This file is indexed.

/usr/include/dune/pdelab/finiteelement/dglegendre.hh is in libdune-pdelab-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

// DG tensor product basis with Legendre polynomials

#ifndef DUNE_PDELAB_FINITEELEMENT_DGLEGENDRE_HH
#define DUNE_PDELAB_FINITEELEMENT_DGLEGENDRE_HH

#include <vector>

#include <dune/common/fvector.hh>
#include <dune/common/deprecated.hh>

#include <dune/geometry/type.hh>
#include <dune/geometry/quadraturerules.hh>

#include <dune/localfunctions/common/localbasis.hh>
#include <dune/localfunctions/common/localfiniteelementtraits.hh>
#include <dune/localfunctions/common/localkey.hh>
#include <dune/localfunctions/common/localtoglobaladaptors.hh>

namespace Dune
{

  namespace LegendreStuff
  {
    // This is the size class
    // k is the polynomial degree,
    // n is the space dimension
    template<int k, int n>
    struct LegendreSize
    {
      enum{
        value=(k+1)*LegendreSize<k,n-1>::value
      };
    };

    template<>
    struct LegendreSize<0,1>
    {
      enum{
        value=1
      };
    };

    template<int k>
    struct LegendreSize<k,1>
    {
      enum{
        value=k+1
      };
    };

    template<int n>
    struct LegendreSize<0,n>
    {
      enum{
        value=1
      };
    };

    template<int k, int d>
    Dune::FieldVector<int,d> multiindex (int i)
    {
      Dune::FieldVector<int,d> alpha;
      for (int j=0; j<d; j++)
        {
          alpha[j] = i % (k+1);
          i = i/(k+1);
        }
      return alpha;
    }

    //! The 1d Legendre Polynomials (k=0,1 are specialized below)
    template<class D, class R, int k>
    class LegendrePolynomials1d
    {
    public:
      //! evaluate all polynomials at point x
      void p (D x, std::vector<R>& value) const
      {
        value.resize(k+1);
        value[0] = 1;
        value[1] = 2*x-1;
        for (int n=2; n<=k; n++)
          value[n] = ((2*n-1)*(2*x-1)*value[n-1]-(n-1)*value[n-2])/n;
      }

      // ith Lagrange polynomial of degree k in one dimension
      R p (int i, D x) const
      {
        std::vector<R> v(k+1);
        p(x,v);
        return v[i];
      }

      // derivative of all polynomials
      void dp (D x, std::vector<R>& derivative) const
      {
        R value[k+1];
        derivative.resize(k+1);
        value[0] = 1;
        derivative[0] = 0.0;
        value[1] = 2*x-1;
        derivative[1] = 2.0;
        for (int n=2; n<=k; n++)
          {
            value[n] = ((2*n-1)*(2*x-1)*value[n-1]-(n-1)*value[n-2])/n;
            derivative[n] = (2*x-1)*derivative[n-1] + 2*n*value[n-1];
          }
      }

      // value and derivative of all polynomials
      void pdp (D x, std::vector<R>& value, std::vector<R>& derivative) const
      {
        value.resize(k+1);
        derivative.resize(k+1);
        value[0] = 1;
        derivative[0] = 0.0;
        value[1] = 2*x-1;
        derivative[1] = 2.0;
        for (int n=2; n<=k; n++)
          {
            value[n] = ((2*n-1)*(2*x-1)*value[n-1]-(n-1)*value[n-2])/n;
            derivative[n] = (2*x-1)*derivative[n-1] + 2*n*value[n-1];
          }
      }

      // derivative of ith Lagrange polynomial of degree k in one dimension
      R dp (int i, D x) const
      {
        std::vector<R> v(k+1);
        dp(x,v);
        return v[i];
      }
    };

    template<class D, class R>
    class LegendrePolynomials1d<D,R,0>
    {
    public:
      //! evaluate all polynomials at point x
      void p (D x, std::vector<R>& value) const
      {
        value.resize(1);
        value[0] = 1.0;
      }

      // ith Lagrange polynomial of degree k in one dimension
      R p (int i, D x) const
      {
        return 1.0;
      }

      // derivative of all polynomials
      void dp (D x, std::vector<R>& derivative) const
      {
        derivative.resize(1);
        derivative[0] = 0.0;
      }

      // derivative of ith Lagrange polynomial of degree k in one dimension
      R dp (int i, D x) const
      {
        return 0.0;
      }

      // value and derivative of all polynomials
      void pdp (D x, std::vector<R>& value, std::vector<R>& derivative) const
      {
        value.resize(1);
        derivative.resize(1);
        value[0] = 1.0;
        derivative[0] = 0.0;
      }
    };

    template<class D, class R>
    class LegendrePolynomials1d<D,R,1>
    {
    public:
      //! evaluate all polynomials at point x
      void p (D x, std::vector<R>& value) const
      {
        value.resize(2);
        value[0] = 1.0;
        value[1] = 2*x-1;
      }

      // ith Lagrange polynomial of degree k in one dimension
      R p (int i, D x) const
      {
        return (1-i) + i*(2*x-1);
      }

      // derivative of all polynomials
      void dp (D x, std::vector<R>& derivative) const
      {
        derivative.resize(2);
        derivative[0] = 0.0;
        derivative[1] = 2.0;
      }

      // derivative of ith Lagrange polynomial of degree k in one dimension
      R dp (int i, D x) const
      {
        return (1-i)*0 + i*(2);
      }

      // value and derivative of all polynomials
      void pdp (D x, std::vector<R>& value, std::vector<R>& derivative) const
      {
        value.resize(2);
        derivative.resize(2);
        value[0] = 1.0;
        value[1] = 2*x-1;
        derivative[0] = 0.0;
        derivative[1] = 2.0;
      }
    };

    /**@ingroup LocalBasisImplementation
       \brief Lagrange shape functions of order k on the reference cube.

       Also known as \f$Q^k\f$.

       \tparam D Type to represent the field in the domain.
       \tparam R Type to represent the field in the range.
       \tparam k Polynomial degree
       \tparam d Dimension of the cube

       \nosubgrouping
    */
    template<class D, class R, int k, int d>
    class DGLegendreLocalBasis
    {
      enum { n = LegendreSize<k,d>::value };
      LegendrePolynomials1d<D,R,k> poly;
      mutable std::vector<std::vector<R> > v;
      mutable std::vector<std::vector<R> > a;

    public:
      typedef LocalBasisTraits<D,d,Dune::FieldVector<D,d>,R,1,Dune::FieldVector<R,1>,Dune::FieldMatrix<R,1,d> > Traits;

      DGLegendreLocalBasis () : v(d,std::vector<R>(k+1,0.0)), a(d,std::vector<R>(k+1,0.0))
      {}

      //! \brief number of shape functions
      unsigned int size () const
      {
        return n;
      }

      //! \brief Evaluate all shape functions
      inline void evaluateFunction (const typename Traits::DomainType& x,
                                    std::vector<typename Traits::RangeType>& value) const
      {
        // resize output vector
        value.resize(n);

        // compute values of 1d basis functions in each direction
        for (size_t j=0; j<d; j++) poly.p(x[j],v[j]);

        // now compute the product
        for (size_t i=0; i<n; i++)
          {
            // convert index i to multiindex
            Dune::FieldVector<int,d> alpha(multiindex<k,d>(i));

            // initialize product
            value[i] = 1.0;

            // dimension by dimension
            for (int j=0; j<d; j++) value[i] *= v[j][alpha[j]];
          }
      }

      //! \brief Evaluate Jacobian of all shape functions
      inline void
      evaluateJacobian (const typename Traits::DomainType& x,         // position
                        std::vector<typename Traits::JacobianType>& value) const      // return value
      {
        // resize output vector
        value.resize(size());

        // compute values of 1d basis functions in each direction
        for (size_t j=0; j<d; j++) poly.pdp(x[j],v[j],a[j]);

        // Loop over all shape functions
        for (size_t i=0; i<n; i++)
          {
            // convert index i to multiindex
            Dune::FieldVector<int,d> alpha(multiindex<k,d>(i));

            // Loop over all coordinate directions
            for (int j=0; j<d; j++)
              {
                // Initialize: the overall expression is a product
                value[i][0][j] = a[j][alpha[j]];

                // rest of the product
                for (int l=0; l<d; l++)
                  if (l!=j)
                    value[i][0][j] *= v[l][alpha[l]];
              }
          }
      }

      //! \brief Polynomial order of the shape functions
      unsigned int order () const
      {
        return k;
      }
    };


    //! determine degrees of freedom
    template<class D, class R, int k, int d>
    class DGLegendreLocalInterpolation
    {
      enum { n = LegendreSize<k,d>::value };
      typedef DGLegendreLocalBasis<D,R,k,d> LB;
      const LB lb;
      Dune::GeometryType gt;

    public:

      DGLegendreLocalInterpolation () : gt(Dune::GeometryType::cube,d)
      {}

      //! \brief Local interpolation of a function
      template<typename F, typename C>
      void interpolate (const F& f, std::vector<C>& out) const
      {
        // select quadrature rule
        typedef typename LB::Traits::RangeType RangeType;
        const Dune::QuadratureRule<R,d>&
          rule = Dune::QuadratureRules<R,d>::rule(gt,2*k);

        // prepare result
        out.resize(n);
        std::vector<R> diagonal(n);
        for (int i=0; i<n; i++) { out[i] = 0.0; diagonal[i] = 0.0; }

        // loop over quadrature points
        for (typename Dune::QuadratureRule<R,d>::const_iterator
               it=rule.begin(); it!=rule.end(); ++it)
          {
            // evaluate function at quadrature point
            typename LB::Traits::DomainType x;
            RangeType y;
            for (int i=0; i<d; i++) x[i] = it->position()[i];
            f.evaluate(x,y);

            // evaluate the basis
            std::vector<RangeType> phi(n);
            lb.evaluateFunction(it->position(),phi);

            // do integration
            for (int i=0; i<n; i++) {
              out[i] += y*phi[i]*it->weight();
              diagonal[i] += phi[i]*phi[i]*it->weight();
            }
          }
        for (int i=0; i<n; i++) out[i] /= diagonal[i];
      }
    };

    /**@ingroup LocalLayoutImplementation
       \brief Layout map for Q1 elements

       \nosubgrouping
       \implements Dune::LocalCoefficientsVirtualImp
    */
    template<int k, int d>
    class DGLegendreLocalCoefficients
    {
      enum { n = LegendreSize<k,d>::value };

    public:
      //! \brief Standard constructor
      DGLegendreLocalCoefficients () : li(n)
      {
        for (std::size_t i=0; i<n; i++)
          li[i] = LocalKey(0,0,i);
      }

      //! number of coefficients
      std::size_t size () const
      {
        return n;
      }

      //! get i'th index
      const LocalKey& localKey (std::size_t i) const
      {
        return li[i];
      }

    private:
      std::vector<LocalKey> li;
    };

  } // end of LegendreStuff namespace

  /** \todo Please doc me !
   */
  template<class D, class R, int k, int d>
  class DGLegendreLocalFiniteElement
  {
    typedef LegendreStuff::DGLegendreLocalBasis<D,R,k,d> LocalBasis;
    typedef LegendreStuff::DGLegendreLocalCoefficients<k,d> LocalCoefficients;
    typedef LegendreStuff::DGLegendreLocalInterpolation<D,R,k,d> LocalInterpolation;

  public:
    // static number of basis functions
    enum { n = LegendreStuff::LegendreSize<k,d>::value };

    /** \todo Please doc me !
     */
    typedef LocalFiniteElementTraits<LocalBasis,LocalCoefficients,LocalInterpolation> Traits;

    /** \todo Please doc me !
     */
    DGLegendreLocalFiniteElement ()
    {
      gt.makeCube(d);
    }

    /** \todo Please doc me !
     */
    const typename Traits::LocalBasisType& localBasis () const
    {
      return basis;
    }

    /** \todo Please doc me !
     */
    const typename Traits::LocalCoefficientsType& localCoefficients () const
    {
      return coefficients;
    }

    /** \todo Please doc me !
     */
    const typename Traits::LocalInterpolationType& localInterpolation () const
    {
      return interpolation;
    }

    /** \todo Please doc me !
     */
    GeometryType type () const
    {
      return gt;
    }

    DGLegendreLocalFiniteElement* clone () const
    {
      return new DGLegendreLocalFiniteElement(*this);
    }

  private:
    LocalBasis basis;
    LocalCoefficients coefficients;
    LocalInterpolation interpolation;
    GeometryType gt;
  };

  //! Factory for global-valued DGLegendre elements
  /**
   * \tparam Geometry Type of the geometry.  Used to extract the domain field
   *                  type and the dimension.
   * \tparam RF       Range field type.
   */
  template<class Geometry, class RF, int k>
  class DGLegendreFiniteElementFactory :
    public ScalarLocalToGlobalFiniteElementAdaptorFactory<
    DGLegendreLocalFiniteElement<
      typename Geometry::ctype, RF, k, Geometry::mydimension
      >,
    Geometry
    >
  {
    typedef DGLegendreLocalFiniteElement<
      typename Geometry::ctype, RF, k, Geometry::mydimension
      > LFE;
    typedef ScalarLocalToGlobalFiniteElementAdaptorFactory<LFE, Geometry> Base;

    static const LFE lfe;

  public:
    //! default constructor
    DGLegendreFiniteElementFactory() : Base(lfe) {}
  };

  template<class Geometry, class RF, int k>
  const typename DGLegendreFiniteElementFactory<Geometry, RF, k>::LFE
  DGLegendreFiniteElementFactory<Geometry, RF, k>::lfe;

} // End Dune namespace

#endif