This file is indexed.

/usr/include/fcl/collision_data.h is in libfcl-dev 0.3.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** \author Jia Pan */


#ifndef FCL_COLLISION_DATA_H
#define FCL_COLLISION_DATA_H

#include "fcl/collision_object.h"
#include "fcl/learning/classifier.h"
#include "fcl/knn/nearest_neighbors.h"


#include "fcl/math/vec_3f.h"
#include <vector>
#include <set>
#include <limits>


namespace fcl
{

/// @brief Type of narrow phase GJK solver
enum GJKSolverType {GST_LIBCCD, GST_INDEP};

/// @brief Contact information returned by collision
struct Contact
{
  /// @brief collision object 1
  const CollisionGeometry* o1;

  /// @brief collision object 2
  const CollisionGeometry* o2;

  /// @brief contact primitive in object 1
  /// if object 1 is mesh or point cloud, it is the triangle or point id
  /// if object 1 is geometry shape, it is NONE (-1),
  /// if object 1 is octree, it is the id of the cell
  int b1;


  /// @brief contact primitive in object 2
  /// if object 2 is mesh or point cloud, it is the triangle or point id
  /// if object 2 is geometry shape, it is NONE (-1),
  /// if object 2 is octree, it is the id of the cell
  int b2;
 
  /// @brief contact normal, pointing from o1 to o2
  Vec3f normal;

  /// @brief contact position, in world space
  Vec3f pos;

  /// @brief penetration depth
  FCL_REAL penetration_depth;

 
  /// @brief invalid contact primitive information
  static const int NONE = -1;

  Contact() : o1(NULL),
              o2(NULL),
              b1(NONE),
              b2(NONE)
  {}

  Contact(const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_) : o1(o1_),
                                                                                          o2(o2_),
                                                                                          b1(b1_),
                                                                                          b2(b2_)
  {}

  Contact(const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_,
          const Vec3f& pos_, const Vec3f& normal_, FCL_REAL depth_) : o1(o1_),
                                                                      o2(o2_),
                                                                      b1(b1_),
                                                                      b2(b2_),
                                                                      normal(normal_),
                                                                      pos(pos_),
                                                                      penetration_depth(depth_)
  {}

  bool operator < (const Contact& other) const
  {
    if(b1 == other.b1)
      return b2 < other.b2;
    return b1 < other.b1;
  }
};

/// @brief Cost source describes an area with a cost. The area is described by an AABB region.
struct CostSource
{
  /// @brief aabb lower bound
  Vec3f aabb_min;

  /// @brief aabb upper bound
  Vec3f aabb_max;

  /// @brief cost density in the AABB region
  FCL_REAL cost_density;

  FCL_REAL total_cost;

  CostSource(const Vec3f& aabb_min_, const Vec3f& aabb_max_, FCL_REAL cost_density_) : aabb_min(aabb_min_),
                                                                                       aabb_max(aabb_max_),
                                                                                       cost_density(cost_density_)
  {
    total_cost = cost_density * (aabb_max[0] - aabb_min[0]) * (aabb_max[1] - aabb_min[1]) * (aabb_max[2] - aabb_min[2]);
  }

  CostSource(const AABB& aabb, FCL_REAL cost_density_) : aabb_min(aabb.min_),
                                                         aabb_max(aabb.max_),
                                                         cost_density(cost_density_)
  {
    total_cost = cost_density * (aabb_max[0] - aabb_min[0]) * (aabb_max[1] - aabb_min[1]) * (aabb_max[2] - aabb_min[2]);
  }

  CostSource() {}

  bool operator < (const CostSource& other) const
  {
    if(total_cost < other.total_cost) 
      return false;
    if(total_cost > other.total_cost)
      return true;
    
    if(cost_density < other.cost_density)
      return false;
    if(cost_density > other.cost_density)
      return true;
  
    for(size_t i = 0; i < 3; ++i)
      if(aabb_min[i] != other.aabb_min[i])
	return aabb_min[i] < other.aabb_min[i];
 
    return false;
  }
};

struct CollisionResult;

/// @brief request to the collision algorithm
struct CollisionRequest
{  
  /// @brief The maximum number of contacts will return
  size_t num_max_contacts;

  /// @brief whether the contact information (normal, penetration depth and contact position) will return
  bool enable_contact;

  /// @brief The maximum number of cost sources will return
  size_t num_max_cost_sources;

  /// @brief whether the cost sources will be computed
  bool enable_cost;

  /// @brief whether the cost computation is approximated
  bool use_approximate_cost;

  /// @brief narrow phase solver
  GJKSolverType gjk_solver_type;

  /// @brief whether enable gjk intial guess
  bool enable_cached_gjk_guess;
  
  /// @brief the gjk intial guess set by user
  Vec3f cached_gjk_guess;

  CollisionRequest(size_t num_max_contacts_ = 1,
                   bool enable_contact_ = false,
                   size_t num_max_cost_sources_ = 1,
                   bool enable_cost_ = false,
                   bool use_approximate_cost_ = true,
                   GJKSolverType gjk_solver_type_ = GST_LIBCCD) : num_max_contacts(num_max_contacts_),
                                                                  enable_contact(enable_contact_),
                                                                  num_max_cost_sources(num_max_cost_sources_),
                                                                  enable_cost(enable_cost_),
                                                                  use_approximate_cost(use_approximate_cost_),
                                                                  gjk_solver_type(gjk_solver_type_)
  {
    enable_cached_gjk_guess = false;
    cached_gjk_guess = Vec3f(1, 0, 0);
  }

  bool isSatisfied(const CollisionResult& result) const;
};

/// @brief collision result
struct CollisionResult
{
private:
  /// @brief contact information
  std::vector<Contact> contacts;

  /// @brief cost sources
  std::set<CostSource> cost_sources;

public:
  Vec3f cached_gjk_guess;

public:
  CollisionResult()
  {
  }


  /// @brief add one contact into result structure
  inline void addContact(const Contact& c) 
  {
    contacts.push_back(c);
  }

  /// @brief add one cost source into result structure
  inline void addCostSource(const CostSource& c, std::size_t num_max_cost_sources)
  {
    cost_sources.insert(c);
    while (cost_sources.size() > num_max_cost_sources)
      cost_sources.erase(--cost_sources.end());
  }

  /// @brief return binary collision result
  bool isCollision() const
  {
    return contacts.size() > 0;
  }

  /// @brief number of contacts found
  size_t numContacts() const
  {
    return contacts.size();
  }

  /// @brief number of cost sources found
  size_t numCostSources() const
  {
    return cost_sources.size();
  }

  /// @brief get the i-th contact calculated
  const Contact& getContact(size_t i) const
  {
    if(i < contacts.size()) 
      return contacts[i];
    else
      return contacts.back();
  }

  /// @brief get all the contacts
  void getContacts(std::vector<Contact>& contacts_)
  {
    contacts_.resize(contacts.size());
    std::copy(contacts.begin(), contacts.end(), contacts_.begin());
  }

  /// @brief get all the cost sources 
  void getCostSources(std::vector<CostSource>& cost_sources_)
  {
    cost_sources_.resize(cost_sources.size());
    std::copy(cost_sources.begin(), cost_sources.end(), cost_sources_.begin());
  }

  /// @brief clear the results obtained
  void clear()
  {
    contacts.clear();
    cost_sources.clear();
  }
};


struct DistanceResult;

/// @brief request to the distance computation
struct DistanceRequest
{
  /// @brief whether to return the nearest points
  bool enable_nearest_points;

  /// @brief error threshold for approximate distance
  FCL_REAL rel_err; // relative error, between 0 and 1
  FCL_REAL abs_err; // absoluate error

  /// @brief narrow phase solver type
  GJKSolverType gjk_solver_type;



  DistanceRequest(bool enable_nearest_points_ = false,
                  FCL_REAL rel_err_ = 0.0,
                  FCL_REAL abs_err_ = 0.0,
                  GJKSolverType gjk_solver_type_ = GST_LIBCCD) : enable_nearest_points(enable_nearest_points_),
                                                                rel_err(rel_err_),
                                                                abs_err(abs_err_),
                                                                gjk_solver_type(gjk_solver_type_)
  {
  }

  bool isSatisfied(const DistanceResult& result) const;
};


/// @brief distance result
struct DistanceResult
{

public:

  /// @brief minimum distance between two objects. if two objects are in collision, min_distance <= 0.
  FCL_REAL min_distance;

  /// @brief nearest points
  Vec3f nearest_points[2];

  /// @brief collision object 1
  const CollisionGeometry* o1;

  /// @brief collision object 2
  const CollisionGeometry* o2;

  /// @brief information about the nearest point in object 1
  /// if object 1 is mesh or point cloud, it is the triangle or point id
  /// if object 1 is geometry shape, it is NONE (-1),
  /// if object 1 is octree, it is the id of the cell
  int b1;

  /// @brief information about the nearest point in object 2
  /// if object 2 is mesh or point cloud, it is the triangle or point id
  /// if object 2 is geometry shape, it is NONE (-1),
  /// if object 2 is octree, it is the id of the cell
  int b2;

  /// @brief invalid contact primitive information
  static const int NONE = -1;
  
  DistanceResult(FCL_REAL min_distance_ = std::numeric_limits<FCL_REAL>::max()) : min_distance(min_distance_), 
                                                                                  o1(NULL),
                                                                                  o2(NULL),
                                                                                  b1(NONE),
                                                                                  b2(NONE)
  {
  }


  /// @brief add distance information into the result
  void update(FCL_REAL distance, const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_)
  {
    if(min_distance > distance)
    {
      min_distance = distance;
      o1 = o1_;
      o2 = o2_;
      b1 = b1_;
      b2 = b2_;
    }
  }

  /// @brief add distance information into the result
  void update(FCL_REAL distance, const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_, const Vec3f& p1, const Vec3f& p2)
  {
    if(min_distance > distance)
    {
      min_distance = distance;
      o1 = o1_;
      o2 = o2_;
      b1 = b1_;
      b2 = b2_;
      nearest_points[0] = p1;
      nearest_points[1] = p2;
    }
  }

  /// @brief add distance information into the result
  void update(const DistanceResult& other_result)
  {
    if(min_distance > other_result.min_distance)
    {
      min_distance = other_result.min_distance;
      o1 = other_result.o1;
      o2 = other_result.o2;
      b1 = other_result.b1;
      b2 = other_result.b2;
      nearest_points[0] = other_result.nearest_points[0];
      nearest_points[1] = other_result.nearest_points[1];
    }
  }

  /// @brief clear the result
  void clear()
  {
    min_distance = std::numeric_limits<FCL_REAL>::max();
    o1 = NULL;
    o2 = NULL;
    b1 = NONE;
    b2 = NONE;
  }
};


enum CCDMotionType {CCDM_TRANS, CCDM_LINEAR, CCDM_SCREW, CCDM_SPLINE};
enum CCDSolverType {CCDC_NAIVE, CCDC_CONSERVATIVE_ADVANCEMENT, CCDC_RAY_SHOOTING, CCDC_POLYNOMIAL_SOLVER};


struct ContinuousCollisionRequest
{
  /// @brief maximum num of iterations
  std::size_t num_max_iterations;

  /// @brief error in first contact time
  FCL_REAL toc_err;

  /// @brief ccd motion type
  CCDMotionType ccd_motion_type;

  /// @brief gjk solver type
  GJKSolverType gjk_solver_type;

  /// @brief ccd solver type
  CCDSolverType ccd_solver_type;
  
  ContinuousCollisionRequest(std::size_t num_max_iterations_ = 10,
                             FCL_REAL toc_err_ = 0.0001,
                             CCDMotionType ccd_motion_type_ = CCDM_TRANS,
                             GJKSolverType gjk_solver_type_ = GST_LIBCCD,
                             CCDSolverType ccd_solver_type_ = CCDC_NAIVE) : num_max_iterations(num_max_iterations_),
                                                                            toc_err(toc_err_),
                                                                            ccd_motion_type(ccd_motion_type_),
                                                                            gjk_solver_type(gjk_solver_type_),
                                                                            ccd_solver_type(ccd_solver_type_)
  {
  }
  
};
/// @brief continuous collision result
struct ContinuousCollisionResult
{
  /// @brief collision or not
  bool is_collide;
  
  /// @brief time of contact in [0, 1]
  FCL_REAL time_of_contact;

  Transform3f contact_tf1, contact_tf2;
  
  ContinuousCollisionResult() : is_collide(false), time_of_contact(1.0)
  {
  }
};


enum PenetrationDepthType {PDT_TRANSLATIONAL, PDT_GENERAL_EULER, PDT_GENERAL_QUAT, PDT_GENERAL_EULER_BALL, PDT_GENERAL_QUAT_BALL};

enum KNNSolverType {KNN_LINEAR, KNN_GNAT, KNN_SQRTAPPROX};


struct PenetrationDepthRequest
{
  void* classifier;

  NearestNeighbors<Transform3f>::DistanceFunction distance_func;

  /// @brief KNN solver type
  KNNSolverType knn_solver_type;
  
  /// @brief PD algorithm type
  PenetrationDepthType pd_type;

  /// @brief gjk solver type
  GJKSolverType gjk_solver_type;

  std::vector<Transform3f> contact_vectors;

  PenetrationDepthRequest(void* classifier_,
                          NearestNeighbors<Transform3f>::DistanceFunction distance_func_,
                          KNNSolverType knn_solver_type_ = KNN_LINEAR,
                          PenetrationDepthType pd_type_ = PDT_TRANSLATIONAL,
                          GJKSolverType gjk_solver_type_ = GST_LIBCCD) : classifier(classifier_),
                                                                         distance_func(distance_func_),
                                                                         knn_solver_type(knn_solver_type_),
                                                                         pd_type(pd_type_),
                                                                         gjk_solver_type(gjk_solver_type_)
  {
  }
};

struct PenetrationDepthResult
{
  /// @brief penetration depth value
  FCL_REAL pd_value;

  /// @brief the transform where the collision is resolved
  Transform3f resolved_tf; 
};




}

#endif