/usr/include/dune/pdelab/stationary/linearproblem.hh is in libdune-pdelab-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | #ifndef DUNE_PDELAB_STATIONARYLINEARPROBLEM_HH
#define DUNE_PDELAB_STATIONARYLINEARPROBLEM_HH
#include <iostream>
#include <dune/common/timer.hh>
#include <dune/common/parametertree.hh>
#include <dune/pdelab/backend/interface.hh>
#include <dune/pdelab/constraints/common/constraints.hh>
#include <dune/pdelab/backend/solver.hh>
namespace Dune {
namespace PDELab {
//===============================================================
// A class for solving linear stationary problems.
// It assembles the matrix, computes the right hand side and
// solves the problem.
// This is only a first vanilla implementation which has to be improved.
//===============================================================
// Status information of linear problem solver
template<class RFType>
struct StationaryLinearProblemSolverResult : LinearSolverResult<RFType>
{
RFType first_defect; // the first defect
RFType defect; // the final defect
double assembler_time; // Cumulative time for matrix assembly
double linear_solver_time; // Cumulative time for linear sovler
int linear_solver_iterations; // Total number of linear iterations
StationaryLinearProblemSolverResult()
: first_defect(0.0)
, defect(0.0)
, assembler_time(0.0)
, linear_solver_time(0.0)
, linear_solver_iterations(0)
{}
};
template<typename GO, typename LS, typename V>
class StationaryLinearProblemSolver
{
typedef typename Dune::template FieldTraits<typename V::ElementType >::real_type Real;
typedef typename GO::Traits::Jacobian M;
typedef typename GO::Traits::TrialGridFunctionSpace TrialGridFunctionSpace;
using W = Dune::PDELab::Backend::Vector<TrialGridFunctionSpace,typename V::ElementType>;
typedef GO GridOperator;
public:
typedef StationaryLinearProblemSolverResult<double> Result;
StationaryLinearProblemSolver(const GO& go, LS& ls, V& x, Real reduction, Real min_defect = 1e-99, int verbose=1)
: _go(go)
, _ls(ls)
, _x(&x)
, _reduction(reduction)
, _min_defect(min_defect)
, _hanging_node_modifications(false)
, _keep_matrix(true)
, _verbose(verbose)
{}
StationaryLinearProblemSolver (const GO& go, LS& ls, Real reduction, Real min_defect = 1e-99, int verbose=1)
: _go(go)
, _ls(ls)
, _x()
, _reduction(reduction)
, _min_defect(min_defect)
, _hanging_node_modifications(false)
, _keep_matrix(true)
, _verbose(verbose)
{}
//! Construct a StationaryLinearProblemSolver for the given objects and read parameters from a ParameterTree.
/**
* This constructor reads the parameter controlling its operation from a passed-in ParameterTree
* instead of requiring the user to specify all of them as individual constructor parameters.
* Currently the following parameters are read:
*
* Name | Default Value | Explanation
* -------------------------- | ------------- | -----------
* reduction | | Required relative defect reduction
* min_defect | 1e-99 | minimum absolute defect at which to stop
* hanging_node_modifications | false | perform required transformations for hanging nodes
* keep_matrix | true | keep matrix between calls to apply() (but reassemble values every time)
* verbosity | 1 | control amount of debug output
*
* Apart from reduction, all parameters have a default value and are optional.
* The actual reduction for a call to apply() is calculated as r = max(reduction,min_defect/start_defect),
* where start defect is the norm of the residual of x.
*/
StationaryLinearProblemSolver(const GO& go, LS& ls, V& x, const ParameterTree& params)
: _go(go)
, _ls(ls)
, _x(&x)
, _reduction(params.get<Real>("reduction"))
, _min_defect(params.get<Real>("min_defect",1e-99))
, _hanging_node_modifications(params.get<bool>("hanging_node_modifications",false))
, _keep_matrix(params.get<bool>("keep_matrix",true))
, _verbose(params.get<int>("verbosity",1))
{}
//! Construct a StationaryLinearProblemSolver for the given objects and read parameters from a ParameterTree.
/**
* This constructor reads the parameter controlling its operation from a passed-in ParameterTree
* instead of requiring the user to specify all of them as individual constructor parameters.
* Currently the following parameters are read:
*
* Name | Default Value | Explanation
* -------------------------- | ------------- | -----------
* reduction | | Required relative defect reduction
* min_defect | 1e-99 | minimum absolute defect at which to stop
* hanging_node_modifications | false | perform required transformations for hanging nodes
* keep_matrix | true | keep matrix between calls to apply() (but reassemble values every time)
* verbosity | 1 | control amount of debug output
*
* Apart from reduction, all parameters have a default value and are optional.
* The actual reduction for a call to apply() is calculated as r = max(reduction,min_defect/start_defect),
* where start defect is the norm of the residual of x.
*/
StationaryLinearProblemSolver(const GO& go, LS& ls, const ParameterTree& params)
: _go(go)
, _ls(ls)
, _x()
, _reduction(params.get<Real>("reduction"))
, _min_defect(params.get<Real>("min_defect",1e-99))
, _hanging_node_modifications(params.get<bool>("hanging_node_modifications",false))
, _keep_matrix(params.get<bool>("keep_matrix",true))
, _verbose(params.get<int>("verbosity",1))
{}
//! Set whether the solver should apply the necessary transformations for calculations on hanging nodes.
void setHangingNodeModifications(bool b)
{
_hanging_node_modifications=b;
}
//! Return whether the solver performs the necessary transformations for calculations on hanging nodes.
bool hangingNodeModifications() const
{
return _hanging_node_modifications;
}
//! Set whether the jacobian matrix should be kept across calls to apply().
void setKeepMatrix(bool b)
{
_keep_matrix = b;
}
//! Return whether the jacobian matrix is kept across calls to apply().
bool keepMatrix() const
{
return _keep_matrix;
}
const Result& result() const
{
return _res;
}
void apply(V& x, bool reuse_matrix = false) {
_x = &x;
apply(reuse_matrix);
}
void apply (bool reuse_matrix = false)
{
Dune::Timer watch;
double timing,assembler_time=0;
// assemble matrix; optional: assemble only on demand!
watch.reset();
if (!_jacobian)
{
_jacobian = std::make_shared<M>(_go);
timing = watch.elapsed();
if (_go.trialGridFunctionSpace().gridView().comm().rank()==0 && _verbose>=1)
std::cout << "=== matrix setup (max) " << timing << " s" << std::endl;
watch.reset();
assembler_time += timing;
}
else if (_go.trialGridFunctionSpace().gridView().comm().rank()==0 && _verbose>=1)
std::cout << "=== matrix setup skipped (matrix already allocated)" << std::endl;
if (_hanging_node_modifications)
{
Dune::PDELab::set_shifted_dofs(_go.localAssembler().trialConstraints(),0.0,*_x); // set hanging node DOFs to zero
_go.localAssembler().backtransform(*_x); // interpolate hanging nodes adjacent to Dirichlet nodes
}
if (!reuse_matrix)
{
(*_jacobian) = Real(0.0);
_go.jacobian(*_x,*_jacobian);
}
timing = watch.elapsed();
// timing = gos.trialGridFunctionSpace().gridView().comm().max(timing);
if (_go.trialGridFunctionSpace().gridView().comm().rank()==0 && _verbose>=1)
{
if (reuse_matrix)
std::cout << "=== matrix assembly SKIPPED" << std::endl;
else
std::cout << "=== matrix assembly (max) " << timing << " s" << std::endl;
}
assembler_time += timing;
// assemble residual
watch.reset();
W r(_go.testGridFunctionSpace(),0.0);
_go.residual(*_x,r); // residual is additive
timing = watch.elapsed();
// timing = gos.trialGridFunctionSpace().gridView().comm().max(timing);
if (_go.trialGridFunctionSpace().gridView().comm().rank()==0 && _verbose>=1)
std::cout << "=== residual assembly (max) " << timing << " s" << std::endl;
assembler_time += timing;
_res.assembler_time = assembler_time;
auto defect = _ls.norm(r);
// compute correction
watch.reset();
V z(_go.trialGridFunctionSpace(),0.0);
auto red = std::max(_reduction,_min_defect/defect);
if (_go.trialGridFunctionSpace().gridView().comm().rank()==0)
std::cout << "=== solving (reduction: " << red << ") " << std::endl;
_ls.apply(*_jacobian,z,r,red); // solver makes right hand side consistent
_linear_solver_result = _ls.result();
timing = watch.elapsed();
// timing = gos.trialGridFunctionSpace().gridView().comm().max(timing);
if (_go.trialGridFunctionSpace().gridView().comm().rank()==0 && _verbose>=1)
std::cout << timing << " s" << std::endl;
_res.linear_solver_time = timing;
_res.converged = _linear_solver_result.converged;
_res.iterations = _linear_solver_result.iterations;
_res.elapsed = _linear_solver_result.elapsed;
_res.reduction = _linear_solver_result.reduction;
_res.conv_rate = _linear_solver_result.conv_rate;
_res.first_defect = static_cast<double>(defect);
_res.defect = static_cast<double>(defect)*_linear_solver_result.reduction;
_res.linear_solver_iterations = _linear_solver_result.iterations;
// and update
if (_hanging_node_modifications)
Dune::PDELab::set_shifted_dofs(_go.localAssembler().trialConstraints(),0.0,*_x); // set hanging node DOFs to zero
*_x -= z;
if (_hanging_node_modifications)
_go.localAssembler().backtransform(*_x); // interpolate hanging nodes adjacent to Dirichlet nodes
if (!_keep_matrix)
_jacobian.reset();
}
//! Discard the stored Jacobian matrix.
void discardMatrix()
{
if(_jacobian)
_jacobian.reset();
}
const Dune::PDELab::LinearSolverResult<double>& ls_result() const{
return _linear_solver_result;
}
Real reduction() const
{
return _reduction;
}
void setReduction(Real reduction)
{
_reduction = reduction;
}
private:
const GO& _go;
LS& _ls;
V* _x;
shared_ptr<M> _jacobian;
Real _reduction;
Real _min_defect;
Dune::PDELab::LinearSolverResult<double> _linear_solver_result;
Result _res;
bool _hanging_node_modifications;
bool _keep_matrix;
int _verbose;
};
} // namespace PDELab
} // namespace Dune
#endif
|