This file is indexed.

/usr/include/eclib/interface.h is in libec-dev 20160101-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// interface.h: used to provide common interface for LiDIA or NTL
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
//  The macro NTL_ALL can optionally be set.  It controls whether most
//   real and complex floating point functions are implemented using
//   doubles and complex doubles (if not set) ot using NTL bigfloats
//   (RR) and bigcomplexes (CC) (if set)

#ifndef _INTERFACE_H_
#define _INTERFACE_H_

#ifdef NTL_ALL
#define MPFP
#endif

#include <limits>
#include <iostream>
#include <sstream>
#include <fstream>
#include <set>
#include <vector>
#include <map>
#include <algorithm>
//#include <numeric>
#include <ext/numeric>
#include <iterator>
using namespace std;
#include "templates.h"
#include <stdint.h>

#ifndef MININT
#define MININT numeric_limits<int>::min()
#endif
#ifndef MINLONG
#define MINLONG numeric_limits<long>::min()
#endif
#ifndef MAXINT
#define MAXINT numeric_limits<int>::max()
#endif
#ifndef MAXLONG
#define MAXLONG numeric_limits<long>::max()
#endif

// integers and rationals

// Some of the following were defined for compatibility with LiDIA, which is no longer supported

#include <NTL/ZZ.h>
#include <NTL/ZZXFactoring.h>
using namespace NTL;

#define bigint ZZ

#define BIGINT(val) to_ZZ(val)
inline bigint atoI(const char* s) {return to_ZZ(s);}

inline int odd(const int& a) {return a&1;}
inline int even(const int& a) {return !(a&1);}
inline int odd(const long& a) {return a&1;}
inline int even(const long& a) {return !(a&1);}

inline int is_zero(const bigint& x) {return IsZero(x);}
inline int is_positive(const bigint& x) {return sign(x)>0;}
inline int is_negative(const bigint& x) {return sign(x)<0;}
inline int is_one(const bigint& x) {return IsOne(x);}
inline int odd(const bigint& a) {return IsOdd(a);}
inline int even(const bigint& a) {return !IsOdd(a);}
inline void rshift(const bigint& a, long i, bigint& c) {RightShift(c,a,i);}
inline void lshift(const bigint& a, long i, bigint& c) {LeftShift(c,a,i);}
#ifdef setbit
#undef setbit
#endif
inline void setbit(bigint& a, int e) {SetBit(a,e);}
inline long lg(const bigint& x) {return NumBits(x)-1;}
inline int is_long(const bigint& a) {return (a<=MAXLONG)&&(a>=MINLONG);}
inline int is_int(const bigint& a) {return (a<=MAXINT)&&(a>=MININT);}

// The following are not in NTL & need defining
int I2int(const bigint& x);    // too long to inline
long I2long(const bigint& x);  // too long to inline
inline double I2double(const bigint& x) {return to_double(x);}
inline void longasI(long& a, const bigint& x) {a = I2long(x);}
inline void negate(bigint& a) {a=-a;}
inline void sqrt(bigint& a, const bigint& b) {SqrRoot(a,b);}
inline bigint sqrt(const bigint& a) {bigint b; sqrt(b,a); return b;}
inline void square(bigint& a, const bigint& b) {sqr(a,b);}
inline bigint gcd(const bigint& a, const bigint& b) {return GCD(a,b);}
inline bigint lcm(const bigint& a, const bigint& b)
 {if (IsZero(a) && IsZero(b)) return ZZ::zero(); else return a*(b/GCD(a,b));}

// In NTL add, sub, mul, div are defined with result in first place
inline void addx(const bigint& a, const bigint& b, bigint& c)  {add(c,a,b);}
inline void subx(const bigint& a, const bigint& b, bigint& c)  {sub(c,a,b);}
inline void divx(const bigint& a, const bigint& b, bigint& c)  {div(c,a,b);}
inline void mulx(const bigint& a, const bigint& b, bigint& c)  {mul(c,a,b);}
inline bigint pow(const bigint& a, long e)  {return power(a,e);}

//N.B. no power to bigint exponent in NTL
inline long jacobi(const bigint& a, const bigint& p)  {return Jacobi(a,p);}
inline void sqrt_mod_p(bigint & x, const bigint & a, const bigint & p)  
  {SqrRootMod(x,a,p); if(x>(p-x)) x= p-x;}
inline void power_mod(bigint& ans, const bigint& base, const bigint& expo, const bigint& m) 
 {PowerMod(ans,base,expo,m);}
inline void nearest(bigint& c, const bigint& a, const bigint& b) 
 {bigint a0=(a%b);  c = (a-a0)/b; if(2*a0>b) c+=1;}
inline bigint roundover(const bigint& a, const bigint& b)
 {bigint a0=(a%b); bigint c = (a-a0)/b; if(2*a0>b) c+=1; return c;}

#define bigint_mod_long(a,m) (a%m)


// Reals and Complexes

#ifdef NTL_ALL

#include <NTL/RR.h>
#define bigfloat RR
RR Pi();
RR Euler();
RR atan(const RR&);
RR asin(const RR&);
inline RR pow(const RR& a, int e)  {return power(a,e);}
inline RR pow(const RR& a, long e)  {return power(a,e);}
namespace NTL {
inline RR cosh(const RR& x) {return (exp(x)+exp(-x))/2;}
inline RR sinh(const RR& x) {return (exp(x)-exp(-x))/2;}
inline RR tan(const RR& x) {return sin(x)/cos(x);}
RR atan2(const RR&, const RR&);
inline int is_approx_zero(const RR& x)
//  {return abs(x)<power2_RR(2-RR::precision());}
{
  if (IsZero(x)) return 1;
  long n = x.exponent()+RR::precision()-1;
  if (n>=0) return 0;
  // cout<<"x="<<x<<", exponent="<<x.exponent()<<", mantissa="<<x.mantissa()<<", precision="<<RR::precision()<<endl;
  // cout<<"is_approx_zero() returns "<<(x.mantissa()<power2_ZZ(-n))<<endl;
  return abs(x.mantissa())<power2_ZZ(-n);}
} // namespace NTL
#include <complex>
typedef complex<RR> CC;
#define bigcomplex CC

inline void set_precision(long n)
  {RR::SetPrecision(long(n*3.33));RR::SetOutputPrecision(n);}
inline void set_bit_precision(long n)
  {RR::SetPrecision(n);}
inline void set_precision(const string prompt)
  {long n; cerr<<prompt<<": "; cin>>n; set_precision(n);}
inline long decimal_precision() {return long(RR::precision()*0.3);}
inline long bit_precision() {return RR::precision();}
inline int is_approx_zero(const bigcomplex& z)
  {return is_approx_zero(z.real())&&is_approx_zero(z.imag());}
inline RR to_bigfloat(const int& n) {return to_RR(n);}
inline RR to_bigfloat(const long& n) {return to_RR(n);}
inline RR to_bigfloat(const double& x) {return to_RR(x);}
inline RR I2bigfloat(const bigint& x) { return to_RR(x);}
inline int doublify(const bigfloat& x, double& d){ d=to_double(x); return 0;}
inline long longify(bigfloat x) {return to_long(x);}
inline int is_zero(bigfloat x) {return IsZero(x);}
inline int is_zero(bigcomplex z) {return IsZero(z.real()) && IsZero(z.imag());}
inline void Iasb(bigint& a, bigfloat x) {RoundToZZ(a,x);}
inline void Iasb(long& a, bigfloat x) {ZZ n; RoundToZZ(n,x); a=I2long(n);}
istream& operator>>(istream& is, CC& z);
inline CC pow(const CC& a, int e)  {return exp(to_RR(e)*log(a));}
inline CC pow(const CC& a, long e)  {return exp(to_RR(e)*log(a));}
inline CC pow(const CC& a, const RR& e)  {return exp(e*log(a));}


//////////////////////////////////////////////////////////////////
#else  // C doubles and libg++ Complexes
//////////////////////////////////////////////////////////////////

// reals

#define bigfloat double

inline long decimal_precision() {return 15;}
inline int is_zero(double x) {return fabs(x)<1e-15;}
inline int is_approx_zero(double x) {return fabs(x)<1e-10;}
inline void set_precision(long n) {cout.precision(n);}
inline void set_precision(const string prompt)  {cout.precision(15);}
#define Pi()    3.1415926535897932384626433832795028841
#define Euler() (0.57721566490153286060651209008240243104)
inline double round(double x) {return floor(x+0.5);}
inline void Iasb(long& a, double x) {a = (long)x;}
inline long longify(double x) {return (long)x;}
inline int doublify(const bigfloat& x, double& d) {d=x; return 0;}


inline double to_bigfloat(const int& n) {return double(n);}
inline double to_bigfloat(const long& n) {return double(n);}
inline double to_bigfloat(const double& x) {return x;}

inline bigfloat I2bigfloat(const bigint& x) {return I2double(x);}

// complexes

#include <complex>
#define bigcomplex complex<double>

inline int is_zero(const bigcomplex& z) 
 {return is_zero(z.real())&&is_zero(z.imag());}
inline int is_approx_zero(const bigcomplex& z)
 {return is_approx_zero(z.real())&&is_approx_zero(z.imag());}

//////////////////////////////////////////////////////////////////
#endif // NTL_ALL
//////////////////////////////////////////////////////////////////

#undef setbit

#endif // #define _INTERFACE_H_