This file is indexed.

/usr/include/dune/pdelab/instationary/explicitonestep.hh is in libdune-pdelab-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// -*- tab-width: 2; indent-tabs-mode: nil -*-
// vi: set et ts=2 sw=2 sts=2:

#ifndef DUNE_PDELAB_INSTATIONARY_EXPLICITONESTEP_HH
#define DUNE_PDELAB_INSTATIONARY_EXPLICITONESTEP_HH

#include <iostream>
#include <iomanip>

#include <dune/common/ios_state.hh>
#include <dune/pdelab/common/logtag.hh>
#include <dune/pdelab/instationary/onestepparameter.hh>

namespace Dune {
  namespace PDELab {

    /**
     *  @addtogroup OneStepMethod
     *  @{
     */
    /**
     * \brief Controller interface for adaptive time stepping.
     * \tparam R C++ type of the floating point parameters
     */
    template<class R>
    class TimeControllerInterface
    {
    public:
      typedef R RealType;

      /*! \brief Return name of the scheme
       */
      virtual RealType suggestTimestep (RealType time, RealType givendt) = 0;

      //! every abstract base class has a virtual destructor
      virtual ~TimeControllerInterface () {}
    };

    //! Default time controller; just returns given dt
    /**
     * \tparam R C++ type of the floating point parameters
     */
    template<class R>
    class SimpleTimeController : public TimeControllerInterface<R>
    {
    public:
      typedef R RealType;

      /*! \brief Return name of the scheme
       */
      virtual RealType suggestTimestep (RealType time, RealType givendt)
      {
        return givendt;
      }
    };


    //! limit time step to maximum dt * CFL number
    /**
     * \tparam R     C++ type of the floating point parameters
     * \tparam IGOS  instationary grid operator space
     */
    template<class R, class IGOS>
    class CFLTimeController : public TimeControllerInterface<R>
    {
    public:
      typedef R RealType;

      CFLTimeController (R cfl_, const IGOS& igos_) : cfl(cfl_), target(1e100), igos(igos_)
      {}

      CFLTimeController (R cfl_, R target_, const IGOS& igos_) : cfl(cfl_), target(target_), igos(igos_)
      {}

      void setTarget (R target_)
      {
        target = target_;
      }

      /*! \brief Return name of the scheme
       */
      virtual RealType suggestTimestep (RealType time, RealType givendt)
      {
        RealType suggested = cfl*igos.suggestTimestep(givendt);
        if (time+2.0*suggested<target)
          return suggested;
        if (time+suggested<target)
          return 0.5*(target-time);
        return target-time;
      }

    private:
      R cfl;
      R target;
      const IGOS& igos;
    };


    //! Do one step of an explicit time-stepping scheme
    /**
     * \tparam T          type to represent time values
     * \tparam IGOS       assembler for instationary problems
     * \tparam LS         backend to solve diagonal linear system
     * \tparam TrlV       vector type to represent coefficients of solutions
     * \tparam TstV       vector type to represent residuals
     * \tparam TC         time controller class
     */
    template<class T, class IGOS, class LS, class TrlV, class TstV = TrlV, class TC = SimpleTimeController<T> >
    class ExplicitOneStepMethod
    {
      typedef typename TrlV::ElementType Real;
      typedef typename IGOS::template MatrixContainer<Real>::Type M;

    public:
      //! construct a new one step scheme
      /**
       * \param method_    Parameter object.
       * \param igos_      Assembler object (instationary grid operator space).
       * \param pdesolver_ solver object (typically Newton).
       *
       * The contructed method object stores references to the object it is
       * constructed with, so these objects should be valid for as long as the
       * constructed object is used (or until setMethod() is called, see
       * there).
       * Use SimpleTimeController that does not control the time step.
       */
      ExplicitOneStepMethod(const TimeSteppingParameterInterface<T>& method_, IGOS& igos_, LS& ls_)
        : method(&method_), igos(igos_), ls(ls_), verbosityLevel(1), step(1), D(igos),
          tc(new SimpleTimeController<T>()), allocated(true)
      {
        if (method->implicit())
          DUNE_THROW(Exception,"explicit one step method called with implicit scheme");
        if (igos.trialGridFunctionSpace().gridView().comm().rank()>0)
          verbosityLevel = 0;
      }

      //! construct a new one step scheme
      /**
       * \param method_    Parameter object.
       * \param igos_      Assembler object (instationary grid operator space).
       * \param pdesolver_ solver object (typically Newton).
       * \param tc_        a time controller object
       *
       * The contructed method object stores references to the object it is
       * constructed with, so these objects should be valid for as long as the
       * constructed object is used (or until setMethod() is called, see
       * there).
       */
      ExplicitOneStepMethod(const TimeSteppingParameterInterface<T>& method_, IGOS& igos_, LS& ls_, TC& tc_)
        : method(&method_), igos(igos_), ls(ls_), verbosityLevel(1), step(1), D(igos),
          tc(&tc_), allocated(false)
      {
        if (method->implicit())
          DUNE_THROW(Exception,"explicit one step method called with implicit scheme");
      }

      ~ExplicitOneStepMethod ()
      {
        if (allocated) delete tc;
      }

      //! change verbosity level; 0 means completely quiet
      void setVerbosityLevel (int level)
      {
        if (igos.trialGridFunctionSpace().gridView().comm().rank()>0)
          verbosityLevel = 0;
        else
          verbosityLevel = level;
      }

      //! change number of current step
      void setStepNumber(int newstep) { step = newstep; }

      //! redefine the method to be used; can be done before every step
      /**
       * \param method_ Parameter object.
       *
       * The OneStepMethod object stores a reference to the method_ object.
       * The old method object is no longer referenced after this member
       * function returns.
       */
      void setMethod (const TimeSteppingParameterInterface<T>& method_)
      {
        method = &method_;
        if (method->implicit())
          DUNE_THROW(Exception,"explicit one step method called with implicit scheme");
      }

      /*! \brief do one step;
       * \param[in]  time start of time step
       * \param[in]  dt suggested time step size
       * \param[in]  xold value at begin of time step
       * \param[in]  limiter
       * \param[in,out] xnew value at end of time step; contains initial guess for first substep on entry
       * \return time step size
       */
      T apply (T time, T dt, TrlV& xold, TrlV& xnew)
      {
        DefaultLimiter limiter;
        return apply(time,dt,xold,xnew,limiter);
      }

      template<typename Limiter>
      T apply (T time, T dt, TrlV& xold, TrlV& xnew, Limiter& limiter)
      {
        // save formatting attributes
        ios_base_all_saver format_attribute_saver(std::cout);
        LocalTag mytag;
        mytag << "ExplicitOneStepMethod::apply(): ";

        std::vector<TrlV*> x(1); // vector of pointers to all steps
        x[0] = &xold;         // initially we have only one
        if(verbosityLevel>=4)
          std::cout << mytag << "Creating residual vectors alpha and beta..."
                    << std::endl;
        TstV alpha(igos.testGridFunctionSpace()), beta(igos.testGridFunctionSpace()); // split residual vectors
        if(verbosityLevel>=4)
          std::cout << mytag
                    << "Creating residual vectors alpha and beta... done."
                    << std::endl;

        if (verbosityLevel>=1){
          std::ios_base::fmtflags oldflags = std::cout.flags();
          std::cout << "TIME STEP [" << method->name() << "] "
                    << std::setw(6) << step
                    << " time (from): "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << time
                    << " dt: "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << dt
                    << " time (to): "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << time+dt
                    << std::endl;
          std::cout.flags(oldflags);
        }

        // prepare assembler
        if(verbosityLevel>=4)
          std::cout << mytag << "Preparing assembler..." << std::endl;
        igos.preStep(*method,time,dt);
        if(verbosityLevel>=4)
          std::cout << mytag << "Preparing assembler... done." << std::endl;

        // loop over all stages
        for(unsigned r=1; r<=method->s(); ++r)
          {
            LocalTag stagetag(mytag);
            stagetag << "stage " << r << ": ";
            if (verbosityLevel>=4)
              std::cout << stagetag << "Start." << std::endl;

            if (verbosityLevel>=2){
              std::ios_base::fmtflags oldflags = std::cout.flags();
              std::cout << "STAGE "
                        << r
                        << " time (to): "
                        << std::setw(12) << std::setprecision(4) << std::scientific
                        << time+method->d(r)*dt
                        << "." << std::endl;
              std::cout.flags(oldflags);
            }

            // get vector for current stage
            if (r==method->s())
              {
                // last stage
                x.push_back(&xnew);
                if (r>1) xnew = *(x[r-1]); // if r=1 then xnew has already initial guess
              }
            else
              {
                // intermediate step
                x.push_back(new TrlV(igos.trialGridFunctionSpace()));
                if (r>1)
                  *(x[r]) = *(x[r-1]); // use result of last stage as initial guess
                else
                  *(x[r]) = xnew;
              }

            // compute residuals and jacobian
            if (verbosityLevel>=4) std::cout << "assembling D, alpha, beta ..." << std::endl;
            D = Real(0.0);
            alpha = 0.0;
            beta = 0.0;

            //apply slope limiter to old solution (e.g for finite volume reconstruction scheme)
            limiter.prestage(*x[r-1]);

            if(verbosityLevel>=4)
              std::cout << stagetag << "Assembling residual..." << std::endl;
            igos.explicit_jacobian_residual(r,x,D,alpha,beta);
            if(verbosityLevel>=4)
              std::cout << stagetag << "Assembling residual... done."
                        << std::endl;

            // let time controller compute the optimal dt in first stage
            if (r==1)
              {
                T newdt = tc->suggestTimestep(time,dt);
                newdt = std::min(newdt, dt);

                if (verbosityLevel>=4){
                  std::ios_base::fmtflags oldflags = std::cout.flags();
                  std::cout << stagetag
                            << "current dt: "
                            << std::setw(12) << std::setprecision(4) << std::scientific
                            << dt
                            << " suggested dt: "
                            << std::setw(12) << std::setprecision(4) << std::scientific
                            << newdt
                            << std::endl;
                  std::cout.flags(oldflags);
                }

                if (verbosityLevel>=2 && newdt!=dt)
                  {
                    std::ios_base::fmtflags oldflags = std::cout.flags();
                    std::cout << "changed dt to "
                              << std::setw(12) << std::setprecision(4) << std::scientific
                              << newdt
                              << std::endl;
                    std::cout.flags(oldflags);
                  }
                dt = newdt;
              }

            // combine residual with selected dt
            if (verbosityLevel>=4)
              std::cout << stagetag
                        << "Combining residuals with selected dt..."
                        << std::endl;
            alpha.axpy(dt,beta);
            if (verbosityLevel>=4)
              std::cout << stagetag
                        << "Combining residuals with selected dt... done."
                        << std::endl;

            // solve diagonal system
            if (verbosityLevel>=4)
              std::cout << stagetag << "Solving diagonal system..."
                        << std::endl;
            ls.apply(D,*x[r],alpha,0.99); // dummy reduction
            if (verbosityLevel>=4)
              std::cout << stagetag << "Solving diagonal system... done."
                        << std::endl;

            // apply slope limiter to new solution (e.g DG scheme)
            limiter.poststage(*x[r]);

            // stage cleanup
            if (verbosityLevel>=4)
              std::cout << stagetag << "Cleanup..." << std::endl;
            igos.postStage();
            if (verbosityLevel>=4)
              std::cout << stagetag << "Cleanup... done" << std::endl;

            if (verbosityLevel>=4)
              std::cout << stagetag << "Finished." << std::endl;
          }

        // delete intermediate steps
        for(unsigned i=1; i<method->s(); ++i) delete x[i];

        // step cleanup
        if (verbosityLevel>=4)
          std::cout << mytag << "Cleanup..." << std::endl;
        igos.postStep();
        if (verbosityLevel>=4)
          std::cout << mytag << "Cleanup... done." << std::endl;

        step++;
        return dt;
      }

    private:

      //! dummy default limiter
      class DefaultLimiter
      {
      public:
        template<typename V>
        void prestage(V& v)
        {}

        template<typename V>
        void poststage(V& v)
        {}
      };

      const TimeSteppingParameterInterface<T> *method;
      IGOS& igos;
      LS& ls;
      int verbosityLevel;
      int step;
      M D;
      TimeControllerInterface<T> *tc;
      bool allocated;
    };

    /** @} */
  } // end namespace PDELab
} // end namespace Dune
#endif