This file is indexed.

/usr/include/eclib/bigrat.h is in libec-dev 20160101-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// bigrat.h: declaration of bigrational number class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#if     !defined(_BIGRATIONAL_H)
#define _BIGRATIONAL_H      1       //flags that this file has been included

#include "marith.h"
#include "rat.h"

class bigrational {

public:
        // constructors
        bigrational(bigint num_val=BIGINT(0), bigint den_val=BIGINT(1));
        bigrational(const bigrational& q);
        bigrational(const rational& q);
        void operator=(const bigrational& q);
        void operator=(const rational& q);

        // bigrational manipulations
        void cancel();                           // cancel *this in situ
        friend bigint num(const bigrational&);        // the numerator
        friend bigint den(const bigrational&);        // the denominator
        friend bigrational recip(const bigrational&);  // reciprocal
        friend bigint round(const bigrational&);      // nearest integer

        // Binary Operator Functions
        friend bigrational operator+(const bigrational&, const bigrational&);
        friend bigrational operator+(bigint, const bigrational&);
        friend bigrational operator+(const bigrational&, bigint);
        friend bigrational operator-(const bigrational&, const bigrational&);
        friend bigrational operator-(bigint, const bigrational&);
        friend bigrational operator-(const bigrational&, bigint);
        friend bigrational operator*(const bigrational&, const bigrational&);
        friend bigrational operator*(const bigrational&, bigint);
        friend bigrational operator*(bigint, const bigrational&);
        friend bigrational operator/(const bigrational&, const bigrational&);
        friend bigrational operator/(const bigrational&, bigint);
        friend bigrational operator/(bigint, const bigrational&);
        friend int operator==(const bigrational&, const bigrational&);
        friend int operator!=(const bigrational&, const bigrational&);
        friend int operator<(const bigrational&, const bigrational&);
        friend int operator>(const bigrational&, const bigrational&);
        friend ostream& operator<< (ostream&s, const bigrational&);
        friend istream& operator>> (istream& is, bigrational& r);
        bigrational& operator+=(const bigrational&);
        bigrational& operator+=(bigint);
        bigrational& operator-=(const bigrational&);
        bigrational& operator-=(bigint);
        bigrational& operator*=(const bigrational&);
        bigrational& operator*=(bigint);
        bigrational& operator/=(const bigrational&);
        bigrational& operator/=(bigint);
        bigrational operator+();
        bigrational operator-();
        friend bigint floor(const bigrational& r);
        friend bigint ceil(const bigrational& r);
        operator bigfloat();  // conversion operator

// Implementation
private:
        bigint n, d;
};


// Inline bigrational functions

inline void bigrational::cancel()                     // cancel *this in situ
{
 bigint g = gcd(n,d);
 if (g>1) {n/=g; d/=g;}
 if (d<0) {n=-n; d=-d;}
}

inline bigrational::bigrational(bigint num_val, bigint den_val)
{
  n=num_val; d=den_val;
  (*this).cancel(); 
}

inline bigrational::bigrational(const bigrational& q) :n(q.n), d(q.d) {;}
inline bigrational::bigrational(const rational& q) :n(BIGINT(q.n)), d(BIGINT(q.d)) {;}
inline void bigrational::operator=(const bigrational& q) {n=q.n; d=q.d;}
inline void bigrational::operator=(const rational& q) {n=BIGINT(q.n); d=BIGINT(q.d);}

inline bigrational bigrational::operator+()
{
        return *this;
}

inline bigrational bigrational::operator-()
{
        return bigrational(-n, d);
}


// Definitions of compound-assignment operator member functions

inline bigrational& bigrational::operator+=(const bigrational& q2)
{
        n = n*q2.d+d*q2.n;
        d *= q2.d;
        (*this).cancel();
        return *this;
}

inline bigrational& bigrational::operator+=(bigint num_val2)
{
        n += d*num_val2;
        return *this;
}

inline bigrational& bigrational::operator-=(const bigrational& q2)
{
        n = n*q2.d-d*q2.n;
        d *= q2.d;
        (*this).cancel();
        return *this;
}

inline bigrational& bigrational::operator-=(bigint num_val2)
{
        n -= d*num_val2;
        return *this;
}

inline bigrational& bigrational::operator*=(bigint num_val2)
{
        n*=num_val2;
        (*this).cancel();
        return *this;
}

inline bigrational& bigrational::operator/=(bigint num_val2)
{
        d*=num_val2;
        (*this).cancel();
        return *this;
}

inline bigrational::operator bigfloat() {return I2bigfloat(n)/I2bigfloat(d);}

// Definitions of non-member bigrational functions

inline bigint num(const bigrational& q)
{
        return q.n;
}

inline bigint den(const bigrational& q)
{
        return q.d;
}

inline bigrational recip(const bigrational& q)
{
        return bigrational(q.d, q.n);
}

inline bigint round(const bigrational& q)
{
        return q.n / q.d;    //provisional -- should fix rounding direction.
}

// Definitions of non-member binary operator functions

inline bigrational operator+(const bigrational& q1, const bigrational& q2)
{
        return bigrational(q1.n*q2.d + q2.n*q1.d, q1.d * q2.d);
}

inline bigrational operator+(bigint num_val1, const bigrational& q2)
{
        return bigrational(num_val1*q2.d + q2.n, q2.d);
}

inline bigrational operator+(const bigrational& q1, bigint num_val2)
{
        return bigrational(q1.n + num_val2*q1.d, q1.d);
}

inline bigrational operator-(const bigrational& q1, const bigrational& q2)
{
        return bigrational(q1.n*q2.d - q2.n*q1.d, q1.d * q2.d);
}

inline bigrational operator-(bigint num_val1, const bigrational& q2)
{
        return bigrational(num_val1*q2.d - q2.n, q2.d);
}

inline bigrational operator-(const bigrational& q1, bigint num_val2)
{
        return bigrational(q1.n - num_val2*q1.d, q1.d);
}

inline bigrational operator*(const bigrational& q1, bigint num_val2)
{
        return bigrational(q1.n*num_val2, q1.d);
}

inline bigrational operator*(bigint num_val1, const bigrational& q2)
{
        return bigrational(q2.n*num_val1, q2.d);
}

inline bigrational operator*(const bigrational& q1, const bigrational& q2)
{
        return bigrational(q1.n*q2.n, q1.d*q2.d);
}

inline bigrational operator/(const bigrational& q1, bigint num_val2)
{
        return bigrational(q1.n, q1.d*num_val2);
}

inline bigrational operator/(const bigrational& q1, const bigrational& q2)
{
        return bigrational(q1.n*q2.d, q1.d*q2.n);
}

inline bigrational operator/(bigint num_val1, const bigrational& q2)
{
  return bigrational(q2.d*num_val1, q2.n);
}

inline int operator==(const bigrational& q1, const bigrational& q2)
{
        return q1.n*q2.d == q2.n*q1.d;
}

inline int operator!=(const bigrational& q1, const bigrational& q2)
{
        return q1.n*q2.d != q2.n*q1.d;
}

inline int operator<(const bigrational& q1, const bigrational& q2)
{
        return q1.n*q2.d < q2.n*q1.d;
}

inline int operator>(const bigrational& q1, const bigrational& q2)
{
        return q1.n*q2.d > q2.n*q1.d;
}

inline ostream& operator<<(ostream& s, const bigrational& q)
{
  if(q.d==0) s<<"oo";
  else
    {
      s << q.n;
      if (q.d!=1) {s << "/" << q.d;}
    }
   return s;
}


inline istream& operator>> (istream& is, bigrational& r)
{
  char c;
  bigint n,d=BIGINT(1);
  is>>n;
  if(!is.eof()) 
    {
      is.get(c);
      if(c=='/')
	{
	  is>>d;
	}
      else
	{
	  is.putback(c);
	}
    }
  r=bigrational(n,d);
  return is;
}
// NB gcd(n,d)=1 and d>0:

inline bigint floor(const bigrational& r)
{
  return (r.n-(r.n%r.d))/r.d;
}

inline bigint ceil(const bigrational& r)
{
  if(r.d==BIGINT(1)) return r.n;
  return BIGINT(1) + (r.n-(r.n%r.d))/r.d;
}

#endif