This file is indexed.

/usr/include/eclib/xmod.h is in libec-dev 20160101-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// xmod.h: declarations of basic modular arithmetic functions 
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 

// All are inline functions, there's no .cc file

#ifndef _XMOD_H
#define _XMOD_H      1

// undefine this to use int/long/longlong arithmetic only

//#define USE_DMOD

// We'll define BIGPRIME to be one of the following, the largest prime
// possible for the given strategy without overlow.

// We allow all residues a with |a|<p, for speed

// This condition is ASSUMED ON INPUT to the xmodmul functions

// In fact we only use PRIME27 and PRIME30 which are ints.

#define PRIME27   134217689  // = largest p such that p < 2^27
#define PRIME63  6074000981  // = largest p such that (p/2)^2 < 2^63. 
#define PRIME30  1073741789  // = largest p such that p < 2^30. 
#define PRIME31a 2147483647  // = largest p such that p < 2^31. 
#define PRIME31b      92681  // = largest p such that (p/2)^2 < 2^31. 

//////////////////////////////////////////////////////////////////////
#ifdef USE_DMOD

// Strategy: whether base type is 32- or 64-bit, modular operations
// are done via doubles which have 52 bits for the mantissa, so any
// modulus < 2^27 is ok, and the default modulus PRIME27 is the
// largest such prime.

#include "math.h" // for floor()
#define XMOD_METHOD "doubles"

const int BIGPRIME =  PRIME27;
const double BIGPRIME_D =  PRIME27;
const double BIGPRIME_D_INV =  1/BIGPRIME_D;
const int BIGPRIME_I =  PRIME27;

inline long xmod(long a, double m) {return (long)(a-(m*floor((a/m)+0.5)));}
inline int  xmod(int  a, double m) {return (int)(a-(m*floor((a/m)+0.5)));}
inline long xmod(long a, long m)   {return (long)(a-(m*floor((a/m)+0.5)));}
inline int  xmod(int  a, int m)    {return (int)(a-(m*floor((a/m)+0.5)));}
inline int  xmod(long a, int m)    {return (int)(a-(m*floor((a/m)+0.5)));}

inline long xmod0(long a) {return (long)(a-(BIGPRIME_D*floor((a*BIGPRIME_D_INV))));}
inline int  xmod0(int a)  {return (int)(a-(BIGPRIME_D*floor((a*BIGPRIME_D_INV))));}

inline long mod0(long a) {return (long)(a-(BIGPRIME_D*floor((a*BIGPRIME_D_INV)+0.5)));}
inline int  mod0(int a)  {return (int)(a-(BIGPRIME_D*floor((a*BIGPRIME_D_INV)+0.5)));}

inline long xmodmul(long a, long b, double m)
{ double c = (double)a * (double)b;
  return (long)(c-m*floor((c/m)+0.5));
}
inline int xmodmul(int a, int b, double m)
{ double c = (double)a * (double)b;
  return (int)(c-m*floor((c/m)+0.5));
}
inline long xmodmul0(long a, long b)
{ double c = (double)a * (double)b;
  return (long)(c-BIGPRIME_D*floor((c*BIGPRIME_D_INV)+0.5));
}
inline int xmodmul0(int a, int b)
{ double c = (double)a * (double)b;
  return (int)(c-BIGPRIME_D*floor((c*BIGPRIME_D_INV)+0.5));
}
inline long xmodmul(long a, long b, long m)
{ double c = (double)a * (double)b;
  return (long)(c-m*floor((c/m)+0.5));
}
inline int xmodmul(int a, int b, int m)
{ double c = (double)a * (double)b;
  return (int)(c-m*floor((c/m)+0.5));
}


//////////////////////////////////////////////////////////////////////
#else // use some int/long/longlong combination

// Strategy: modular multiplication for ints and longs is done via
// int64_ts which have 63 bits
// modular addition is simply xmod(a+b,m) since 2*m<2^31

#define XMOD_METHOD "ints and longs"
const int BIGPRIME = PRIME30;
const int HALF_BIGPRIME = BIGPRIME>>1; // = 536870894;
const int TWO_BIGPRIME = 2147483578; // 2*BIGPRIME
const int64_t INV_BIGPRIME = 4294967436LL; // = 2^32+140 = [2^62/p]

inline int xmod(int a, int m) {return a%m;}
inline long xmod(long a, long m) {return a%m;}

inline int xmod(long a, int m) { return (int)(a%(long)m);}
inline long xmod(int a, long m) { return (long)((long)(a)%m);}

inline int xmod0(int a) {return a%BIGPRIME;}
inline int mod0(int a)
{a%=BIGPRIME;
 if(a>0)
   while(a>HALF_BIGPRIME) a-=BIGPRIME; 
 else
   while(-a>HALF_BIGPRIME) a+=BIGPRIME; 
 return a;
}

inline long xmod0(long a) {return (a%(long)BIGPRIME);}
inline long mod0(long a) {return mod0((int)(a%BIGPRIME));}

inline int xmodmul0(int a, int b)
{
  return ((int)( ( (int64_t)(a)*(int64_t)(b) ) % (int64_t)(BIGPRIME) ))%BIGPRIME;
}

inline long xmodmul0(long a, long b)
{
  return (long)(((int)( ( (int64_t)(a)*(int64_t)(b) ) % (int64_t)(BIGPRIME) ))%BIGPRIME);
}

// This special version only works modulo BIGPRIME, not a general modulus:
// It should work faster (no divisions)!  Thanks to David Harvey.

inline int xmm0(int a, int b)
{
  if (a==1) return b;
  if (a==-1) return -b;
  if (b==1) return a;
  if (b==-1) return -a;
  // check:
  //  int r2 = (a*(int64_t)b) % BIGPRIME;
  if(a<0) a+=BIGPRIME;
  if(b<0) b+=BIGPRIME;
  int64_t ab = a*(int64_t)b;
  int64_t r = ab-((INV_BIGPRIME*(ab>>30))>>32)*BIGPRIME;
  r -= ( ((r>=TWO_BIGPRIME)?BIGPRIME:0) + ((r>=BIGPRIME)?BIGPRIME:0) );
  if (r>HALF_BIGPRIME) r-=BIGPRIME;
  // check:
  // if (r!=r2)
  //   {
  //     cout << "Problem with "<<a<<"*"<<b<<" (mod "<<BIGPRIME
  //          <<"): computed "<<r<<", not "<<r2<<endl;
  //     return r2;
  //   }
  return (int)r;
}

inline long xmm0(long a, long b)
{
  return (a*(int64_t)b) % BIGPRIME;
}

inline int xmodmul(int a, int b, int m)
{
  if (m==BIGPRIME) return xmm0(a,b);
  return ((int)( ( (int64_t)(a)*(int64_t)(b) ) % (int64_t)(m) ))%m;
}

inline int xmodmul(int a, int b, long m)
{
  return (int)(((long)( ( (int64_t)(a)*(int64_t)(b) ) % (int64_t)(m) ))%m);
}

inline int xmodmul(long a, long b, int m)
{
  return ((int)( ( (int64_t)(a)*(int64_t)(b) ) % (int64_t)(m) ))%m;
}

inline long xmodmul(long a, long b, long m)
{
  return ((long)( ( (int64_t)(a)*(int64_t)(b) ) % (int64_t)(m) ))%m;
}

#endif // ifdef USE_DMOD

#if(1)
const int DEFAULT_MODULUS = BIGPRIME;
// table of inversers of residues<20 modulo BIGPRIME:
static int table_invs[20] = {0,1, 536870895, 357913930, 805306342, 214748358, 178956965, 920350105, 402653171, 477218573, 107374179, 97612890, 626349377, 330382089, 997045947, 71582786, 738197480, 442128972, 775480181, 226050903};
#else
const int DEFAULT_MODULUS = 1073741783; //BIGPRIME-6;
// table of inversers of residues<20 modulo 1073741783:
static int table_invs[20] = {0, 1, 536870892, 357913928, 268435446,
 644245070, 178956964, 460175050, 134217723, 835132498, 322122535,
 780903115, 89478482, 743359696, 230087525, 930576212, 603979753,
 884257939, 417566249, 395589078};
#endif

inline long invmod0(long aa)
{
  long a=aa;

  // if |a| is small, use look-up table:
  if ((a>0)&&(a<20)) return table_invs[a];
  long ma=-a;
  if ((ma>0)&&(ma<20)) return -table_invs[ma];
  // if a = BIGPRIME-ma with ma small, use look-up table:
  ma+=BIGPRIME; // = BIGPRIME-a
  if ((ma>0)&&(ma<20)) return -table_invs[ma];
  // if a = -BIGPRIME+ma with ma small, use look-up table:
  ma=a-BIGPRIME;
  if ((ma>0)&&(ma<20)) return table_invs[ma];

 // General code, use Euclidean Algorithm:
 long x=0,oldx=1,newx,b=BIGPRIME,c,q;
 while (b!=0)
 { q = a/b; 
   c    = a    - q*b; a    = b; b = c;
   newx = oldx - q*x; oldx = x; x = newx;
  }
 if (a==1)  {return oldx;}
 if (a==-1) {return -oldx;}
 cout << "invmod0 called with " << a << " -- not invertible!\n";
 return 0;
}

inline int invmod0(int aa)
{
  int a=aa;

  // if |a| is small, use look-up table:
  if ((a>0)&&(a<20)) return table_invs[a];
  int ma=-a;
  if ((ma>0)&&(ma<20)) return -table_invs[ma];
  // if a = BIGPRIME-ma with ma small, use look-up table:
  ma+=BIGPRIME; // = BIGPRIME-a
  if ((ma>0)&&(ma<20)) return -table_invs[ma];
  // if a = -BIGPRIME+ma with ma small, use look-up table:
  ma=a-BIGPRIME;
  if ((ma>0)&&(ma<20)) return table_invs[ma];

 // General code, use Euclidean Algorithm:
 int x=0,oldx=1,newx,b=BIGPRIME,c,q;
 while (b!=0)
 { q = a/b; 
   c    = a    - q*b; a    = b; b = c;
   newx = oldx - q*x; oldx = x; x = newx;
  }
 if (a==1)  {return oldx;}
 if (a==-1) {return -oldx;}
 cout << "invmod0 called with " << a << " -- not invertible!\n";
 return 0;
}


#endif // ifndef _XMOD_H