/usr/include/dune/pdelab/common/jacobiantocurl.hh is in libdune-pdelab-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | // -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:
#ifndef DUNE_PDELAB_COMMON_JACOBIANTOCURL_HH
#define DUNE_PDELAB_COMMON_JACOBIANTOCURL_HH
#include <cstddef>
#include <dune/common/fvector.hh>
namespace Dune {
namespace PDELab {
//! extract the curl of a function from the jacobian of that function
/**
* In 3D the curl \f$A=\nabla\times B\f$ is defined as
* \f{align*}{
* a_x = \partial_yb_z-\partial_zb_y \\
* a_y = \partial_zb_x-\partial_xb_z \\
* a_z = \partial_xb_y-\partial_yb_x
* \f}
* In lower dimensions, some of the coordinates may be missing (because
* the quantity does not vary in that direction), and some of the
* quantity's components vanish and are thus missing as well.
*/
template<typename Jacobian, std::size_t dimR = Jacobian::rows,
std::size_t dimD = Jacobian::cols>
class JacobianToCurl;
//! \brief extract the curl of a 1D-valued function in 2D from the
//! jacobian of that function
/**
* The two coordinates are the \f$x\f$- and \f$y\f$ coordinates and the
* one value component is the \f$z\f$-component of the quantity. It is
* assumed that the quantity shows no variation in the \f$z\f$-direction
* (thus \f$\partial_z=0\f$) and that its \f$x\f$- and \f$y\f$-components
* vanish. From the general 3D formula for the curl
* \f{align*}{
* A &=\nabla\times B \\
* & \Downarrow \\
* a_x &= \partial_yb_z-\partial_zb_y \\
* a_y &= \partial_zb_x-\partial_xb_z \\
* a_z &= \partial_xb_y-\partial_yb_x
* \f}
* only the first two survive:
* \f{align*}{
* a_x &= \partial_yb_z \\
* a_y &= -\partial_xb_z
* \f}
* Replacing \f$x\f$, \f$y\f$ and \f$z\f$ by the apropriate indices yields
* \f{align*}{
* a_0 &= \partial_1b_0 \\
* a_1 &= -\partial_0b_0
* \f}
*/
template<typename Jacobian>
class JacobianToCurl<Jacobian, 1, 2> {
static_assert
( Jacobian::rows == 1 && Jacobian::cols == 2, "This specialization "
"works only for dimRange == 1 and dimDomain == 2");
public:
typedef typename Jacobian::block_type CurlField;
static const std::size_t dimCurl = 2;
typedef FieldVector<CurlField, dimCurl> Curl;
void operator()(const Jacobian& jacobian, Curl& curl) const {
curl[0] = jacobian[0][1];
curl[1] = -jacobian[0][0];
}
};
//! \brief extract the curl of a 2D-valued function in 2D from the
//! jacobian of that function
/**
* The two coordinates are the \f$x\f$- and \f$y\f$ coordinates and the
* two value components the \f$x\f$- and \f$y\f$-components of the
* quantity. It is assumed that the quantity shows no variation in the
* \f$z\f$-direction (thus \f$\partial_z=0\f$) and that its
* \f$z\f$-component vanishes. From the general 3D formula for the curl
* \f{align*}{
* A &=\nabla\times B \\
* & \Downarrow \\
* a_x &= \partial_yb_z-\partial_zb_y \\
* a_y &= \partial_zb_x-\partial_xb_z \\
* a_z &= \partial_xb_y-\partial_yb_x
* \f}
* only the last survives:
* \f{align*}{
* a_z &= \partial_xb_y-\partial_yb_x
* \f}
* Replacing \f$x\f$, \f$y\f$ and \f$z\f$ by the apropriate indices yields
* \f{align*}{
* a_0 &= \partial_0b_1-\partial_1b_0
* \f}
*/
template<typename Jacobian>
class JacobianToCurl<Jacobian, 2, 2> {
static_assert
( Jacobian::rows == 2 && Jacobian::cols == 2, "This specialization "
"works only for dimRange == 2 and dimDomain == 2");
public:
typedef typename Jacobian::block_type CurlField;
static const std::size_t dimCurl = 1;
typedef FieldVector<CurlField, dimCurl> Curl;
void operator()(const Jacobian& jacobian, Curl& curl) const {
curl[0] = jacobian[1][0]-jacobian[0][1];
}
};
//! \brief extract the curl of a 3D-valued function in 3D from the
//! jacobian of that function
/**
* In the general 3D formula for the curl
* \f{align*}{
* A &=\nabla\times B \\
* & \Downarrow \\
* a_x &= \partial_yb_z-\partial_zb_y \\
* a_y &= \partial_zb_x-\partial_xb_z \\
* a_z &= \partial_xb_y-\partial_yb_x
* \f}
* we just need to replace \f$x\f$, \f$y\f$ and \f$z\f$ by the apropriate
* indices
* \f{align*}{
* a_0 &= \partial_1b_2-\partial_2b_1 \\
* a_1 &= \partial_2b_0-\partial_0b_2 \\
* a_2 &= \partial_0b_1-\partial_1b_0
* \f}
*/
template<typename Jacobian>
class JacobianToCurl<Jacobian, 3, 3> {
static_assert
( Jacobian::rows == 3 && Jacobian::cols == 3, "This specialization "
"works only for dimRange == 3 and dimDomain == 3");
public:
typedef typename Jacobian::block_type CurlField;
static const std::size_t dimCurl = 3;
typedef FieldVector<CurlField, dimCurl> Curl;
void operator()(const Jacobian& jacobian, Curl& curl) const {
for(std::size_t alpha = 0; alpha < 3; ++alpha) {
std::size_t beta = (alpha+1)%3;
std::size_t gamma = (alpha+2)%3;
curl[alpha] = jacobian[gamma][beta]-jacobian[beta][gamma];
}
}
};
} // namespace PDELab
} //namespace Dune
#endif // DUNE_PDELAB_COMMON_JACOBIANTOCURL_HH
|