/usr/include/fcl/collision_data.h is in libfcl-dev 0.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | /*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \author Jia Pan */
#ifndef FCL_COLLISION_DATA_H
#define FCL_COLLISION_DATA_H
#include "fcl/collision_object.h"
#include "fcl/learning/classifier.h"
#include "fcl/knn/nearest_neighbors.h"
#include "fcl/math/vec_3f.h"
#include <vector>
#include <set>
#include <limits>
namespace fcl
{
/// @brief Type of narrow phase GJK solver
enum GJKSolverType {GST_LIBCCD, GST_INDEP};
/// @brief Contact information returned by collision
struct Contact
{
/// @brief collision object 1
const CollisionGeometry* o1;
/// @brief collision object 2
const CollisionGeometry* o2;
/// @brief contact primitive in object 1
/// if object 1 is mesh or point cloud, it is the triangle or point id
/// if object 1 is geometry shape, it is NONE (-1),
/// if object 1 is octree, it is the id of the cell
int b1;
/// @brief contact primitive in object 2
/// if object 2 is mesh or point cloud, it is the triangle or point id
/// if object 2 is geometry shape, it is NONE (-1),
/// if object 2 is octree, it is the id of the cell
int b2;
/// @brief contact normal, pointing from o1 to o2
Vec3f normal;
/// @brief contact position, in world space
Vec3f pos;
/// @brief penetration depth
FCL_REAL penetration_depth;
/// @brief invalid contact primitive information
static const int NONE = -1;
Contact() : o1(NULL),
o2(NULL),
b1(NONE),
b2(NONE)
{}
Contact(const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_) : o1(o1_),
o2(o2_),
b1(b1_),
b2(b2_)
{}
Contact(const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_,
const Vec3f& pos_, const Vec3f& normal_, FCL_REAL depth_) : o1(o1_),
o2(o2_),
b1(b1_),
b2(b2_),
normal(normal_),
pos(pos_),
penetration_depth(depth_)
{}
bool operator < (const Contact& other) const
{
if(b1 == other.b1)
return b2 < other.b2;
return b1 < other.b1;
}
};
/// @brief Cost source describes an area with a cost. The area is described by an AABB region.
struct CostSource
{
/// @brief aabb lower bound
Vec3f aabb_min;
/// @brief aabb upper bound
Vec3f aabb_max;
/// @brief cost density in the AABB region
FCL_REAL cost_density;
FCL_REAL total_cost;
CostSource(const Vec3f& aabb_min_, const Vec3f& aabb_max_, FCL_REAL cost_density_) : aabb_min(aabb_min_),
aabb_max(aabb_max_),
cost_density(cost_density_)
{
total_cost = cost_density * (aabb_max[0] - aabb_min[0]) * (aabb_max[1] - aabb_min[1]) * (aabb_max[2] - aabb_min[2]);
}
CostSource(const AABB& aabb, FCL_REAL cost_density_) : aabb_min(aabb.min_),
aabb_max(aabb.max_),
cost_density(cost_density_)
{
total_cost = cost_density * (aabb_max[0] - aabb_min[0]) * (aabb_max[1] - aabb_min[1]) * (aabb_max[2] - aabb_min[2]);
}
CostSource() {}
bool operator < (const CostSource& other) const
{
if(total_cost < other.total_cost)
return false;
if(total_cost > other.total_cost)
return true;
if(cost_density < other.cost_density)
return false;
if(cost_density > other.cost_density)
return true;
for(size_t i = 0; i < 3; ++i)
if(aabb_min[i] != other.aabb_min[i])
return aabb_min[i] < other.aabb_min[i];
return false;
}
};
struct CollisionResult;
/// @brief request to the collision algorithm
struct CollisionRequest
{
/// @brief The maximum number of contacts will return
size_t num_max_contacts;
/// @brief whether the contact information (normal, penetration depth and contact position) will return
bool enable_contact;
/// @brief The maximum number of cost sources will return
size_t num_max_cost_sources;
/// @brief whether the cost sources will be computed
bool enable_cost;
/// @brief whether the cost computation is approximated
bool use_approximate_cost;
/// @brief narrow phase solver
GJKSolverType gjk_solver_type;
/// @brief whether enable gjk intial guess
bool enable_cached_gjk_guess;
/// @brief the gjk intial guess set by user
Vec3f cached_gjk_guess;
CollisionRequest(size_t num_max_contacts_ = 1,
bool enable_contact_ = false,
size_t num_max_cost_sources_ = 1,
bool enable_cost_ = false,
bool use_approximate_cost_ = true,
GJKSolverType gjk_solver_type_ = GST_LIBCCD) : num_max_contacts(num_max_contacts_),
enable_contact(enable_contact_),
num_max_cost_sources(num_max_cost_sources_),
enable_cost(enable_cost_),
use_approximate_cost(use_approximate_cost_),
gjk_solver_type(gjk_solver_type_)
{
enable_cached_gjk_guess = false;
cached_gjk_guess = Vec3f(1, 0, 0);
}
bool isSatisfied(const CollisionResult& result) const;
};
/// @brief collision result
struct CollisionResult
{
private:
/// @brief contact information
std::vector<Contact> contacts;
/// @brief cost sources
std::set<CostSource> cost_sources;
public:
Vec3f cached_gjk_guess;
public:
CollisionResult()
{
}
/// @brief add one contact into result structure
inline void addContact(const Contact& c)
{
contacts.push_back(c);
}
/// @brief add one cost source into result structure
inline void addCostSource(const CostSource& c, std::size_t num_max_cost_sources)
{
cost_sources.insert(c);
while (cost_sources.size() > num_max_cost_sources)
cost_sources.erase(--cost_sources.end());
}
/// @brief return binary collision result
bool isCollision() const
{
return contacts.size() > 0;
}
/// @brief number of contacts found
size_t numContacts() const
{
return contacts.size();
}
/// @brief number of cost sources found
size_t numCostSources() const
{
return cost_sources.size();
}
/// @brief get the i-th contact calculated
const Contact& getContact(size_t i) const
{
if(i < contacts.size())
return contacts[i];
else
return contacts.back();
}
/// @brief get all the contacts
void getContacts(std::vector<Contact>& contacts_)
{
contacts_.resize(contacts.size());
std::copy(contacts.begin(), contacts.end(), contacts_.begin());
}
/// @brief get all the cost sources
void getCostSources(std::vector<CostSource>& cost_sources_)
{
cost_sources_.resize(cost_sources.size());
std::copy(cost_sources.begin(), cost_sources.end(), cost_sources_.begin());
}
/// @brief clear the results obtained
void clear()
{
contacts.clear();
cost_sources.clear();
}
};
struct DistanceResult;
/// @brief request to the distance computation
struct DistanceRequest
{
/// @brief whether to return the nearest points
bool enable_nearest_points;
/// @brief error threshold for approximate distance
FCL_REAL rel_err; // relative error, between 0 and 1
FCL_REAL abs_err; // absoluate error
/// @brief narrow phase solver type
GJKSolverType gjk_solver_type;
DistanceRequest(bool enable_nearest_points_ = false,
FCL_REAL rel_err_ = 0.0,
FCL_REAL abs_err_ = 0.0,
GJKSolverType gjk_solver_type_ = GST_LIBCCD) : enable_nearest_points(enable_nearest_points_),
rel_err(rel_err_),
abs_err(abs_err_),
gjk_solver_type(gjk_solver_type_)
{
}
bool isSatisfied(const DistanceResult& result) const;
};
/// @brief distance result
struct DistanceResult
{
public:
/// @brief minimum distance between two objects. if two objects are in collision, min_distance <= 0.
FCL_REAL min_distance;
/// @brief nearest points
Vec3f nearest_points[2];
/// @brief collision object 1
const CollisionGeometry* o1;
/// @brief collision object 2
const CollisionGeometry* o2;
/// @brief information about the nearest point in object 1
/// if object 1 is mesh or point cloud, it is the triangle or point id
/// if object 1 is geometry shape, it is NONE (-1),
/// if object 1 is octree, it is the id of the cell
int b1;
/// @brief information about the nearest point in object 2
/// if object 2 is mesh or point cloud, it is the triangle or point id
/// if object 2 is geometry shape, it is NONE (-1),
/// if object 2 is octree, it is the id of the cell
int b2;
/// @brief invalid contact primitive information
static const int NONE = -1;
DistanceResult(FCL_REAL min_distance_ = std::numeric_limits<FCL_REAL>::max()) : min_distance(min_distance_),
o1(NULL),
o2(NULL),
b1(NONE),
b2(NONE)
{
}
/// @brief add distance information into the result
void update(FCL_REAL distance, const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_)
{
if(min_distance > distance)
{
min_distance = distance;
o1 = o1_;
o2 = o2_;
b1 = b1_;
b2 = b2_;
}
}
/// @brief add distance information into the result
void update(FCL_REAL distance, const CollisionGeometry* o1_, const CollisionGeometry* o2_, int b1_, int b2_, const Vec3f& p1, const Vec3f& p2)
{
if(min_distance > distance)
{
min_distance = distance;
o1 = o1_;
o2 = o2_;
b1 = b1_;
b2 = b2_;
nearest_points[0] = p1;
nearest_points[1] = p2;
}
}
/// @brief add distance information into the result
void update(const DistanceResult& other_result)
{
if(min_distance > other_result.min_distance)
{
min_distance = other_result.min_distance;
o1 = other_result.o1;
o2 = other_result.o2;
b1 = other_result.b1;
b2 = other_result.b2;
nearest_points[0] = other_result.nearest_points[0];
nearest_points[1] = other_result.nearest_points[1];
}
}
/// @brief clear the result
void clear()
{
min_distance = std::numeric_limits<FCL_REAL>::max();
o1 = NULL;
o2 = NULL;
b1 = NONE;
b2 = NONE;
}
};
enum CCDMotionType {CCDM_TRANS, CCDM_LINEAR, CCDM_SCREW, CCDM_SPLINE};
enum CCDSolverType {CCDC_NAIVE, CCDC_CONSERVATIVE_ADVANCEMENT, CCDC_RAY_SHOOTING, CCDC_POLYNOMIAL_SOLVER};
struct ContinuousCollisionRequest
{
/// @brief maximum num of iterations
std::size_t num_max_iterations;
/// @brief error in first contact time
FCL_REAL toc_err;
/// @brief ccd motion type
CCDMotionType ccd_motion_type;
/// @brief gjk solver type
GJKSolverType gjk_solver_type;
/// @brief ccd solver type
CCDSolverType ccd_solver_type;
ContinuousCollisionRequest(std::size_t num_max_iterations_ = 10,
FCL_REAL toc_err_ = 0.0001,
CCDMotionType ccd_motion_type_ = CCDM_TRANS,
GJKSolverType gjk_solver_type_ = GST_LIBCCD,
CCDSolverType ccd_solver_type_ = CCDC_NAIVE) : num_max_iterations(num_max_iterations_),
toc_err(toc_err_),
ccd_motion_type(ccd_motion_type_),
gjk_solver_type(gjk_solver_type_),
ccd_solver_type(ccd_solver_type_)
{
}
};
/// @brief continuous collision result
struct ContinuousCollisionResult
{
/// @brief collision or not
bool is_collide;
/// @brief time of contact in [0, 1]
FCL_REAL time_of_contact;
Transform3f contact_tf1, contact_tf2;
ContinuousCollisionResult() : is_collide(false), time_of_contact(1.0)
{
}
};
enum PenetrationDepthType {PDT_TRANSLATIONAL, PDT_GENERAL_EULER, PDT_GENERAL_QUAT, PDT_GENERAL_EULER_BALL, PDT_GENERAL_QUAT_BALL};
enum KNNSolverType {KNN_LINEAR, KNN_GNAT, KNN_SQRTAPPROX};
struct PenetrationDepthRequest
{
void* classifier;
NearestNeighbors<Transform3f>::DistanceFunction distance_func;
/// @brief KNN solver type
KNNSolverType knn_solver_type;
/// @brief PD algorithm type
PenetrationDepthType pd_type;
/// @brief gjk solver type
GJKSolverType gjk_solver_type;
std::vector<Transform3f> contact_vectors;
PenetrationDepthRequest(void* classifier_,
NearestNeighbors<Transform3f>::DistanceFunction distance_func_,
KNNSolverType knn_solver_type_ = KNN_LINEAR,
PenetrationDepthType pd_type_ = PDT_TRANSLATIONAL,
GJKSolverType gjk_solver_type_ = GST_LIBCCD) : classifier(classifier_),
distance_func(distance_func_),
knn_solver_type(knn_solver_type_),
pd_type(pd_type_),
gjk_solver_type(gjk_solver_type_)
{
}
};
struct PenetrationDepthResult
{
/// @brief penetration depth value
FCL_REAL pd_value;
/// @brief the transform where the collision is resolved
Transform3f resolved_tf;
};
}
#endif
|