/usr/include/dune/pdelab/finiteelement/dglegendre.hh is in libdune-pdelab-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// DG tensor product basis with Legendre polynomials
#ifndef DUNE_PDELAB_FINITEELEMENT_DGLEGENDRE_HH
#define DUNE_PDELAB_FINITEELEMENT_DGLEGENDRE_HH
#include <vector>
#include <dune/common/fvector.hh>
#include <dune/common/deprecated.hh>
#include <dune/geometry/type.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/localfunctions/common/localbasis.hh>
#include <dune/localfunctions/common/localfiniteelementtraits.hh>
#include <dune/localfunctions/common/localkey.hh>
#include <dune/localfunctions/common/localtoglobaladaptors.hh>
namespace Dune
{
namespace LegendreStuff
{
// This is the size class
// k is the polynomial degree,
// n is the space dimension
template<int k, int n>
struct LegendreSize
{
enum{
value=(k+1)*LegendreSize<k,n-1>::value
};
};
template<>
struct LegendreSize<0,1>
{
enum{
value=1
};
};
template<int k>
struct LegendreSize<k,1>
{
enum{
value=k+1
};
};
template<int n>
struct LegendreSize<0,n>
{
enum{
value=1
};
};
template<int k, int d>
Dune::FieldVector<int,d> multiindex (int i)
{
Dune::FieldVector<int,d> alpha;
for (int j=0; j<d; j++)
{
alpha[j] = i % (k+1);
i = i/(k+1);
}
return alpha;
}
//! The 1d Legendre Polynomials (k=0,1 are specialized below)
template<class D, class R, int k>
class LegendrePolynomials1d
{
public:
//! evaluate all polynomials at point x
void p (D x, std::vector<R>& value) const
{
value.resize(k+1);
value[0] = 1;
value[1] = 2*x-1;
for (int n=2; n<=k; n++)
value[n] = ((2*n-1)*(2*x-1)*value[n-1]-(n-1)*value[n-2])/n;
}
// ith Lagrange polynomial of degree k in one dimension
R p (int i, D x) const
{
std::vector<R> v(k+1);
p(x,v);
return v[i];
}
// derivative of all polynomials
void dp (D x, std::vector<R>& derivative) const
{
R value[k+1];
derivative.resize(k+1);
value[0] = 1;
derivative[0] = 0.0;
value[1] = 2*x-1;
derivative[1] = 2.0;
for (int n=2; n<=k; n++)
{
value[n] = ((2*n-1)*(2*x-1)*value[n-1]-(n-1)*value[n-2])/n;
derivative[n] = (2*x-1)*derivative[n-1] + 2*n*value[n-1];
}
}
// value and derivative of all polynomials
void pdp (D x, std::vector<R>& value, std::vector<R>& derivative) const
{
value.resize(k+1);
derivative.resize(k+1);
value[0] = 1;
derivative[0] = 0.0;
value[1] = 2*x-1;
derivative[1] = 2.0;
for (int n=2; n<=k; n++)
{
value[n] = ((2*n-1)*(2*x-1)*value[n-1]-(n-1)*value[n-2])/n;
derivative[n] = (2*x-1)*derivative[n-1] + 2*n*value[n-1];
}
}
// derivative of ith Lagrange polynomial of degree k in one dimension
R dp (int i, D x) const
{
std::vector<R> v(k+1);
dp(x,v);
return v[i];
}
};
template<class D, class R>
class LegendrePolynomials1d<D,R,0>
{
public:
//! evaluate all polynomials at point x
void p (D x, std::vector<R>& value) const
{
value.resize(1);
value[0] = 1.0;
}
// ith Lagrange polynomial of degree k in one dimension
R p (int i, D x) const
{
return 1.0;
}
// derivative of all polynomials
void dp (D x, std::vector<R>& derivative) const
{
derivative.resize(1);
derivative[0] = 0.0;
}
// derivative of ith Lagrange polynomial of degree k in one dimension
R dp (int i, D x) const
{
return 0.0;
}
// value and derivative of all polynomials
void pdp (D x, std::vector<R>& value, std::vector<R>& derivative) const
{
value.resize(1);
derivative.resize(1);
value[0] = 1.0;
derivative[0] = 0.0;
}
};
template<class D, class R>
class LegendrePolynomials1d<D,R,1>
{
public:
//! evaluate all polynomials at point x
void p (D x, std::vector<R>& value) const
{
value.resize(2);
value[0] = 1.0;
value[1] = 2*x-1;
}
// ith Lagrange polynomial of degree k in one dimension
R p (int i, D x) const
{
return (1-i) + i*(2*x-1);
}
// derivative of all polynomials
void dp (D x, std::vector<R>& derivative) const
{
derivative.resize(2);
derivative[0] = 0.0;
derivative[1] = 2.0;
}
// derivative of ith Lagrange polynomial of degree k in one dimension
R dp (int i, D x) const
{
return (1-i)*0 + i*(2);
}
// value and derivative of all polynomials
void pdp (D x, std::vector<R>& value, std::vector<R>& derivative) const
{
value.resize(2);
derivative.resize(2);
value[0] = 1.0;
value[1] = 2*x-1;
derivative[0] = 0.0;
derivative[1] = 2.0;
}
};
/**@ingroup LocalBasisImplementation
\brief Lagrange shape functions of order k on the reference cube.
Also known as \f$Q^k\f$.
\tparam D Type to represent the field in the domain.
\tparam R Type to represent the field in the range.
\tparam k Polynomial degree
\tparam d Dimension of the cube
\nosubgrouping
*/
template<class D, class R, int k, int d>
class DGLegendreLocalBasis
{
enum { n = LegendreSize<k,d>::value };
LegendrePolynomials1d<D,R,k> poly;
mutable std::vector<std::vector<R> > v;
mutable std::vector<std::vector<R> > a;
public:
typedef LocalBasisTraits<D,d,Dune::FieldVector<D,d>,R,1,Dune::FieldVector<R,1>,Dune::FieldMatrix<R,1,d> > Traits;
DGLegendreLocalBasis () : v(d,std::vector<R>(k+1,0.0)), a(d,std::vector<R>(k+1,0.0))
{}
//! \brief number of shape functions
unsigned int size () const
{
return n;
}
//! \brief Evaluate all shape functions
inline void evaluateFunction (const typename Traits::DomainType& x,
std::vector<typename Traits::RangeType>& value) const
{
// resize output vector
value.resize(n);
// compute values of 1d basis functions in each direction
for (size_t j=0; j<d; j++) poly.p(x[j],v[j]);
// now compute the product
for (size_t i=0; i<n; i++)
{
// convert index i to multiindex
Dune::FieldVector<int,d> alpha(multiindex<k,d>(i));
// initialize product
value[i] = 1.0;
// dimension by dimension
for (int j=0; j<d; j++) value[i] *= v[j][alpha[j]];
}
}
//! \brief Evaluate Jacobian of all shape functions
inline void
evaluateJacobian (const typename Traits::DomainType& x, // position
std::vector<typename Traits::JacobianType>& value) const // return value
{
// resize output vector
value.resize(size());
// compute values of 1d basis functions in each direction
for (size_t j=0; j<d; j++) poly.pdp(x[j],v[j],a[j]);
// Loop over all shape functions
for (size_t i=0; i<n; i++)
{
// convert index i to multiindex
Dune::FieldVector<int,d> alpha(multiindex<k,d>(i));
// Loop over all coordinate directions
for (int j=0; j<d; j++)
{
// Initialize: the overall expression is a product
value[i][0][j] = a[j][alpha[j]];
// rest of the product
for (int l=0; l<d; l++)
if (l!=j)
value[i][0][j] *= v[l][alpha[l]];
}
}
}
//! \brief Polynomial order of the shape functions
unsigned int order () const
{
return k;
}
};
//! determine degrees of freedom
template<class D, class R, int k, int d>
class DGLegendreLocalInterpolation
{
enum { n = LegendreSize<k,d>::value };
typedef DGLegendreLocalBasis<D,R,k,d> LB;
const LB lb;
Dune::GeometryType gt;
public:
DGLegendreLocalInterpolation () : gt(Dune::GeometryType::cube,d)
{}
//! \brief Local interpolation of a function
template<typename F, typename C>
void interpolate (const F& f, std::vector<C>& out) const
{
// select quadrature rule
typedef typename LB::Traits::RangeType RangeType;
const Dune::QuadratureRule<R,d>&
rule = Dune::QuadratureRules<R,d>::rule(gt,2*k);
// prepare result
out.resize(n);
std::vector<R> diagonal(n);
for (int i=0; i<n; i++) { out[i] = 0.0; diagonal[i] = 0.0; }
// loop over quadrature points
for (typename Dune::QuadratureRule<R,d>::const_iterator
it=rule.begin(); it!=rule.end(); ++it)
{
// evaluate function at quadrature point
typename LB::Traits::DomainType x;
RangeType y;
for (int i=0; i<d; i++) x[i] = it->position()[i];
f.evaluate(x,y);
// evaluate the basis
std::vector<RangeType> phi(n);
lb.evaluateFunction(it->position(),phi);
// do integration
for (int i=0; i<n; i++) {
out[i] += y*phi[i]*it->weight();
diagonal[i] += phi[i]*phi[i]*it->weight();
}
}
for (int i=0; i<n; i++) out[i] /= diagonal[i];
}
};
/**@ingroup LocalLayoutImplementation
\brief Layout map for Q1 elements
\nosubgrouping
\implements Dune::LocalCoefficientsVirtualImp
*/
template<int k, int d>
class DGLegendreLocalCoefficients
{
enum { n = LegendreSize<k,d>::value };
public:
//! \brief Standard constructor
DGLegendreLocalCoefficients () : li(n)
{
for (std::size_t i=0; i<n; i++)
li[i] = LocalKey(0,0,i);
}
//! number of coefficients
std::size_t size () const
{
return n;
}
//! get i'th index
const LocalKey& localKey (std::size_t i) const
{
return li[i];
}
private:
std::vector<LocalKey> li;
};
} // end of LegendreStuff namespace
/** \todo Please doc me !
*/
template<class D, class R, int k, int d>
class DGLegendreLocalFiniteElement
{
typedef LegendreStuff::DGLegendreLocalBasis<D,R,k,d> LocalBasis;
typedef LegendreStuff::DGLegendreLocalCoefficients<k,d> LocalCoefficients;
typedef LegendreStuff::DGLegendreLocalInterpolation<D,R,k,d> LocalInterpolation;
public:
// static number of basis functions
enum { n = LegendreStuff::LegendreSize<k,d>::value };
/** \todo Please doc me !
*/
typedef LocalFiniteElementTraits<LocalBasis,LocalCoefficients,LocalInterpolation> Traits;
/** \todo Please doc me !
*/
DGLegendreLocalFiniteElement ()
{
gt.makeCube(d);
}
/** \todo Please doc me !
*/
const typename Traits::LocalBasisType& localBasis () const
{
return basis;
}
/** \todo Please doc me !
*/
const typename Traits::LocalCoefficientsType& localCoefficients () const
{
return coefficients;
}
/** \todo Please doc me !
*/
const typename Traits::LocalInterpolationType& localInterpolation () const
{
return interpolation;
}
/** \todo Please doc me !
*/
GeometryType type () const
{
return gt;
}
DGLegendreLocalFiniteElement* clone () const
{
return new DGLegendreLocalFiniteElement(*this);
}
private:
LocalBasis basis;
LocalCoefficients coefficients;
LocalInterpolation interpolation;
GeometryType gt;
};
//! Factory for global-valued DGLegendre elements
/**
* \tparam Geometry Type of the geometry. Used to extract the domain field
* type and the dimension.
* \tparam RF Range field type.
*/
template<class Geometry, class RF, int k>
class DGLegendreFiniteElementFactory :
public ScalarLocalToGlobalFiniteElementAdaptorFactory<
DGLegendreLocalFiniteElement<
typename Geometry::ctype, RF, k, Geometry::mydimension
>,
Geometry
>
{
typedef DGLegendreLocalFiniteElement<
typename Geometry::ctype, RF, k, Geometry::mydimension
> LFE;
typedef ScalarLocalToGlobalFiniteElementAdaptorFactory<LFE, Geometry> Base;
static const LFE lfe;
public:
//! default constructor
DGLegendreFiniteElementFactory() : Base(lfe) {}
};
template<class Geometry, class RF, int k>
const typename DGLegendreFiniteElementFactory<Geometry, RF, k>::LFE
DGLegendreFiniteElementFactory<Geometry, RF, k>::lfe;
} // End Dune namespace
#endif
|