This file is indexed.

/usr/include/dune/pdelab/instationary/implicitonestep.hh is in libdune-pdelab-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// -*- tab-width: 2; indent-tabs-mode: nil -*-
// vi: set et ts=2 sw=2 sts=2:

#ifndef DUNE_PDELAB_INSTATIONARY_IMPLICITONESTEP_HH
#define DUNE_PDELAB_INSTATIONARY_IMPLICITONESTEP_HH

#include <iostream>
#include <iomanip>

#include <dune/common/ios_state.hh>
#include <dune/pdelab/instationary/onestepparameter.hh>

namespace Dune {
  namespace PDELab {

    /**
     *  @addtogroup OneStepMethod
     *  @{
     */

    // Status information of Newton's method
    struct OneStepMethodPartialResult
    {
      unsigned int timesteps;
      double assembler_time;
      double linear_solver_time;
      int linear_solver_iterations;
      int nonlinear_solver_iterations;

      OneStepMethodPartialResult() :
        timesteps(0),
        assembler_time(0.0),
        linear_solver_time(0.0),
        linear_solver_iterations(0),
        nonlinear_solver_iterations(0)
      {}
    };

    struct OneStepMethodResult
    {
      OneStepMethodPartialResult total;
      OneStepMethodPartialResult successful;
      OneStepMethodResult() : total(), successful()
      {}
    };

    //! Do one step of a time-stepping scheme
    /**
     * \tparam T          type to represent time values
     * \tparam IGOS       assembler for instationary problems
     * \tparam PDESOLVER  solver problem in each step (typically Newton)
     * \tparam TrlV       vector type to represent coefficients of solutions
     * \tparam TstV       vector type to represent residuals
     */
    template<class T, class IGOS, class PDESOLVER, class TrlV, class TstV = TrlV>
    class OneStepMethod
    {
      typedef typename PDESOLVER::Result PDESolverResult;

    public:
      typedef OneStepMethodResult Result;

      //! construct a new one step scheme
      /**
       * \param method_    Parameter object. This chooses the actual method
       *                   used.
       * \param igos_      Assembler object (instationary grid operator space).
       * \param pdesolver_ solver object (typically Newton).
       *
       * The contructed method object stores references to the object it is
       * constructed with, so these objects should be valid for as long as the
       * constructed object is used (or until setMethod() is called, see
       * there).
       */
      OneStepMethod(const TimeSteppingParameterInterface<T>& method_,
                    IGOS& igos_, PDESOLVER& pdesolver_)
        : method(&method_), igos(igos_), pdesolver(pdesolver_), verbosityLevel(1), step(1), res()
      {
        if (igos.trialGridFunctionSpace().gridView().comm().rank()>0)
          verbosityLevel = 0;
      }

      //! change verbosity level; 0 means completely quiet
      void setVerbosityLevel (int level)
      {
        if (igos.trialGridFunctionSpace().gridView().comm().rank()>0)
          verbosityLevel = 0;
        else
          verbosityLevel = level;
      }

      //! change number of current step
      void setStepNumber(int newstep) { step = newstep; }

      //! Access to the (non) linear solver
      const PDESOLVER & getPDESolver() const
      {
        return pdesolver;
      }

      //! Access to the (non) linear solver
      PDESOLVER & getPDESolver()
      {
        return pdesolver;
      }

      const Result& result() const
      {
        return res;
      }

      //! redefine the method to be used; can be done before every step
      /**
       * \param method_ Parameter object.
       *
       * The OneStepMethod object stores a reference to the method_ object.
       * The old method object is no longer referenced after this member
       * function returns.
       */
      void setMethod (const TimeSteppingParameterInterface<T>& method_)
      {
        method = &method_;
      }

      /*! \brief do one step;
       * \param[in]  time start of time step
       * \param[in]  dt suggested time step size
       * \param[in]  xold value at begin of time step
       * \param[in,out] xnew value at end of time step; contains initial guess for first substep on entry
       * \return selected time step size
       */
      T apply (T time, T dt, TrlV& xold, TrlV& xnew)
      {
        // save formatting attributes
        ios_base_all_saver format_attribute_saver(std::cout);

        // do statistics
        OneStepMethodPartialResult step_result;

        std::vector<TrlV*> x(1); // vector of pointers to all steps
        x[0] = &xold;            // initially we have only one

        if (verbosityLevel>=1){
          std::ios_base::fmtflags oldflags = std::cout.flags();
          std::cout << "TIME STEP [" << method->name() << "] "
                    << std::setw(6) << step
                    << " time (from): "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << time
                    << " dt: "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << dt
                    << " time (to): "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << time+dt
                    << std::endl;
          std::cout.flags(oldflags);
        }

        // prepare assembler
        igos.preStep(*method,time,dt);

        // loop over all stages
        for (unsigned r=1; r<=method->s(); ++r)
          {
            if (verbosityLevel>=2){
              std::ios_base::fmtflags oldflags = std::cout.flags();
              std::cout << "STAGE "
                        << r
                        << " time (to): "
                        << std::setw(12) << std::setprecision(4) << std::scientific
                        << time+method->d(r)*dt
                        << "." << std::endl;
              std::cout.flags(oldflags);
            }

            // prepare stage
            igos.preStage(r,x);

            // get vector for current stage
            if (r==method->s())
              {
                // last stage
                x.push_back(&xnew);
                if (r>1) xnew = *(x[r-1]); // if r=1 then xnew has already initial guess
              }
            else
              {
                // intermediate step
                x.push_back(new TrlV(igos.trialGridFunctionSpace()));
                if (r>1)
                  *(x[r]) = *(x[r-1]); // use result of last stage as initial guess
                else
                  *(x[r]) = xnew;
              }

            // solve stage
            try {
              pdesolver.apply(*x[r]);
            }
            catch (...)
              {
                // time step failed -> accumulate to total only
                PDESolverResult pderes = pdesolver.result();
                step_result.assembler_time += pderes.assembler_time;
                step_result.linear_solver_time += pderes.linear_solver_time;
                step_result.linear_solver_iterations += pderes.linear_solver_iterations;
                step_result.nonlinear_solver_iterations += pderes.iterations;
                res.total.assembler_time += step_result.assembler_time;
                res.total.linear_solver_time += step_result.linear_solver_time;
                res.total.linear_solver_iterations += step_result.linear_solver_iterations;
                res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
                res.total.timesteps += 1;
                throw;
              }
            PDESolverResult pderes = pdesolver.result();
            step_result.assembler_time += pderes.assembler_time;
            step_result.linear_solver_time += pderes.linear_solver_time;
            step_result.linear_solver_iterations += pderes.linear_solver_iterations;
            step_result.nonlinear_solver_iterations += pderes.iterations;

            // stage cleanup
            igos.postStage();
          }

        // delete intermediate steps
        for (unsigned i=1; i<method->s(); ++i) delete x[i];

        // step cleanup
        igos.postStep();

        // update statistics
        res.total.assembler_time += step_result.assembler_time;
        res.total.linear_solver_time += step_result.linear_solver_time;
        res.total.linear_solver_iterations += step_result.linear_solver_iterations;
        res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
        res.total.timesteps += 1;
        res.successful.assembler_time += step_result.assembler_time;
        res.successful.linear_solver_time += step_result.linear_solver_time;
        res.successful.linear_solver_iterations += step_result.linear_solver_iterations;
        res.successful.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
        res.successful.timesteps += 1;
        if (verbosityLevel>=1){
          std::ios_base::fmtflags oldflags = std::cout.flags();
          std::cout << "::: timesteps      " << std::setw(6) << res.successful.timesteps
                    << " (" << res.total.timesteps << ")" << std::endl;
          std::cout << "::: nl iterations  " << std::setw(6) << res.successful.nonlinear_solver_iterations
                    << " (" << res.total.nonlinear_solver_iterations << ")" << std::endl;
          std::cout << "::: lin iterations " << std::setw(6) << res.successful.linear_solver_iterations
                    << " (" << res.total.linear_solver_iterations << ")" << std::endl;
          std::cout << "::: assemble time  " << std::setw(12) << std::setprecision(4) << std::scientific
                    << res.successful.assembler_time << " (" << res.total.assembler_time << ")" << std::endl;
          std::cout << "::: lin solve time " << std::setw(12) << std::setprecision(4) << std::scientific
                    << res.successful.linear_solver_time << " (" << res.total.linear_solver_time << ")" << std::endl;
          std::cout.flags(oldflags);
        }

        step++;
        return dt;
      }

      /*! \brief do one step;
       * This is a version which interpolates constraints at the start of each stage
       *
       * \param[in]  time start of time step
       * \param[in]  dt suggested time step size
       * \param[in]  xold value at begin of time step
       * \param[in]  f function to interpolate boundary conditions from
       * \param[in,out] xnew value at end of time step; contains initial guess for first substep on entry
       * \return selected time step size
       */
      template<typename F>
      T apply (T time, T dt, TrlV& xold, F& f, TrlV& xnew)
      {
        // do statistics
        OneStepMethodPartialResult step_result;

        // save formatting attributes
        ios_base_all_saver format_attribute_saver(std::cout);

        std::vector<TrlV*> x(1); // vector of pointers to all steps
        x[0] = &xold;            // initially we have only one

        if (verbosityLevel>=1){
          std::ios_base::fmtflags oldflags = std::cout.flags();
          std::cout << "TIME STEP [" << method->name() << "] "
                    << std::setw(6) << step
                    << " time (from): "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << time
                    << " dt: "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << dt
                    << " time (to): "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << time+dt
                    << std::endl;
          std::cout.flags(oldflags);
        }

        // prepare assembler
        igos.preStep(*method,time,dt);

        // loop over all stages
        for (unsigned r=1; r<=method->s(); ++r)
          {
            if (verbosityLevel>=2){
              std::ios_base::fmtflags oldflags = std::cout.flags();
              std::cout << "STAGE "
                        << r
                        << " time (to): "
                        << std::setw(12) << std::setprecision(4) << std::scientific
                        << time+method->d(r)*dt
                        << "." << std::endl;
              std::cout.flags(oldflags);
            }

            // prepare stage
            igos.preStage(r,x);

            // get vector for current stage
            if (r==method->s())
              {
                // last stage
                x.push_back(&xnew);
              }
            else
              {
                // intermediate step
                x.push_back(new TrlV(igos.trialGridFunctionSpace()));
              }

            // set boundary conditions and initial value
            igos.interpolate(r,*x[r-1],f,*x[r]);

            // solve stage
            try {
              pdesolver.apply(*x[r]);
            }
            catch (...)
              {
                // time step failed -> accumulate to total only
                PDESolverResult pderes = pdesolver.result();
                step_result.assembler_time += pderes.assembler_time;
                step_result.linear_solver_time += pderes.linear_solver_time;
                step_result.linear_solver_iterations += pderes.linear_solver_iterations;
                step_result.nonlinear_solver_iterations += pderes.iterations;
                res.total.assembler_time += step_result.assembler_time;
                res.total.linear_solver_time += step_result.linear_solver_time;
                res.total.linear_solver_iterations += step_result.linear_solver_iterations;
                res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
                res.total.timesteps += 1;
                throw;
              }
            PDESolverResult pderes = pdesolver.result();
            step_result.assembler_time += pderes.assembler_time;
            step_result.linear_solver_time += pderes.linear_solver_time;
            step_result.linear_solver_iterations += pderes.linear_solver_iterations;
            step_result.nonlinear_solver_iterations += pderes.iterations;

            // stage cleanup
            igos.postStage();
          }

        // delete intermediate steps
        for (unsigned i=1; i<method->s(); ++i) delete x[i];

        // step cleanup
        igos.postStep();

        // update statistics
        res.total.assembler_time += step_result.assembler_time;
        res.total.linear_solver_time += step_result.linear_solver_time;
        res.total.linear_solver_iterations += step_result.linear_solver_iterations;
        res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
        res.total.timesteps += 1;
        res.successful.assembler_time += step_result.assembler_time;
        res.successful.linear_solver_time += step_result.linear_solver_time;
        res.successful.linear_solver_iterations += step_result.linear_solver_iterations;
        res.successful.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
        res.successful.timesteps += 1;
        if (verbosityLevel>=1){
          std::ios_base::fmtflags oldflags = std::cout.flags();
          std::cout << "::: timesteps      " << std::setw(6) << res.successful.timesteps
                    << " (" << res.total.timesteps << ")" << std::endl;
          std::cout << "::: nl iterations  " << std::setw(6) << res.successful.nonlinear_solver_iterations
                    << " (" << res.total.nonlinear_solver_iterations << ")" << std::endl;
          std::cout << "::: lin iterations " << std::setw(6) << res.successful.linear_solver_iterations
                    << " (" << res.total.linear_solver_iterations << ")" << std::endl;
          std::cout << "::: assemble time  " << std::setw(12) << std::setprecision(4) << std::scientific
                    << res.successful.assembler_time << " (" << res.total.assembler_time << ")" << std::endl;
          std::cout << "::: lin solve time " << std::setw(12) << std::setprecision(4) << std::scientific
                    << res.successful.linear_solver_time << " (" << res.total.linear_solver_time << ")" << std::endl;
          std::cout.flags(oldflags);
        }

        step++;
        return dt;
      }

    private:
      const TimeSteppingParameterInterface<T> *method;
      IGOS& igos;
      PDESOLVER& pdesolver;
      int verbosityLevel;
      int step;
      Result res;
    };

    /** @} */
  } // end namespace PDELab
} // end namespace Dune
#endif