/usr/include/dune/pdelab/instationary/implicitonestep.hh is in libdune-pdelab-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | // -*- tab-width: 2; indent-tabs-mode: nil -*-
// vi: set et ts=2 sw=2 sts=2:
#ifndef DUNE_PDELAB_INSTATIONARY_IMPLICITONESTEP_HH
#define DUNE_PDELAB_INSTATIONARY_IMPLICITONESTEP_HH
#include <iostream>
#include <iomanip>
#include <dune/common/ios_state.hh>
#include <dune/pdelab/instationary/onestepparameter.hh>
namespace Dune {
namespace PDELab {
/**
* @addtogroup OneStepMethod
* @{
*/
// Status information of Newton's method
struct OneStepMethodPartialResult
{
unsigned int timesteps;
double assembler_time;
double linear_solver_time;
int linear_solver_iterations;
int nonlinear_solver_iterations;
OneStepMethodPartialResult() :
timesteps(0),
assembler_time(0.0),
linear_solver_time(0.0),
linear_solver_iterations(0),
nonlinear_solver_iterations(0)
{}
};
struct OneStepMethodResult
{
OneStepMethodPartialResult total;
OneStepMethodPartialResult successful;
OneStepMethodResult() : total(), successful()
{}
};
//! Do one step of a time-stepping scheme
/**
* \tparam T type to represent time values
* \tparam IGOS assembler for instationary problems
* \tparam PDESOLVER solver problem in each step (typically Newton)
* \tparam TrlV vector type to represent coefficients of solutions
* \tparam TstV vector type to represent residuals
*/
template<class T, class IGOS, class PDESOLVER, class TrlV, class TstV = TrlV>
class OneStepMethod
{
typedef typename PDESOLVER::Result PDESolverResult;
public:
typedef OneStepMethodResult Result;
//! construct a new one step scheme
/**
* \param method_ Parameter object. This chooses the actual method
* used.
* \param igos_ Assembler object (instationary grid operator space).
* \param pdesolver_ solver object (typically Newton).
*
* The contructed method object stores references to the object it is
* constructed with, so these objects should be valid for as long as the
* constructed object is used (or until setMethod() is called, see
* there).
*/
OneStepMethod(const TimeSteppingParameterInterface<T>& method_,
IGOS& igos_, PDESOLVER& pdesolver_)
: method(&method_), igos(igos_), pdesolver(pdesolver_), verbosityLevel(1), step(1), res()
{
if (igos.trialGridFunctionSpace().gridView().comm().rank()>0)
verbosityLevel = 0;
}
//! change verbosity level; 0 means completely quiet
void setVerbosityLevel (int level)
{
if (igos.trialGridFunctionSpace().gridView().comm().rank()>0)
verbosityLevel = 0;
else
verbosityLevel = level;
}
//! change number of current step
void setStepNumber(int newstep) { step = newstep; }
//! Access to the (non) linear solver
const PDESOLVER & getPDESolver() const
{
return pdesolver;
}
//! Access to the (non) linear solver
PDESOLVER & getPDESolver()
{
return pdesolver;
}
const Result& result() const
{
return res;
}
//! redefine the method to be used; can be done before every step
/**
* \param method_ Parameter object.
*
* The OneStepMethod object stores a reference to the method_ object.
* The old method object is no longer referenced after this member
* function returns.
*/
void setMethod (const TimeSteppingParameterInterface<T>& method_)
{
method = &method_;
}
/*! \brief do one step;
* \param[in] time start of time step
* \param[in] dt suggested time step size
* \param[in] xold value at begin of time step
* \param[in,out] xnew value at end of time step; contains initial guess for first substep on entry
* \return selected time step size
*/
T apply (T time, T dt, TrlV& xold, TrlV& xnew)
{
// save formatting attributes
ios_base_all_saver format_attribute_saver(std::cout);
// do statistics
OneStepMethodPartialResult step_result;
std::vector<TrlV*> x(1); // vector of pointers to all steps
x[0] = &xold; // initially we have only one
if (verbosityLevel>=1){
std::ios_base::fmtflags oldflags = std::cout.flags();
std::cout << "TIME STEP [" << method->name() << "] "
<< std::setw(6) << step
<< " time (from): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< time
<< " dt: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< dt
<< " time (to): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< time+dt
<< std::endl;
std::cout.flags(oldflags);
}
// prepare assembler
igos.preStep(*method,time,dt);
// loop over all stages
for (unsigned r=1; r<=method->s(); ++r)
{
if (verbosityLevel>=2){
std::ios_base::fmtflags oldflags = std::cout.flags();
std::cout << "STAGE "
<< r
<< " time (to): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< time+method->d(r)*dt
<< "." << std::endl;
std::cout.flags(oldflags);
}
// prepare stage
igos.preStage(r,x);
// get vector for current stage
if (r==method->s())
{
// last stage
x.push_back(&xnew);
if (r>1) xnew = *(x[r-1]); // if r=1 then xnew has already initial guess
}
else
{
// intermediate step
x.push_back(new TrlV(igos.trialGridFunctionSpace()));
if (r>1)
*(x[r]) = *(x[r-1]); // use result of last stage as initial guess
else
*(x[r]) = xnew;
}
// solve stage
try {
pdesolver.apply(*x[r]);
}
catch (...)
{
// time step failed -> accumulate to total only
PDESolverResult pderes = pdesolver.result();
step_result.assembler_time += pderes.assembler_time;
step_result.linear_solver_time += pderes.linear_solver_time;
step_result.linear_solver_iterations += pderes.linear_solver_iterations;
step_result.nonlinear_solver_iterations += pderes.iterations;
res.total.assembler_time += step_result.assembler_time;
res.total.linear_solver_time += step_result.linear_solver_time;
res.total.linear_solver_iterations += step_result.linear_solver_iterations;
res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
res.total.timesteps += 1;
throw;
}
PDESolverResult pderes = pdesolver.result();
step_result.assembler_time += pderes.assembler_time;
step_result.linear_solver_time += pderes.linear_solver_time;
step_result.linear_solver_iterations += pderes.linear_solver_iterations;
step_result.nonlinear_solver_iterations += pderes.iterations;
// stage cleanup
igos.postStage();
}
// delete intermediate steps
for (unsigned i=1; i<method->s(); ++i) delete x[i];
// step cleanup
igos.postStep();
// update statistics
res.total.assembler_time += step_result.assembler_time;
res.total.linear_solver_time += step_result.linear_solver_time;
res.total.linear_solver_iterations += step_result.linear_solver_iterations;
res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
res.total.timesteps += 1;
res.successful.assembler_time += step_result.assembler_time;
res.successful.linear_solver_time += step_result.linear_solver_time;
res.successful.linear_solver_iterations += step_result.linear_solver_iterations;
res.successful.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
res.successful.timesteps += 1;
if (verbosityLevel>=1){
std::ios_base::fmtflags oldflags = std::cout.flags();
std::cout << "::: timesteps " << std::setw(6) << res.successful.timesteps
<< " (" << res.total.timesteps << ")" << std::endl;
std::cout << "::: nl iterations " << std::setw(6) << res.successful.nonlinear_solver_iterations
<< " (" << res.total.nonlinear_solver_iterations << ")" << std::endl;
std::cout << "::: lin iterations " << std::setw(6) << res.successful.linear_solver_iterations
<< " (" << res.total.linear_solver_iterations << ")" << std::endl;
std::cout << "::: assemble time " << std::setw(12) << std::setprecision(4) << std::scientific
<< res.successful.assembler_time << " (" << res.total.assembler_time << ")" << std::endl;
std::cout << "::: lin solve time " << std::setw(12) << std::setprecision(4) << std::scientific
<< res.successful.linear_solver_time << " (" << res.total.linear_solver_time << ")" << std::endl;
std::cout.flags(oldflags);
}
step++;
return dt;
}
/*! \brief do one step;
* This is a version which interpolates constraints at the start of each stage
*
* \param[in] time start of time step
* \param[in] dt suggested time step size
* \param[in] xold value at begin of time step
* \param[in] f function to interpolate boundary conditions from
* \param[in,out] xnew value at end of time step; contains initial guess for first substep on entry
* \return selected time step size
*/
template<typename F>
T apply (T time, T dt, TrlV& xold, F& f, TrlV& xnew)
{
// do statistics
OneStepMethodPartialResult step_result;
// save formatting attributes
ios_base_all_saver format_attribute_saver(std::cout);
std::vector<TrlV*> x(1); // vector of pointers to all steps
x[0] = &xold; // initially we have only one
if (verbosityLevel>=1){
std::ios_base::fmtflags oldflags = std::cout.flags();
std::cout << "TIME STEP [" << method->name() << "] "
<< std::setw(6) << step
<< " time (from): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< time
<< " dt: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< dt
<< " time (to): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< time+dt
<< std::endl;
std::cout.flags(oldflags);
}
// prepare assembler
igos.preStep(*method,time,dt);
// loop over all stages
for (unsigned r=1; r<=method->s(); ++r)
{
if (verbosityLevel>=2){
std::ios_base::fmtflags oldflags = std::cout.flags();
std::cout << "STAGE "
<< r
<< " time (to): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< time+method->d(r)*dt
<< "." << std::endl;
std::cout.flags(oldflags);
}
// prepare stage
igos.preStage(r,x);
// get vector for current stage
if (r==method->s())
{
// last stage
x.push_back(&xnew);
}
else
{
// intermediate step
x.push_back(new TrlV(igos.trialGridFunctionSpace()));
}
// set boundary conditions and initial value
igos.interpolate(r,*x[r-1],f,*x[r]);
// solve stage
try {
pdesolver.apply(*x[r]);
}
catch (...)
{
// time step failed -> accumulate to total only
PDESolverResult pderes = pdesolver.result();
step_result.assembler_time += pderes.assembler_time;
step_result.linear_solver_time += pderes.linear_solver_time;
step_result.linear_solver_iterations += pderes.linear_solver_iterations;
step_result.nonlinear_solver_iterations += pderes.iterations;
res.total.assembler_time += step_result.assembler_time;
res.total.linear_solver_time += step_result.linear_solver_time;
res.total.linear_solver_iterations += step_result.linear_solver_iterations;
res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
res.total.timesteps += 1;
throw;
}
PDESolverResult pderes = pdesolver.result();
step_result.assembler_time += pderes.assembler_time;
step_result.linear_solver_time += pderes.linear_solver_time;
step_result.linear_solver_iterations += pderes.linear_solver_iterations;
step_result.nonlinear_solver_iterations += pderes.iterations;
// stage cleanup
igos.postStage();
}
// delete intermediate steps
for (unsigned i=1; i<method->s(); ++i) delete x[i];
// step cleanup
igos.postStep();
// update statistics
res.total.assembler_time += step_result.assembler_time;
res.total.linear_solver_time += step_result.linear_solver_time;
res.total.linear_solver_iterations += step_result.linear_solver_iterations;
res.total.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
res.total.timesteps += 1;
res.successful.assembler_time += step_result.assembler_time;
res.successful.linear_solver_time += step_result.linear_solver_time;
res.successful.linear_solver_iterations += step_result.linear_solver_iterations;
res.successful.nonlinear_solver_iterations += step_result.nonlinear_solver_iterations;
res.successful.timesteps += 1;
if (verbosityLevel>=1){
std::ios_base::fmtflags oldflags = std::cout.flags();
std::cout << "::: timesteps " << std::setw(6) << res.successful.timesteps
<< " (" << res.total.timesteps << ")" << std::endl;
std::cout << "::: nl iterations " << std::setw(6) << res.successful.nonlinear_solver_iterations
<< " (" << res.total.nonlinear_solver_iterations << ")" << std::endl;
std::cout << "::: lin iterations " << std::setw(6) << res.successful.linear_solver_iterations
<< " (" << res.total.linear_solver_iterations << ")" << std::endl;
std::cout << "::: assemble time " << std::setw(12) << std::setprecision(4) << std::scientific
<< res.successful.assembler_time << " (" << res.total.assembler_time << ")" << std::endl;
std::cout << "::: lin solve time " << std::setw(12) << std::setprecision(4) << std::scientific
<< res.successful.linear_solver_time << " (" << res.total.linear_solver_time << ")" << std::endl;
std::cout.flags(oldflags);
}
step++;
return dt;
}
private:
const TimeSteppingParameterInterface<T> *method;
IGOS& igos;
PDESOLVER& pdesolver;
int verbosityLevel;
int step;
Result res;
};
/** @} */
} // end namespace PDELab
} // end namespace Dune
#endif
|