This file is indexed.

/usr/include/eclib/arith.h is in libec-dev 20160101-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// arith.h: declarations of arithmetic functions (single precision)
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#ifndef _ARITH_H
#define _ARITH_H      1
                           //flags that this file has been included
#include "interface.h"
#include <cstring> // for memset gcc >= 4.3
#include "xmod.h" // supercedes the macros which used to be here

/* Prime number class; adapted from Pari  */

typedef unsigned char *byteptr;

class primeclass {
  friend class primevar;
  byteptr pdiffptr;
  long NPRIMES, BIGGESTPRIME;

  void reset(void);
  int at_end(void);
  int advance(void); 
  byteptr p_aptr;  // points to "current" prime
  long p_ind;      // index  of "current" prime
  long p_val;      // value  of "current" prime

public:
  primeclass();  // will use 10^6 as default or read from file
  primeclass(long maxnum);
  ~primeclass();
  void init(long maxnum); // called in constructor, or to make more primes
  long number(long n) ; // returns n'th prime (n=1 gives p=2)
  vector<long> getfirst(long n); // return primes 2..p_n as vector<long>
  friend long nprimes(void);
  friend long maxprime(void);
};

extern primeclass the_primes;  // The one and only instance

inline long prime_number (long n)   /* returns n'th prime from global list */
  {return the_primes.number(n);}                              
inline vector<long> primes (long n)  /* returns list of first n primes */
  {return the_primes.getfirst(n);}
inline long nprimes(void) {return the_primes.NPRIMES;}
inline long maxprime(void) {return the_primes.BIGGESTPRIME;}
long prime_pi(long p); // returns i>=0 such that p is the i'th prime

class primevar {
public:
        long val;        /* current value */
        long ind;        /* current index */
private:
        byteptr ndiff;     /* pointer to next diff*/
        long maxindex;     /* max index */
public:
        primevar(long max=the_primes.NPRIMES, long i=1) 
          {maxindex=max; ind=i; val=the_primes.number(i); 
           ndiff=the_primes.pdiffptr+i;}
        void init(long max=the_primes.NPRIMES, long i=1) 
          {maxindex=max; ind=i; val=the_primes.number(i); 
           ndiff=the_primes.pdiffptr+i;}
        void operator++() {if ((ind++)<=maxindex) { val+=*ndiff++;}}
        void operator++(int) {if ((ind++)<=maxindex) { val+=*ndiff++;}}
        int ok() const {return ind<=maxindex;}
        int more() const {return ind<maxindex;}
        long value() const {return val;}
        long index() const {return ind;}
        operator long() const {return val;}
};


/* Usage of primevar: 
---To loop through first n primes:

   long p; 
   for(primevar pr(n); pr.ok(); pr++) {p=pr; ... ;}  // or:
   for(pr.init(n); pr.ok(); pr++) {p=pr; ... ;}  // iff pr is existing primevar

---To loop through all primes:
   
   primevar pr; //or for existing primevar, pr.init();
   long p;
   while(pr.ok()) {p=pr; pr=++; ...;}

*/

long primdiv(long);        /* returns first prime divisor */
vector<long> pdivs(long);      /* list of prime divisors */

vector<long> posdivs(long, const vector<long>& plist);  // all positive divisors
inline vector<long> posdivs(long n)
{
  const vector<long>& plist = pdivs(n);
  return posdivs(n,plist);
}

vector<long> alldivs(long, const vector<long>& plist);  // absolutely all divisors
inline vector<long> alldivs(long n)
{
  const vector<long>& plist = pdivs(n);
  return alldivs(n,plist);
}

vector<long> sqdivs(long, const vector<long>& plist);   //  divisors whose square divides
inline vector<long> sqdivs(long n)
{
  const vector<long>& plist = pdivs(n);
  return sqdivs(n,plist);
}

vector<long> sqfreedivs(long, const vector<long>& plist); // square-free divisors
inline vector<long> sqfreedivs(long n)
{
  const vector<long>& plist = pdivs(n);
  return sqfreedivs(n,plist);
}


long mod(long a, long modb); /* modulus in range plus or minus half mod */
long posmod(long a, long modb); /* ordinary modulus, but definitely positive */

long gcd(long, long);
int gcd(int, int);
long lcm(long, long);
long bezout(long, long, long&, long&);
int intbezout(int aa, int bb, int& xx, int& yy);

long invmod(long, long);
int modrat(long, long, float, long&, long&);
int modrat(int, int, float, int&, int&);

inline int is_zero(long n) {return n==0;}

long val(long factor, long number); // order of factor in number

inline int divides(long factor,long number) 
{ 
  return (factor==0) ? (number==0) : (number%factor==0);
}

inline int ndivides(long factor,long number) 
{
  return (factor==0) ? (number!=0) : (number%factor!=0);
  //  return !::divides(factor,number);
}

inline long m1pow(long a) {return (a%2 ?  -1 : +1);}
inline int sign(long a)   {return (a==0? 0: (a>0? 1: -1));} 
inline int sign(double a) {return (a==0? 0: (a>0? 1: -1));} 

long chi2(long a);
long chi4(long a);
long hilbert2(long a, long b);
long legendre(long a, long b);
long kronecker(long d, long n);
int intlog2(long& n, long& e, int roundup);

int is_squarefree(long n);
int is_valid_conductor(long n);


#endif