
        void evaluate(const X& x, Y& y) const
        {
          _phi.resize(_finite_element.localBasis().size());
          _finite_element.localBasis().evaluateFunction(_coarse_geometry.local(_fine_geometry.global(x)),_phi);
          y = 0;
          for (size_type i = 0; i < _phi.size(); ++i)
            y.axpy(_dofs[_offset + i],_phi[i]);
        }

        coarse_function(const FiniteElement& finite_element, Geometry coarse_geometry, Geometry fine_geometry, const LocalDOFVector& dofs, size_type offset)
          : _finite_element(finite_element)
          , _coarse_geometry(coarse_geometry)
          , _fine_geometry(fine_geometry)
          , _dofs(dofs)
          , _offset(offset)
        {}

        const FiniteElement& _finite_element;
        Geometry _coarse_geometry;
        Geometry _fine_geometry;
        const LocalDOFVector& _dofs;
        mutable std::vector<Range> _phi;
        size_type _offset;

      };


      template<typename LeafLFS, typename TreePath>
      void leaf(const LeafLFS& leaf_lfs, TreePath treePath)
      {
        using FiniteElement = typename LeafLFS::Traits::FiniteElementType;

        auto& fem = leaf_lfs.gridFunctionSpace().finiteElementMap();
        auto element_offset = _leaf_offset_cache[_element.type()][_leaf_index];
        auto ancestor_offset = _leaf_offset_cache[_ancestor.type()][_leaf_index];

        coarse_function<FiniteElement> f(fem.find(_ancestor),_ancestor.geometry(),_element.geometry(),*_u_coarse,ancestor_offset);
        auto& fe = fem.find(_element);

        _u_tmp.resize(fe.localBasis().size());
        std::fill(_u_tmp.begin(),_u_tmp.end(),RF(0.0));
        fe.localInterpolation().interpolate(f,_u_tmp);
        std::copy(_u_tmp.begin(),_u_tmp.end(),_u_fine.begin() + element_offset);

        ++_leaf_index;
      }

      void operator()(const Element& element, const Element& ancestor, const LocalDOFVector& u_coarse)
      {
        _element = element;
        _ancestor = ancestor;
        _u_coarse = &u_coarse;
        _lfs.bind(_element);
        _leaf_offset_cache.update(_element);
        _lfs_cache.update();
        _u_view.bind(_lfs_cache);

        // test identity using ids
        if (_id_set.id(element) == _id_set.id(ancestor))
          {
            // no interpolation necessary, just copy the saved data
            _u_view.add(*_u_coarse);
          }
        else
          {
            _u_fine.resize(_lfs_cache.size());
            std::fill(_u_fine.begin(),_u_fine.end(),RF(0));
            _leaf_index = 0;
            TypeTree::applyToTree(_lfs,*this);
            _u_view.add(_u_fine);
          }
        _u_view.commit();

        _uc_view.bind(_lfs_cache);
        _counts.resize(_lfs_cache.size(),1);
        _uc_view.add(_counts);
        _uc_view.commit();
      }

      replay_visitor(const GFS& gfs, DOFVector& u, CountVector& uc, LeafOffsetCache& leaf_offset_cache)
        : _lfs(gfs)
        , _lfs_cache(_lfs)
        , _id_set(gfs.entitySet().gridView().grid().localIdSet())
        , _u_view(u)
        , _uc_view(uc)
        , _leaf_offset_cache(leaf_offset_cache)
        , _leaf_index(0)
      {}

      LFS _lfs;
      LFSCache _lfs_cache;
      const IDSet& _id_set;
      Element _element;
      Element _ancestor;
      typename DOFVector::template LocalView<LFSCache> _u_view;
      typename CountVector::template LocalView<LFSCache> _uc_view;
      const LocalDOFVector* _u_coarse;
      LeafOffsetCache& _leaf_offset_cache;
      size_type _leaf_index;
      LocalDOFVector _u_fine;
      LocalDOFVector _u_tmp;
      LocalCountVector _counts;

    };


    /*! @class GridAdaptor
     *
     * @brief Class for automatic adaptation of the grid.
     *
     *        The GridAdaptor capsules the act of deciding which Elems to refine and coarsen,
     *        adapting the grid, and transfering the solution from the old grid to the new one.
     *        Currrently this only works for scalar solutions.
     *
     * @tparam Grid       Type of the grid we want to adapt
     * @tparam GFSU       Type of ansatz space, we need to update it after adaptation
     * @tparam U          Container class of the solution
     * @tparam Projection Projection used when Elems vanish
     */
    template<class Grid, class GFSU, class U, class Projection>
    class GridAdaptor
    {
      typedef typename Grid::LeafGridView LeafGridView;
      typedef typename LeafGridView::template Codim<0>
      ::template Partition<Dune::Interior_Partition>::Iterator LeafIterator;
      typedef typename Grid::template Codim<0>::Entity Element;
      typedef typename Grid::LocalIdSet IDSet;
      typedef typename IDSet::IdType ID;

    public:
      typedef std::unordered_map<ID,std::vector<typename U::ElementType> > MapType;


      /*! @brief The constructor.
       *
       * @param gfs         The ansatz space, we need to update it
       */
      explicit GridAdaptor(const GFSU& gfs)
        : _leaf_offset_cache(gfs)
      {}

      /* @brief @todo
       *
       * @param[in]  u           The solution that will be saved
       * @param[out] transferMap The map containing the solution during adaptation
       */
      void backupData(Grid& grid, GFSU& gfsu, Projection& projection, U& u, MapType& transfer_map)
      {
        typedef backup_visitor<GFSU,U,MapType> Visitor;

        Visitor visitor(gfsu,projection,u,_leaf_offset_cache,transfer_map);

        // iterate over all elems
        for(const auto& cell : elements(gfsu.entitySet(),Partitions::interior))
          visitor(cell);
      }

      /* @brief @todo
       *
       * @param[out] u           The solution after adaptation
       * @param[in]  transferMap The map that contains the information for the rebuild of u
       */
      void replayData(Grid& grid, GFSU& gfsu, Projection& projection, U& u, const MapType& transfer_map)
      {
        const IDSet& id_set = grid.localIdSet();

        using CountVector = Backend::Vector<GFSU,int>;
        CountVector uc(gfsu,0);

        typedef replay_visitor<GFSU,U,CountVector> Visitor;
        Visitor visitor(gfsu,u,uc,_leaf_offset_cache);

        // iterate over all elems
        for (const auto& cell : elements(gfsu.entitySet(),Partitions::interior))
          {
            Element ancestor = cell;

            typename MapType::const_iterator map_it;
            while ((map_it = transfer_map.find(id_set.id(ancestor))) == transfer_map.end())
              {
                if (!ancestor.hasFather())
                  DUNE_THROW(Exception,
                             "transferMap of GridAdaptor didn't contain ancestor of element with id " << id_set.id(ancestor));
                ancestor = ancestor.father();
              }

            visitor(cell,ancestor,map_it->second);
          }

        typedef Dune::PDELab::AddDataHandle<GFSU,U> DOFHandle;
        DOFHandle addHandle1(gfsu,u);
        gfsu.entitySet().gridView().communicate(addHandle1,
                                                Dune::InteriorBorder_InteriorBorder_Interface,Dune::ForwardCommunication);
        typedef Dune::PDELab::AddDataHandle<GFSU,CountVector> CountHandle;
        CountHandle addHandle2(gfsu,uc);
        gfsu.entitySet().gridView().communicate(addHandle2,
                                                Dune::InteriorBorder_InteriorBorder_Interface,Dune::ForwardCommunication);

        // normalize multiple-interpolated DOFs by taking the arithmetic average
        typename CountVector::iterator ucit = uc.begin();
        for (typename U::iterator uit = u.begin(), uend = u.end(); uit != uend; ++uit, ++ucit)
          (*uit) /= ((*ucit) > 0 ? (*ucit) : 1.0);
      }

    private:

      LeafOffsetCache<GFSU> _leaf_offset_cache;

    };

    /*! grid adaptation as a function
     *
     * @brief adapt a grid, corresponding function space and solution vectors
     *
     * Assumes that the grid's elements have been marked for refinement and coarsening appropriately before
     *
     * @tparam Grid       Type of the grid we want to adapt
     * @tparam GFS        Type of ansatz space, we need to update it after adaptation
     * @tparam X          Container class for DOF vectors
     */
    template<class Grid, class GFS, class X>
    void adapt_grid (Grid& grid, GFS& gfs, X& x1, int int_order)
    {
      typedef L2Projection<GFS,X> Projection;
      Projection projection(gfs,int_order);

      GridAdaptor<Grid,GFS,X,Projection> grid_adaptor(gfs);

      // prepare the grid for refinement
      grid.preAdapt();

      // save u
      typename GridAdaptor<Grid,GFS,X,Projection>::MapType transferMap1;
      grid_adaptor.backupData(grid,gfs,projection,x1,transferMap1);

      // adapt the grid
      grid.adapt();

      // update the function spaces
      gfs.update(true);

      // reset u
      x1 = X(gfs,0.0);
      grid_adaptor.replayData(grid,gfs,projection,x1,transferMap1);

      // clean up
      grid.postAdapt();
    }

    /*! grid adaptation as a function
     *
     * @brief adapt a grid, corresponding function space and solution vectors
     *
     * Assumes that the grid's elements have been marked for refinement and coarsening appropriately before
     *
     * @tparam Grid       Type of the grid we want to adapt
     * @tparam GFS        Type of ansatz space, we need to update it after adaptation
     * @tparam X          Container class for DOF vectors
     * @tparam Projection Projection used when Elems vanish
     */
    template<class Grid, class GFS, class X>
    void adapt_grid (Grid& grid, GFS& gfs, X& x1, X& x2, int int_order)
    {
      typedef L2Projection<GFS,X> Projection;
      Projection projection(gfs,int_order);

      GridAdaptor<Grid,GFS,X,Projection> grid_adaptor(gfs);

      // prepare the grid for refinement
      grid.preAdapt();

      // save solution
      typename GridAdaptor<Grid,GFS,X,Projection>::MapType transferMap1;
      grid_adaptor.backupData(grid,gfs,projection,x1,transferMap1);
      typename GridAdaptor<Grid,GFS,X,Projection>::MapType transferMap2;
      grid_adaptor.backupData(grid,gfs,projection,x2,transferMap2);

      // adapt the grid
      grid.adapt();

      // update the function spaces
      gfs.update(true);

      // interpolate solution
      x1 = X(gfs,0.0);
      grid_adaptor.replayData(grid,gfs,projection,x1,transferMap1);
      x2 = X(gfs,0.0);
      grid_adaptor.replayData(grid,gfs,projection,x2,transferMap2);

      // clean up
      grid.postAdapt();
    }

#ifndef DOXYGEN
    namespace impl{

      // Struct for storing a GridFunctionSpace, corrosponding vectors and integration order
      template <typename G, typename... X>
      struct GFSWithVectors
      {
        // Export types
        using GFS = G;
        using Tuple = std::tuple<X&...>;

        GFSWithVectors (GFS& gfs, int integrationOrder, X&... x) :
          _gfs(gfs),
          _integrationOrder(integrationOrder),
          _tuple(x...)
        {}

        GFS& _gfs;
        int _integrationOrder;
        Tuple _tuple;
      };

      // Forward declarations needed for the recursion
      template <typename Grid>
      void iteratePacks(Grid& grid);
      template <typename Grid, typename X, typename... XS>
      void iteratePacks(Grid& grid, X& x, XS&... xs);

      // This function is called after the last vector of the tuple.  Here
      // the next pack is called.  On the way back we update the current
      // function space.
      template<std::size_t I = 0, typename Grid, typename X, typename... XS>
      inline typename std::enable_if<I == std::tuple_size<typename X::Tuple>::value, void>::type
      iterateTuple(Grid& grid, X& x, XS&... xs)
      {
        // Iterate next pack
        iteratePacks(grid,xs...);

        // On our way back we need to update the current function space
        x._gfs.update(true);
      }

      /* In this function we store the data of the current vector (indicated
       * by template parameter I) of the current pack. After recursively
       * iterating through the other packs and vectors we replay the data.
       *
       * @tparam I      std:size_t used for tmp
       * @tparam Grid   Grid type
       * @tparam X      Current  pack
       * @tparam ...XS  Remaining packs
       */
      template<std::size_t I = 0, typename Grid, typename X, typename... XS>
      inline typename std::enable_if<I < std::tuple_size<typename X::Tuple>::value, void>::type
      iterateTuple(Grid& grid, X& x, XS&... xs)
      {
        // Get some basic types
        using GFS = typename X::GFS;
        using Tuple = typename X::Tuple;
        using V  = typename std::decay<typename std::tuple_element<I,Tuple>::type>::type;
        // // alternative:
        // auto v = std::get<I>(x._tuple);
        // using V = decltype(v);

        // Setup classes for data restoring
        typedef Dune::PDELab::L2Projection <GFS,V> Projection;
        Projection projection(x._gfs,x._integrationOrder);
        GridAdaptor<Grid,GFS,V,Projection> gridAdaptor(x._gfs);

        // Store vector data
        typename GridAdaptor<Grid,GFS,V,Projection>::MapType transferMap;
        gridAdaptor.backupData(grid,x._gfs,projection,std::get<I>(x._tuple),transferMap);

        // Recursively iterate through remaining vectors (and packs). Grid
        // adaption will be done at the end of recursion.
        iterateTuple<I + 1, Grid, X, XS...>(grid,x,xs...);

        // Play back data. Note: At this point the function space was
        // already updatet.
        std::get<I>(x._tuple) = V(x._gfs,0.0);
        gridAdaptor.replayData(grid,x._gfs,projection,std::get<I>(x._tuple),transferMap);
      }

      // This gets called after the last pack.  After this function call we
      // have visited every vector of every pack and we will go back through
      // the recursive function calls.
      template <typename Grid>
      void iteratePacks(Grid& grid)
      {
        // Adapt the grid
        grid.adapt();
      }

      /* Use template meta programming to iterate over packs at compile time
       *
       * In order to adapt our grid and all vectors of all packs we need to
       * do the following:
       * - Iterate over all vectors of all packs.
       * - Store the data from the vectors where things could change.
       * - Adapt our grid.
       * - Update function spaces and restore data.
       *
       * The key point is that we need the object that stores the data to
       * replay it.  Because of that we can not just iterate over the packs
       * and within each pack iterate over the vectors but we have to make
       * one big recursion.  Therefore we iterate over the vectors of the
       * current pack.
       */
       template <typename Grid, typename X, typename... XS>
       void iteratePacks(Grid& grid, X& x, XS&... xs)
       {
         iterateTuple(grid,x,xs...);
       }

    } // namespace impl
#endif // DOXYGEN

    /*! \brief Pack function space and vectors for grid adaption
     *
     * This function packs a GridFunctionSpace an integration order and an
     * arbitrary number of vectors in a single struct.
     *
     * Important: You have to make sure that all vectors belong to the
     * same function space.
     *
     * @tparam GFS   Grid function space
     * @tparam ...X  Arbitrary number of corresponding vectors
     */
    template <typename GFS, typename... X>
    impl::GFSWithVectors<GFS,X...> transferSolutions(GFS& gfs, int integrationOrder, X&... x)
    {
      impl::GFSWithVectors<GFS,X...> gfsWithVectors(gfs, integrationOrder, x...);
      return gfsWithVectors;
    }

    /*! \brief Adapt grid and multiple function spaces with corresponding vectors
     *
     * Assumes that the grid's elements have been marked for refinement and
     * coarsement appropriately befor
     *
     * @tparam Grid   Type of the Grid
     * @tparam X      Packed GFS with vectors that should be adapted
     *
     * Note: A pack can be created using the transferSolution function.
     */
    template <typename Grid, typename... X>
    void adaptGrid(Grid& grid, X&... x)
    {
      // Prepare the grid for refinement
      grid.preAdapt();

      // Iterate over packs
      impl::iteratePacks(grid,x...);

      // Clean up
      grid.postAdapt();
    }


    template<typename T>
    void error_fraction(const T& x, typename T::ElementType alpha, typename T::ElementType beta,
                        typename T::ElementType& eta_alpha, typename T::ElementType& eta_beta, int verbose=0)
    {
      if (verbose>0)
        std::cout << "+++ error fraction: alpha=" << alpha << " beta=" << beta << std::endl;
      const int steps=20; // max number of bisection steps
      typedef typename T::ElementType NumberType;
      NumberType total_error = x.one_norm();
      NumberType max_error = x.infinity_norm();
      NumberType eta_alpha_left = 0.0;
      NumberType eta_alpha_right = max_error;
      NumberType eta_beta_left = 0.0;
      NumberType eta_beta_right = max_error;
      for (int j=1; j<=steps; j++)
        {
          eta_alpha = 0.5*(eta_alpha_left+eta_alpha_right);
          eta_beta = 0.5*(eta_beta_left+eta_beta_right);
          NumberType sum_alpha=0.0;
          NumberType sum_beta=0.0;
          unsigned int alpha_count = 0;
          unsigned int beta_count = 0;
          for (typename T::const_iterator it = x.begin(),
                 end = x.end();
               it != end;
               ++it)
            {
              if (*it >=eta_alpha) { sum_alpha += *it; alpha_count++;}
              if (*it < eta_beta) { sum_beta += *it; beta_count++;}
            }
          if (verbose>1)
            {
              std::cout << "+++ " << j << " eta_alpha=" << eta_alpha << " alpha_fraction=" << sum_alpha/total_error
                        << " elements: " << alpha_count << " of " << x.N() << std::endl;
              std::cout << "+++ " << j << " eta_beta=" << eta_beta << " beta_fraction=" << sum_beta/total_error
                        << " elements: " << beta_count << " of " << x.N() << std::endl;
            }
          if (std::abs(alpha-sum_alpha/total_error) <= 0.01 && std::abs(beta-sum_beta/total_error) <= 0.01) break;
          if (sum_alpha>alpha*total_error)
            eta_alpha_left = eta_alpha;
          else
            eta_alpha_right = eta_alpha;
          if (sum_beta>beta*total_error)
            eta_beta_right = eta_beta;
          else
            eta_beta_left = eta_beta;
        }
      if (verbose>0)
        {
          std::cout << "+++ refine_threshold=" << eta_alpha
                    << " coarsen_threshold=" << eta_beta << std::endl;
        }
    }


    template<typename T>
    void element_fraction(const T& x, typename T::ElementType alpha, typename T::ElementType beta,
                          typename T::ElementType& eta_alpha, typename T::ElementType& eta_beta, int verbose=0)
    {
      const int steps=20; // max number of bisection steps
      typedef typename T::ElementType NumberType;
      NumberType total_error =x.N();
      NumberType max_error = x.infinity_norm();
      NumberType eta_alpha_left = 0.0;
      NumberType eta_alpha_right = max_error;
      NumberType eta_beta_left = 0.0;
      NumberType eta_beta_right = max_error;
      for (int j=1; j<=steps; j++)
        {
          eta_alpha = 0.5*(eta_alpha_left+eta_alpha_right);
          eta_beta = 0.5*(eta_beta_left+eta_beta_right);
          NumberType sum_alpha=0.0;
          NumberType sum_beta=0.0;
          unsigned int alpha_count = 0;
          unsigned int beta_count = 0;

          for (typename T::const_iterator it = x.begin(),
                 end = x.end();
               it != end;
               ++it)
            {
              if (*it>=eta_alpha) { sum_alpha += 1.0; alpha_count++;}
              if (*it< eta_beta) { sum_beta +=1.0; beta_count++;}
            }
          if (verbose>1)
            {
              std::cout << j << " eta_alpha=" << eta_alpha << " alpha_fraction=" << sum_alpha/total_error
                        << " elements: " << alpha_count << " of " << x.N() << std::endl;
              std::cout << j << " eta_beta=" << eta_beta << " beta_fraction=" << sum_beta/total_error
                        << " elements: " << beta_count << " of " << x.N() << std::endl;
            }
          if (std::abs(alpha-sum_alpha/total_error) <= 0.01 && std::abs(beta-sum_beta/total_error) <= 0.01) break;
          if (sum_alpha>alpha*total_error)
            eta_alpha_left = eta_alpha;
          else
            eta_alpha_right = eta_alpha;
          if (sum_beta>beta*total_error)
            eta_beta_right = eta_beta;
          else
            eta_beta_left = eta_beta;
        }
      if (verbose>0)
        {
          std::cout << "+++ refine_threshold=" << eta_alpha
                    << " coarsen_threshold=" << eta_beta << std::endl;
        }
    }

    /** Compute error distribution
     */
    template<typename T>
    void error_distribution(const T& x, unsigned int bins)
    {
      const int steps=30; // max number of bisection steps
      typedef typename T::ElementType NumberType;
      NumberType total_error = x.one_norm();
      NumberType total_elements = x.N();
      NumberType max_error = x.infinity_norm();
      std::vector<NumberType> left(bins,0.0);
      std::vector<NumberType> right(bins,max_error*(1.0+1e-8));
      std::vector<NumberType> eta(bins);
      std::vector<NumberType> target(bins);
      for (unsigned int k=0; k<bins; k++)
        target[k]= (k+1)/((NumberType)bins);
      for (int j=1; j<=steps; j++)
        {
          for (unsigned int k=0; k<bins; k++)
            eta[k]= 0.5*(left[k]+right[k]);
          std::vector<NumberType> sum(bins,0.0);
          std::vector<int> count(bins,0);

          for (typename T::const_iterator it = x.begin(),
                 end = x.end();
               it != end;
               ++it)
            {
              for (unsigned int k=0; k<bins; k++)
                if (*it<=eta[k])
                  {
                    sum[k] += *it;
                    count[k] += 1;
                  }
            }
          // std::cout << std::endl;
          // std::cout << "// step " << j << std::endl;
          // for (unsigned int k=0; k<bins; k++)
          //    std::cout << k+1 << " " << count[k] << " " << eta[k] << " " << right[k]-left[k]
          //          << " " << sum[k]/total_error << " " << target[k] << std::endl;
          for (unsigned int k=0; k<bins; k++)
            if (sum[k]<=target[k]*total_error)
              left[k] = eta[k];
            else
              right[k] = eta[k];
        }
      std::vector<NumberType> sum(bins,0.0);
      std::vector<int> count(bins,0);
      for (unsigned int i=0; i<x.N(); i++)
        for (unsigned int k=0; k<bins; k++)
          if (x[i]<=eta[k])
            {
              sum[k] += x[i];
              count[k] += 1;
            }
      std::cout << "+++ error distribution" << std::endl;
      std::cout << "+++ number of elements: " << x.N() << std::endl;
      std::cout << "+++ max element error:  " << max_error << std::endl;
      std::cout << "+++ total error:        " << total_error << std::endl;
      std::cout << "+++ bin #elements eta sum/total " << std::endl;
      for (unsigned int k=0; k<bins; k++)
        std::cout << "+++ " << k+1 << " " << count[k] << " " << eta[k] << " " << sum[k]/total_error << std::endl;
    }

    template<typename Grid, typename X>
    void mark_grid (Grid &grid, const X& x, typename X::ElementType refine_threshold,
                    typename X::ElementType coarsen_threshold, int min_level = 0, int max_level = std::numeric_limits<int>::max(), int verbose=0)
    {
      typedef typename Grid::LeafGridView GV;

      GV gv = grid.leafGridView();

      unsigned int refine_cnt=0;
      unsigned int coarsen_cnt=0;

      typedef typename X::GridFunctionSpace GFS;
      typedef LocalFunctionSpace<GFS> LFS;
      typedef LFSIndexCache<LFS> LFSCache;
      typedef typename X::template ConstLocalView<LFSCache> XView;

      LFS lfs(x.gridFunctionSpace());
      LFSCache lfs_cache(lfs);
      XView x_view(x);

      for(const auto& cell : elements(gv))
        {
          lfs.bind(cell);
          lfs_cache.update();
          x_view.bind(lfs_cache);

          if (x_view[0]>=refine_threshold && cell.level() < max_level)
            {
              grid.mark(1,cell);
              refine_cnt++;
            }
          if (x_view[0]<=coarsen_threshold && cell.level() > min_level)
            {
              grid.mark(-1,cell);
              coarsen_cnt++;
            }
          x_view.unbind();
        }
      if (verbose>0)
        std::cout << "+++ mark_grid: " << refine_cnt << " marked for refinement, "
                  << coarsen_cnt << " marked for coarsening" << std::endl;
    }


    template<typename Grid, typename X>
    void mark_grid_for_coarsening (Grid &grid, const X& x, typename X::ElementType refine_threshold,
                                   typename X::ElementType coarsen_threshold, int verbose=0)
    {
      typedef typename Grid::LeafGridView GV;

      GV gv = grid.leafGridView();

      unsigned int coarsen_cnt=0;

      typedef typename X::GridFunctionSpace GFS;
      typedef LocalFunctionSpace<GFS> LFS;
      typedef LFSIndexCache<LFS> LFSCache;
      typedef typename X::template ConstLocalView<LFSCache> XView;

      LFS lfs(x.gridFunctionSpace());
      LFSCache lfs_cache(lfs);
      XView x_view(x);

      for(const auto& cell : elements(gv))
        {
          lfs.bind(cell);
          lfs_cache.update();
          x_view.bind(lfs_cache);

          if (x_view[0]>=refine_threshold)
            {
              grid.mark(-1,cell);
              coarsen_cnt++;
            }
          if (x_view[0]<=coarsen_threshold)
            {
              grid.mark(-1,cell);
              coarsen_cnt++;
            }
        }
      if (verbose>0)
        std::cout << "+++ mark_grid_for_coarsening: "
                  << coarsen_cnt << " marked for coarsening" << std::endl;
    }


    class TimeAdaptationStrategy
    {
      // strategy parameters
      double scaling;
      double optimistic_factor;
      double coarsen_limit;
      double balance_limit;
      double tol;
      double T;
      int verbose;
      bool no_adapt;
      double refine_fraction_while_refinement;
      double coarsen_fraction_while_refinement;
      double coarsen_fraction_while_coarsening;
      double timestep_decrease_factor;
      double timestep_increase_factor;

      // results to be reported to the user after evaluating the error
      bool accept;
      bool adapt_dt;
      bool adapt_grid;
      double newdt;
      double q_s, q_t;

      // state variables
      bool have_decreased_time_step;
      bool have_refined_grid;

      // the only state variable: accumulated error
      double accumulated_estimated_error_squared;
      double minenergy_rate;

    public:
      TimeAdaptationStrategy (double tol_, double T_, int verbose_=0)
        : scaling(16.0), optimistic_factor(1.0), coarsen_limit(0.5), balance_limit(0.33333),
          tol(tol_), T(T_), verbose(verbose_), no_adapt(false),
          refine_fraction_while_refinement(0.7),
          coarsen_fraction_while_refinement(0.2),
          coarsen_fraction_while_coarsening(0.2),
          timestep_decrease_factor(0.5), timestep_increase_factor(1.5),
          accept(false), adapt_dt(false), adapt_grid(false), newdt(1.0),
          have_decreased_time_step(false), have_refined_grid(false),
          accumulated_estimated_error_squared(0.0),
          minenergy_rate(0.0)
      {
      }

      void setTimeStepDecreaseFactor (double s)
      {
        timestep_decrease_factor=s;
      }

      void setTimeStepIncreaseFactor (double s)
      {
        timestep_increase_factor=s;
      }

      void setRefineFractionWhileRefinement (double s)
      {
        refine_fraction_while_refinement=s;
      }

      void setCoarsenFractionWhileRefinement (double s)
      {
        coarsen_fraction_while_refinement=s;
      }

      void setCoarsenFractionWhileCoarsening (double s)
      {
        coarsen_fraction_while_coarsening=s;
      }

      void setMinEnergyRate (double s)
      {
        minenergy_rate=s;
      }

      void setCoarsenLimit (double s)
      {
        coarsen_limit=s;
      }

      void setBalanceLimit (double s)
      {
        balance_limit=s;
      }

      void setTemporalScaling (double s)
      {
        scaling=s;
      }

      void setOptimisticFactor (double s)
      {
        optimistic_factor=s;
      }

      void setAdaptationOn ()
      {
        no_adapt = false;
      }

      void setAdaptationOff ()
      {
        no_adapt = true;
      }

      bool acceptTimeStep () const
      {
        return accept;
      }

      bool adaptDT () const
      {
        return adapt_dt;
      }

      bool adaptGrid () const
      {
        return adapt_grid;
      }

      double newDT () const
      {
        return newdt;
      }

      double qs () const
      {
        return q_s;
      }

      double qt () const
      {
        return q_t;
      }

      double endT() const
      {
        return T;
      }

      double accumulatedErrorSquared () const
      {
        return accumulated_estimated_error_squared;
      }

      // to be called when new time step is done
      void startTimeStep ()
      {
        have_decreased_time_step = false;
        have_refined_grid = false;
      }

      template<typename GM, typename X>
      void evaluate_estimators (GM& grid, double time, double dt, const X& eta_space,  const X& eta_time, double energy_timeslab)
      {
        accept=false;
        adapt_dt=false;
        adapt_grid=false;
        newdt=dt;

        double spatial_error = eta_space.one_norm();
        double temporal_error = scaling*eta_time.one_norm();
        double sum = spatial_error + temporal_error;
        //double allowed = optimistic_factor*(tol*tol-accumulated_estimated_error_squared)*dt/(T-time);
        double allowed = tol*tol*(energy_timeslab+minenergy_rate*dt);
        q_s = spatial_error/sum;
        q_t = temporal_error/sum;

        // print some statistics
        if (verbose>0)
          std::cout << "+++"
                    << " q_s=" << q_s
                    << " q_t=" << q_t
                    << " sum/allowed=" << sum/allowed
                    // << " allowed=" << allowed
                    << " estimated error=" << sqrt(accumulated_estimated_error_squared+sum)
                    << " energy_rate=" << energy_timeslab/dt
                    << std::endl;

        // for simplicity: a mode that does no adaptation at all
        if (no_adapt)
          {
            accept = true;
            accumulated_estimated_error_squared += sum;
            if (verbose>1) std::cout << "+++ no adapt mode" << std::endl;
            return;
          }

        // the adaptation strategy
        if (sum<=allowed)
          {
            // we will accept this time step
            accept = true;
            if (verbose>1) std::cout << "+++ accepting time step" << std::endl;
            accumulated_estimated_error_squared += sum;

            // check if grid size or time step needs to be adapted
            if (sum<coarsen_limit*allowed)
              {
                // the error is too small, i.e. the computation is inefficient
                if (q_t<balance_limit)
                  {
                    // spatial error is dominating => increase time step
                    newdt = timestep_increase_factor*dt;
                    adapt_dt = true;
                    if (verbose>1) std::cout << "+++ spatial error dominates: increase time step" << std::endl;
                  }
                else
                  {
                    if (q_s>balance_limit)
                      {
                        // step sizes balanced: coarsen in time
                        newdt = timestep_increase_factor*dt;
                        adapt_dt = true;
                        if (verbose>1) std::cout << "+++ increasing time step" << std::endl;
                      }
                    // coarsen grid in space
                    double eta_refine, eta_coarsen;
                    if (verbose>1) std::cout << "+++ mark grid for coarsening" << std::endl;
                    //error_distribution(eta_space,20);
                    Dune::PDELab::error_fraction(eta_space,coarsen_fraction_while_coarsening,
                                                 coarsen_fraction_while_coarsening,eta_refine,eta_coarsen);
                    Dune::PDELab::mark_grid_for_coarsening(grid,eta_space,eta_refine,eta_coarsen,verbose);
                    adapt_grid = true;
                  }
              }
            else
              {
                // modify at least the time step
                if (q_t<balance_limit)
                  {
                    // spatial error is dominating => increase time step
                    newdt = timestep_increase_factor*dt;
                    adapt_dt = true;
                    if (verbose>1) std::cout << "+++ spatial error dominates: increase time step" << std::endl;
                  }
              }
          }
        else
          {
            // error is too large, we need to do something
            if (verbose>1) std::cout << "+++ will redo time step" << std::endl;
            if (q_t>1-balance_limit)
              {
                // temporal error is dominating => decrease time step only
                newdt = timestep_decrease_factor*dt;
                adapt_dt = true;
                have_decreased_time_step = true;
                if (verbose>1) std::cout << "+++ decreasing time step only" << std::endl;
              }
            else
              {
                if (q_t<balance_limit)
                  {
                    if (!have_decreased_time_step)
                      {
                        // time steps size not balanced (too small)
                        newdt = timestep_increase_factor*dt;
                        adapt_dt = true;
                        if (verbose>1) std::cout << "+++ increasing time step" << std::endl;
                      }
                  }
                else
                  {
                    // step sizes balanced: refine in time as well
                    newdt = timestep_decrease_factor*dt;
                    adapt_dt = true;
                    have_decreased_time_step = true;
                    if (verbose>1) std::cout << "+++ decreasing time step" << std::endl;
                  }
                // refine grid in space
                double eta_refine, eta_coarsen;
                if (verbose>1) std::cout << "+++ BINGO mark grid for refinement and coarsening" << std::endl;
                //error_distribution(eta_space,20);
                Dune::PDELab::error_fraction(eta_space,refine_fraction_while_refinement,
                                             coarsen_fraction_while_refinement,eta_refine,eta_coarsen,0);
                Dune::PDELab::mark_grid(grid,eta_space,eta_refine,eta_coarsen,verbose);
                adapt_grid = true;
              }
          }
      }
    };



  } // namespace PDELab
} // namespace Dune

#endif