This file is indexed.

/usr/include/fcl/knn/greedy_kcenters.h is in libfcl-dev 0.3.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*********************************************************************
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011, Rice University
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the Rice University nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *********************************************************************/

/* Author: Mark Moll */

#ifndef FCL_KNN_GREEDY_KCENTERS_H
#define FCL_KNN_GREEDY_KCENTERS_H


#include "fcl/math/sampling.h"

namespace fcl
{
/// @brief An instance of this class can be used to greedily select a given
/// number of representatives from a set of data points that are all far
/// apart from each other.
template<typename _T>
class GreedyKCenters
{
public:
  /// @brief The definition of a distance function
  typedef boost::function<double(const _T&, const _T&)> DistanceFunction;

  GreedyKCenters(void)
  {
  }

  virtual ~GreedyKCenters(void)
  {
  }

  /// @brief Set the distance function to use
  void setDistanceFunction(const DistanceFunction &distFun)
  {
    distFun_ = distFun;
  }

  /// @brief Get the distance function used
  const DistanceFunction& getDistanceFunction(void) const
  {
    return distFun_;
  }

  /// @brief Greedy algorithm for selecting k centers
  /// @param data a vector of data points
  /// @param k the desired number of centers
  /// @param centers a vector of length k containing the indices into data of the k centers
  /// @param dists a 2-dimensional array such that dists[i][j] is the distance between data[i] and data[center[j]]
  void kcenters(const std::vector<_T>& data, unsigned int k,
                std::vector<unsigned int>& centers, std::vector<std::vector<double> >& dists)
  {
    // array containing the minimum distance between each data point
    // and the centers computed so far
    std::vector<double> minDist(data.size(), std::numeric_limits<double>::infinity());

    centers.clear();
    centers.reserve(k);
    dists.resize(data.size(), std::vector<double>(k));
    // first center is picked randomly
    centers.push_back(rng_.uniformInt(0, data.size() - 1));
    for (unsigned i=1; i<k; ++i)
    {
      unsigned ind;
      const _T& center = data[centers[i - 1]];
      double maxDist = -std::numeric_limits<double>::infinity();
      for (unsigned j=0; j<data.size(); ++j)
      {
        if ((dists[j][i-1] = distFun_(data[j], center)) < minDist[j])
          minDist[j] = dists[j][i - 1];
        // the j-th center is the one furthest away from center 0,..,j-1
        if (minDist[j] > maxDist)
        {
          ind = j;
          maxDist = minDist[j];
        }
      }
      // no more centers available
      if (maxDist < std::numeric_limits<double>::epsilon()) break;
      centers.push_back(ind);
    }

    const _T& center = data[centers.back()];
    unsigned i = centers.size() - 1;
    for (unsigned j = 0; j < data.size(); ++j)
      dists[j][i] = distFun_(data[j], center);
  }

protected:
  /// @brief The used distance function
  DistanceFunction distFun_;

  /// Random number generator used to select first center
  RNG rng_;
};
}

#endif