/usr/include/dune/pdelab/finiteelementmap/pk1dbasis.hh is in libdune-pdelab-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | #ifndef DUNE_NPDE_PK1D_HH
#define DUNE_NPDE_PK1D_HH
#include<vector>
#include<iostream>
#include<dune/common/fvector.hh>
#include<dune/common/fmatrix.hh>
#include<dune/common/exceptions.hh>
#include<dune/geometry/type.hh>
#include<dune/geometry/referenceelements.hh>
#include<dune/geometry/quadraturerules.hh>
#include<dune/localfunctions/common/localbasis.hh>
#include<dune/localfunctions/common/localkey.hh>
#include<dune/localfunctions/common/localfiniteelementtraits.hh>
#include<dune/pdelab/finiteelementmap/finiteelementmap.hh>
namespace Dune {
/** \brief Define the Pk Lagrange basis functions in 1d on the reference interval
*
* \tparam D Type to represent domain.
* \tparam R Type to represent range.
*/
template<class D, class R>
class Pk1dLocalFiniteElement
{
//! \brief Class for the basis functions
class Pk1dLocalBasis
{
Dune::GeometryType gt; // store geometry type for the basis
std::size_t k; // polynomial degree
std::size_t n; // the number of basis functions
std::vector<R> s; // Lagrange points on the reference interval
public:
typedef Dune::LocalBasisTraits<D,1,Dune::FieldVector<D,1>,R,1,Dune::FieldVector<R,1>,Dune::FieldMatrix<R,1,1>, 1> Traits;
//! \brief make a basis object for given polynomial degree
Pk1dLocalBasis (std::size_t k_) : gt(Dune::GeometryType::cube,1), k(k_), n(k_+1), s(n)
{
for (std::size_t i=0; i<=k; i++) s[i] = (1.0*i)/k;
}
//! \brief return number of basis functions
std::size_t size () const { return n; }
//! \brief Evaluate all shape functions at a given point in local coordinates
inline void evaluateFunction (const typename Traits::DomainType& in,
std::vector<typename Traits::RangeType>& out) const {
out.resize(n);
for (std::size_t i=0; i<=k; i++)
{
out[i] = 1.0;
for (std::size_t j=0; j<=k; j++)
if (i!=j) out[i] *= (in[0]-s[j])/(s[i]-s[j]);
}
}
//! \brief Evaluate Jacobian of all shape functions
inline void
evaluateJacobian (const typename Traits::DomainType& in,
std::vector<typename Traits::JacobianType>& out) const {
out.resize(n);
for (std::size_t i=0; i<=k; i++) // derivative of basis function i
{
out[i][0][0] = 0.0;
R factor = 1.0;
R denominator = 1.0;
for (std::size_t j=0; j<=k; j++)
{
if (j==i) continue; // treat factor (x-s_j)
denominator *= s[i]-s[j];
R a=1.0; // product of remaining factors (might be empty)
for (std::size_t l=j+1; l<=k; l++)
{
if (l==i) continue;
a *= in[0]-s[l];
}
out[i][0][0] += factor*a;
factor *= in[0]-s[j];
}
out[i][0][0] /= denominator;
}
}
//! \brief Polynomial order of the basis functions
unsigned int order () const {
return k;
}
//! \brief return geometry type
Dune::GeometryType type () const { return gt; }
};
//! \brief Class for the basis functions
class Pk1dLocalCoefficients
{
public:
Pk1dLocalCoefficients (std::size_t k_) : k(k_), n(k_+1), li(k_+1) {
li[0] = Dune::LocalKey(0,1,0);
for (int i=1; i<int(k); i++) li[i] = Dune::LocalKey(0,0,i-1);
li[k] = Dune::LocalKey(1,1,0);
}
//! number of coefficients
std::size_t size () const { return n; }
//! map index i to local key
const Dune::LocalKey& localKey (int i) const {
return li[i];
}
private:
std::size_t k; // polynomial degree
std::size_t n; // the number of basis functions
std::vector<Dune::LocalKey> li; // assignment of basis function to subentities
};
//! \brief Class for interpolating a given function by the basis
template<typename LB>
class Pk1dLocalInterpolation
{
public:
Pk1dLocalInterpolation (std::size_t k_) : k(k_), n(k_+1) {}
//! \brief Local interpolation of a function
template<typename F, typename C>
void interpolate (const F& f, std::vector<C>& out) const
{
out.resize(n);
typename LB::Traits::DomainType x;
typename LB::Traits::RangeType y;
for (int i=0; i<=int(k); i++)
{
x[0] = (1.0*i)/k; // the point to evaluate
f.evaluate(x,y);
out[i] = y[0];
}
}
private:
std::size_t k; // polynomial degree
std::size_t n; // the number of basis functions
};
Dune::GeometryType gt;
Pk1dLocalBasis basis;
Pk1dLocalCoefficients coefficients;
Pk1dLocalInterpolation<Pk1dLocalBasis> interpolation;
public:
typedef Dune::LocalFiniteElementTraits<Pk1dLocalBasis,
Pk1dLocalCoefficients,
Pk1dLocalInterpolation<Pk1dLocalBasis> > Traits;
Pk1dLocalFiniteElement (std::size_t k)
: gt(Dune::GeometryType::cube,1), basis(k), coefficients(k), interpolation(k)
{}
const typename Traits::LocalBasisType& localBasis () const
{
return basis;
}
const typename Traits::LocalCoefficientsType& localCoefficients () const
{
return coefficients;
}
const typename Traits::LocalInterpolationType& localInterpolation () const
{
return interpolation;
}
Dune::GeometryType type () const { return gt; }
Pk1dLocalFiniteElement* clone () const {
return new Pk1dLocalFiniteElement(*this);
}
};
namespace PDELab {
/** \brief FiniteElementMap for the Pk basis in 1d
*
* \tparam D Type to represent domain.
* \tparam R Type to represent range.
*/
template<class D, class R>
class Pk1dLocalFiniteElementMap
: public Dune::PDELab::SimpleLocalFiniteElementMap< Pk1dLocalFiniteElement<D,R> >
{
public:
Pk1dLocalFiniteElementMap (std::size_t k)
: Dune::PDELab::SimpleLocalFiniteElementMap< Pk1dLocalFiniteElement<D,R> >(Pk1dLocalFiniteElement<D,R>(k))
, _k(k)
{}
bool fixedSize() const
{
return true;
}
bool hasDOFs(int codim) const
{
switch (codim)
{
case 0:
return _k != 1;
case 1:
return _k > 0;
}
return false;
}
std::size_t size(GeometryType gt) const
{
if (gt.isVertex())
return _k > 0 ? 1 : 0;
if (gt.isLine())
return _k > 0 ? _k - 1 : 1;
return 0;
}
std::size_t maxLocalSize() const
{
return _k + 1;
}
private:
const std::size_t _k;
};
}
}
#endif
|