This file is indexed.

/usr/include/dune/pdelab/gridfunctionspace/interpolate.hh is in libdune-pdelab-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_PDELAB_INTERPOLATE_HH
#define DUNE_PDELAB_INTERPOLATE_HH

#include<vector>

#include<dune/common/exceptions.hh>

#include <dune/localfunctions/common/interfaceswitch.hh>

#include <dune/typetree/typetree.hh>
#include <dune/typetree/pairtraversal.hh>

#include <dune/pdelab/common/function.hh>
#include <dune/pdelab/gridfunctionspace/gridfunctionspace.hh>
#include <dune/pdelab/gridfunctionspace/lfsindexcache.hh>

namespace Dune {
  namespace PDELab {

    //! \addtogroup GridFunctionSpace
    //! \ingroup PDELab
    //! \{

    // Backend for standard local interpolation
    struct InterpolateBackendStandard
    {
      template<typename FE, typename ElemFunction, typename XL>
      void interpolate(const FE &fe, const ElemFunction &elemFunction,
                       XL &xl) const
      {
        FiniteElementInterfaceSwitch<FE>::interpolation(fe).
          interpolate(elemFunction,xl);
      }
    };

    namespace {

      template<typename IB, typename LF, typename XG>
      struct InterpolateLeafFromScalarVisitor
        : public TypeTree::TreeVisitor
        , public TypeTree::DynamicTraversal
      {

        template<typename LFS, typename TreePath>
        void leaf(const LFS& lfs, TreePath treePath) const
        {
          std::vector<typename XG::ElementType> xl(lfs.size());

          // call interpolate for the basis
          ib.interpolate(lfs.finiteElement(), lf, xl);

          // write coefficients into local vector
          xg.write_sub_container(lfs,xl);
        }

        InterpolateLeafFromScalarVisitor(const IB& ib_, const LF& lf_, XG& xg_)
          : ib(ib_)
          , lf(lf_)
          , xg(xg_)
        {}

        const IB& ib;
        const LF& lf;
        XG& xg;

      };


      template<typename IB, typename LF, typename XG>
      struct InterpolateLeafFromVectorVisitor
        : public TypeTree::TreeVisitor
        , public TypeTree::DynamicTraversal
      {

        template<typename LFS, typename TreePath>
        void leaf(const LFS& lfs, TreePath treePath) const
        {
          std::vector<typename XG::ElementType> xl(lfs.size());

          // call interpolate for the basis

          typedef SelectComponentAdapter<LF> LFCOMP;

          LFCOMP localfcomp(lf,treePath.back());
          ib.interpolate(lfs.finiteElement(), localfcomp, xl);

          // write coefficients into local vector
          xg.write_sub_container(lfs,xl);
        }

        InterpolateLeafFromVectorVisitor(const IB& ib_, const LF& lf_, XG& xg_)
          : ib(ib_)
          , lf(lf_)
          , xg(xg_)
        {}

        const IB& ib;
        const LF& lf;
        XG& xg;

      };


      template<typename IB, typename E, typename XG>
      struct InterpolateVisitor
        : public TypeTree::TreePairVisitor
        , public TypeTree::DynamicTraversal
      {

        template<typename F, typename LFS, typename TreePath>
        typename enable_if<F::isLeaf && LFS::isLeaf>::type
        leaf(const F& f, const LFS& lfs, TreePath treePath) const
        {
          std::vector<typename XG::ElementType> xl(lfs.size());

          // call interpolate for the basis
          ib.interpolate(lfs.finiteElement(),
                         GridFunctionToLocalFunctionAdapter<F>(f,e), xl);

          // write coefficients into local vector
          xg.write_sub_container(lfs,xl);
        }

        // interpolate PowerLFS from vector-valued function
        template<typename F, typename LFS, typename TreePath>
        typename enable_if<F::isLeaf && F::Traits::dimRange == 1
                           && (!LFS::isLeaf)>::type
        leaf(const F& f, const LFS& lfs, TreePath treePath) const
        {
          static_assert((TypeTree::TreeInfo<LFS>::depth == 2),
                        "Automatic interpolation of vector-valued function " \
                        "is restricted to trees of depth 1");

          typedef GridFunctionToLocalFunctionAdapter<F> LF;
          LF localf(f,e);

          TypeTree::applyToTree(lfs,InterpolateLeafFromScalarVisitor<IB,LF,XG>(ib,localf,xg));

        }

        // interpolate PowerLFS from vector-valued function
        template<typename F, typename LFS, typename TreePath>
        typename enable_if<F::isLeaf && (F::Traits::dimRange > 1) &&
                           (!LFS::isLeaf)>::type
        leaf(const F& f, const LFS& lfs, TreePath treePath) const
        {
          static_assert((TypeTree::TreeInfo<LFS>::depth == 2),
                        "Automatic interpolation of vector-valued function " \
                        "is restricted to trees of depth 1");
          static_assert(LFS::CHILDREN == F::Traits::dimRange,
                        "Number of children and dimension of range type " \
                        "must match for automatic interpolation of "    \
                        "vector-valued function");

          typedef GridFunctionToLocalFunctionAdapter<F> LF;
          LF localf(f,e);

          TypeTree::applyToTree(lfs,InterpolateLeafFromVectorVisitor<IB,LF,XG>(ib,localf,xg));
        }

        InterpolateVisitor(IB ib_, const E& e_, XG& xg_)
          : ib(ib_)
          , e(e_)
          , xg(xg_)
        {}

      private:
        IB ib;
        const E& e;
        XG& xg;
      };

    } // anonymous namespace

    //! interpolation from a given grid function
    /**
     * \code
#include <dune/pdelab/gridfunctionspace/interpolate.hh>
     * \endcode
     * \param f   Function to interpolate from.
     * \param gfs GridFunctionSpace to use for interpoaltion.
     * \param xg  Global vector of dofs to interpolate into.
     *
     * \note \c xg needs to be initialized to the correct size, but there is
     *       no need to initialize its contents.
     */
    template<typename F, typename GFS, typename XG>
    void interpolate (const F& f, const GFS& gfs, XG& xg)
    {
      // this is the leaf version now

      // get some types
      using EntitySet = typename GFS::Traits::EntitySet;
      using Element = typename EntitySet::Element;

      auto entity_set = gfs.entitySet();

      // make local function space
      typedef LocalFunctionSpace<GFS> LFS;
      LFS lfs(gfs);
      typedef LFSIndexCache<LFS> LFSCache;
      LFSCache lfs_cache(lfs);
      typedef typename XG::template LocalView<LFSCache> XView;

      XView x_view(xg);

      // loop once over the grid
      for (const auto& element : elements(entity_set))
        {
          // bind local function space to element
          lfs.bind(element);
          lfs_cache.update();
          x_view.bind(lfs_cache);

          // call interpolate
          TypeTree::applyToTreePair(f,lfs,InterpolateVisitor<InterpolateBackendStandard,Element,XView>(InterpolateBackendStandard(),element,x_view));

          x_view.unbind();
        }

      x_view.detach();
    }

    //! \} group GridFunctionSpace
  } // namespace PDELab
} // namespace Dune

#endif