This file is indexed.

/usr/include/dune/pdelab/gridfunctionspace/datahandleprovider.hh is in libdune-pdelab-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_PDELAB_DATAHANDLEPROVIDER_HH
#define DUNE_PDELAB_DATAHANDLEPROVIDER_HH

#include <vector>
#include <stack>

#include <dune/common/typetraits.hh>
#include <dune/common/reservedvector.hh>
#include <dune/common/std/constexpr.hh>
#include <dune/typetree/visitor.hh>

#include <dune/pdelab/ordering/utility.hh>

namespace Dune {
  namespace PDELab {

    namespace {

      template<typename EntityIndex>
      struct get_size_for_entity
        : public TypeTree::TreeVisitor
        , public TypeTree::DynamicTraversal
      {

        template<typename Ordering, typename TreePath>
        void leaf(const Ordering& ordering, TreePath tp)
        {
          _size += ordering.size(_entity_index);
        }

        get_size_for_entity(const EntityIndex& entity_index)
          : _size(0)
          , _entity_index(entity_index)
        {}

        std::size_t size() const
        {
          return _size;
        }

      private:

        std::size_t _size;
        const EntityIndex& _entity_index;

      };


      template<typename EntityIndex, typename OffsetIterator>
      struct get_leaf_offsets_for_entity
        : public TypeTree::TreeVisitor
        , public TypeTree::DynamicTraversal
      {

        template<typename Ordering, typename TreePath>
        void leaf(const Ordering& ordering, TreePath tp)
        {
          *(++_oit) = ordering.size(_entity_index);
        }

        get_leaf_offsets_for_entity(const EntityIndex& entity_index, OffsetIterator oit)
          : _oit(oit)
          , _entity_index(entity_index)
        {}

        //! Export current position of offset iterator - required for MultiDomain support
        OffsetIterator offsetIterator() const
        {
          return _oit;
        }

      private:

        OffsetIterator _oit;
        const EntityIndex& _entity_index;

      };


      template<typename DOFIndex, typename ContainerIndex, std::size_t tree_depth, bool map_dof_indices = false>
      struct indices_for_entity
        : public TypeTree::TreeVisitor
        , public TypeTree::DynamicTraversal
      {

        typedef std::size_t size_type;
        typedef typename DOFIndex::EntityIndex EntityIndex;
        typedef typename std::vector<ContainerIndex>::iterator CIIterator;
        typedef typename std::conditional<
          map_dof_indices,
          typename std::vector<DOFIndex>::iterator,
          DummyDOFIndexIterator
          >::type DIIterator;


        template<typename Ordering, typename Child, typename TreePath, typename ChildIndex>
        void beforeChild(const Ordering& ordering, const Child& child, TreePath tp, ChildIndex childIndex)
        {
          _stack.push(std::make_pair(_ci_it,_di_it));
        }

        template<typename Ordering, typename TreePath>
        void leaf(const Ordering& ordering, TreePath tp)
        {
          size_type size = ordering.extract_entity_indices(_entity_index,
                                                           tp.back(),
                                                           _ci_it,
                                                           _ci_end,
                                                           _di_it);

          _ci_end += size;
          _ci_it = _ci_end;
          _di_end += size;
          _di_it = _di_end;
        }

        template<typename Ordering, typename Child, typename TreePath, typename ChildIndex>
        void afterChild(const Ordering& ordering, const Child& child, TreePath tp, ChildIndex childIndex)
        {
          // pop
          ordering.extract_entity_indices(_entity_index,
                                          childIndex,
                                          _stack.top().first,
                                          _ci_end);

          if (Ordering::consume_tree_index)
            for (DIIterator it = _stack.top().second;
                 it != _di_end;
                 ++it)
              it->treeIndex().push_back(childIndex);

          _stack.pop();
        }


        indices_for_entity(const EntityIndex& entity_index,
                           CIIterator ci_begin,
                           DIIterator di_begin = DIIterator())
          : _entity_index(entity_index)
          , _ci_it(ci_begin)
          , _ci_end(ci_begin)
          , _di_it(di_begin)
          , _di_end(di_begin)
        {}


        // Exposed for multidomain support
        CIIterator ci_end() const
        {
          return _ci_end;
        }

        // Exposed for multidomain support
        DIIterator di_end() const
        {
          return _di_end;
        }

      private:

        const EntityIndex& _entity_index;
        CIIterator _ci_it;
        CIIterator _ci_end;
        DIIterator _di_it;
        DIIterator _di_end;

        std::stack<
          std::pair<
            CIIterator,
            DIIterator
            >,
          ReservedVector<
            std::pair<
              CIIterator,
              DIIterator
              >,
            tree_depth
            >
          > _stack;
      };

    } // anonymous namespace


    template<typename GFS>
    class DataHandleProvider
    {

    public:

      typedef std::size_t size_type;

      //------------------------------
      // generic data handle interface
      //------------------------------

      //! returns true if data for this codim should be communicated
      bool dataHandleContains (int codim) const
      {
        return gfs().ordering().contains(codim);
      }

      //! returns true if size per entity of given dim and codim is a constant
      bool dataHandleFixedSize (int codim) const
      {
        return gfs().ordering().fixedSize(codim);
      }

      //! Returns true if the sizes of the leaf orderings in this tree should be sent as part of the communcation.
      /**
       * The MultiDomain extensions require knowledge about the size of the individual
       * orderings, which might belong to separate subdomains. Otherwise it is possible
       * to have size mismatches for entities with codim > 0 if there are protruding edges
       * in the parallel mesh partitioning.
       *
       * By default, this method will always return false. It must be overridden for cases
       * where the data actually needs to be sent.
       *
       * This flag also modifies the behavior of the generic data handles, which will automatically
       * send, receive and process the additional information. Note that if sendLeafSizes() returns
       * true, the underlying DataHandleIF of the grid will always use the data type char to be able
       * to send different types of data, which will automatically be marshalled to / from a byte stream.
       */
      DUNE_CONSTEXPR bool sendLeafSizes() const
      {
        return false;
      }

      /*! how many objects of type DataType have to be sent for a given entity

        Note: Only the sender side needs to know this size.
      */
      template<typename Entity>
      size_type dataHandleSize (const Entity& e) const
      {
        typedef typename GFS::Ordering Ordering;

        typedef typename Ordering::Traits::DOFIndex::EntityIndex EntityIndex;
        EntityIndex ei;

        Ordering::Traits::DOFIndexAccessor::GeometryIndex::store(
          ei,
          e.type(),
          gfs().gridView().indexSet().index(e)
        );

        get_size_for_entity<EntityIndex> get_size(ei);
        TypeTree::applyToTree(gfs().ordering(),get_size);

        return get_size.size();
      }

      template<typename V, typename EntityIndex>
      void setup_dof_indices(V& v, size_type n, const EntityIndex& ei, std::integral_constant<bool,true>) const
      {
        v.resize(n);
        for (typename V::iterator it = v.begin(),
               endit = v.end();
             it != endit;
             ++it)
          {
            it->treeIndex().clear();
            it->entityIndex() = ei;
          }
      }

      template<typename V, typename EntityIndex>
      void setup_dof_indices(V& v, size_type n, const EntityIndex& ei, std::integral_constant<bool,false>) const
      {}

      template<typename V>
      typename V::iterator dof_indices_begin(V& v, std::integral_constant<bool,true>) const
      {
        return v.begin();
      }

      template<typename V>
      DummyDOFIndexIterator dof_indices_begin(V& v, std::integral_constant<bool,false>) const
      {
        return DummyDOFIndexIterator();
      }

      //! return vector of global indices associated with the given entity
      template<typename Entity, typename ContainerIndex, typename DOFIndex, typename OffsetIterator, bool map_dof_indices>
      void dataHandleIndices (const Entity& e,
                              std::vector<ContainerIndex>& container_indices,
                              std::vector<DOFIndex>& dof_indices,
                              OffsetIterator oit,
                              std::integral_constant<bool,map_dof_indices> map_dof_indices_value
                              ) const
      {
        typedef typename GFS::Ordering Ordering;

        static_assert((is_same<ContainerIndex,typename Ordering::Traits::ContainerIndex>::value),
                      "dataHandleContainerIndices() called with invalid ContainerIndex type.");

        typedef typename Ordering::Traits::DOFIndex::EntityIndex EntityIndex;
        EntityIndex ei;

        Ordering::Traits::DOFIndexAccessor::GeometryIndex::store(
          ei,
          e.type(),
          gfs().entitySet().indexSet().index(e)
        );

        get_leaf_offsets_for_entity<EntityIndex,OffsetIterator> get_offsets(ei,oit);
        TypeTree::applyToTree(gfs().ordering(),get_offsets);
        OffsetIterator end_oit = oit + (TypeTree::TreeInfo<Ordering>::leafCount + 1);

        // convert sizes to offsets - last entry contains total size
        std::partial_sum(oit,end_oit,oit);
        size_type size = *(oit + TypeTree::TreeInfo<Ordering>::leafCount);

        container_indices.resize(size);
        // Clear index state
        for (typename std::vector<ContainerIndex>::iterator it = container_indices.begin(),
               endit = container_indices.end();
             it != endit;
             ++it)
          it->clear();

        setup_dof_indices(dof_indices,size,ei,map_dof_indices_value);

        indices_for_entity<
          DOFIndex,
          ContainerIndex,
          TypeTree::TreeInfo<Ordering>::depth,
          map_dof_indices
          > extract_indices(ei,container_indices.begin(),dof_indices_begin(dof_indices,map_dof_indices_value));
        TypeTree::applyToTree(gfs().ordering(),extract_indices);

      }

    protected:

      const GFS& gfs() const
      {
        return static_cast<const GFS&>(*this);
      }

    };

  } // namespace PDELab
} // namespace Dune

#endif // DUNE_PDELAB_DATAHANDLEPROVIDER