/usr/include/eclib/arith.h is in libec-dev 20160101-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | // arith.h: declarations of arithmetic functions (single precision)
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#ifndef _ARITH_H
#define _ARITH_H 1
//flags that this file has been included
#include "interface.h"
#include <cstring> // for memset gcc >= 4.3
#include "xmod.h" // supercedes the macros which used to be here
/* Prime number class; adapted from Pari */
typedef unsigned char *byteptr;
class primeclass {
friend class primevar;
byteptr pdiffptr;
long NPRIMES, BIGGESTPRIME;
void reset(void);
int at_end(void);
int advance(void);
byteptr p_aptr; // points to "current" prime
long p_ind; // index of "current" prime
long p_val; // value of "current" prime
public:
primeclass(); // will use 10^6 as default or read from file
primeclass(long maxnum);
~primeclass();
void init(long maxnum); // called in constructor, or to make more primes
long number(long n) ; // returns n'th prime (n=1 gives p=2)
vector<long> getfirst(long n); // return primes 2..p_n as vector<long>
friend long nprimes(void);
friend long maxprime(void);
};
extern primeclass the_primes; // The one and only instance
inline long prime_number (long n) /* returns n'th prime from global list */
{return the_primes.number(n);}
inline vector<long> primes (long n) /* returns list of first n primes */
{return the_primes.getfirst(n);}
inline long nprimes(void) {return the_primes.NPRIMES;}
inline long maxprime(void) {return the_primes.BIGGESTPRIME;}
long prime_pi(long p); // returns i>=0 such that p is the i'th prime
class primevar {
public:
long val; /* current value */
long ind; /* current index */
private:
byteptr ndiff; /* pointer to next diff*/
long maxindex; /* max index */
public:
primevar(long max=the_primes.NPRIMES, long i=1)
{maxindex=max; ind=i; val=the_primes.number(i);
ndiff=the_primes.pdiffptr+i;}
void init(long max=the_primes.NPRIMES, long i=1)
{maxindex=max; ind=i; val=the_primes.number(i);
ndiff=the_primes.pdiffptr+i;}
void operator++() {if ((ind++)<=maxindex) { val+=*ndiff++;}}
void operator++(int) {if ((ind++)<=maxindex) { val+=*ndiff++;}}
int ok() const {return ind<=maxindex;}
int more() const {return ind<maxindex;}
long value() const {return val;}
long index() const {return ind;}
operator long() const {return val;}
};
/* Usage of primevar:
---To loop through first n primes:
long p;
for(primevar pr(n); pr.ok(); pr++) {p=pr; ... ;} // or:
for(pr.init(n); pr.ok(); pr++) {p=pr; ... ;} // iff pr is existing primevar
---To loop through all primes:
primevar pr; //or for existing primevar, pr.init();
long p;
while(pr.ok()) {p=pr; pr=++; ...;}
*/
long primdiv(long); /* returns first prime divisor */
vector<long> pdivs(long); /* list of prime divisors */
vector<long> posdivs(long, const vector<long>& plist); // all positive divisors
inline vector<long> posdivs(long n)
{
const vector<long>& plist = pdivs(n);
return posdivs(n,plist);
}
vector<long> alldivs(long, const vector<long>& plist); // absolutely all divisors
inline vector<long> alldivs(long n)
{
const vector<long>& plist = pdivs(n);
return alldivs(n,plist);
}
vector<long> sqdivs(long, const vector<long>& plist); // divisors whose square divides
inline vector<long> sqdivs(long n)
{
const vector<long>& plist = pdivs(n);
return sqdivs(n,plist);
}
vector<long> sqfreedivs(long, const vector<long>& plist); // square-free divisors
inline vector<long> sqfreedivs(long n)
{
const vector<long>& plist = pdivs(n);
return sqfreedivs(n,plist);
}
long mod(long a, long modb); /* modulus in range plus or minus half mod */
long posmod(long a, long modb); /* ordinary modulus, but definitely positive */
long gcd(long, long);
int gcd(int, int);
long lcm(long, long);
long bezout(long, long, long&, long&);
int intbezout(int aa, int bb, int& xx, int& yy);
long invmod(long, long);
int modrat(long, long, float, long&, long&);
int modrat(int, int, float, int&, int&);
inline int is_zero(long n) {return n==0;}
long val(long factor, long number); // order of factor in number
inline int divides(long factor,long number)
{
return (factor==0) ? (number==0) : (number%factor==0);
}
inline int ndivides(long factor,long number)
{
return (factor==0) ? (number!=0) : (number%factor!=0);
// return !::divides(factor,number);
}
inline long m1pow(long a) {return (a%2 ? -1 : +1);}
inline int sign(long a) {return (a==0? 0: (a>0? 1: -1));}
inline int sign(double a) {return (a==0? 0: (a>0? 1: -1));}
long chi2(long a);
long chi4(long a);
long hilbert2(long a, long b);
long legendre(long a, long b);
long kronecker(long d, long n);
int intlog2(long& n, long& e, int roundup);
int is_squarefree(long n);
int is_valid_conductor(long n);
#endif
|