This file is indexed.

/usr/include/Field3D/FieldSampler.h is in libfield3d-dev 1.6.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//----------------------------------------------------------------------------//

#ifndef __F3DUTIL_FIELDSAMPLER_H__
#define __F3DUTIL_FIELDSAMPLER_H__

//------------------------------------------------------------------------------

// Project includes
#include "Types.h"

//----------------------------------------------------------------------------//

#include "ns.h"

FIELD3D_NAMESPACE_OPEN

//------------------------------------------------------------------------------
// FieldSampler
//------------------------------------------------------------------------------

//! Interface for sampling a vector of fields of the same type
template <typename WrapperVec_T, int Dims_T>
struct FieldSampler
{
  static void sample(const WrapperVec_T &f, const V3d &p, float *value, 
                     bool isVs);
  static void sampleMIP(const WrapperVec_T &f, const V3d &p,
                        const float wsSpotSize, float *value, bool isVs);
  static void getMinMax(const WrapperVec_T &f, 
                        const Box3d &wsBounds, float *min, float *max);
  static void getMinMaxMIP(const WrapperVec_T &f, 
                           const Box3d &wsBounds, float *min, float *max);
};

//------------------------------------------------------------------------------

//! Scalar specialization
template <typename WrapperVec_T>
struct FieldSampler<WrapperVec_T, 1>
{
  // Ordinary fields
  static void sample(const WrapperVec_T &f, const V3d &p, float *value, 
                     bool isVs)
  {
    if (isVs) {
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        if (f[i].vsBounds.intersects(p)) {
          *value += f[i].interp.sample(*f[i].field, p);
        }
      }
    } else {
      V3d vsP;
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        f[i].mapping->worldToVoxel(p, vsP);
        if (f[i].vsBounds.intersects(vsP)) {
          *value += f[i].interp.sample(*f[i].field, vsP);
        } 
      }
    }
  }
  // MIP fields
  static void sampleMIP(const WrapperVec_T &f, const V3d &p,
                        const float wsSpotSize, float *value, bool isVs)
  {
    if (isVs) {
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        if (f[i].vsBounds.intersects(p)) {
          *value += f[i].interp->sample(p, wsSpotSize);
        }
      }
    } else {
      V3d vsP;
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        f[i].mapping->worldToVoxel(p, vsP);
        if (f[i].vsBounds.intersects(vsP)) {
          *value += f[i].interp->sample(vsP, wsSpotSize);
        }
      }
    }
  }
  // Get min/max
  static void getMinMax(const WrapperVec_T &f, 
                        const Box3d &wsBounds, float *min, float *max)
  {
    for (size_t field = 0, end = f.size(); field < end; ++field) {
      // Data window
      const Box3i dw = f[field].field->dataWindow();
      // Transform corners to voxel space and compute bounds
      Box3d vsBounds;
      worldToVoxel(f[field].mapping, wsBounds, vsBounds);
      Box3i dvsBounds = clipBounds(discreteBounds(vsBounds), dw);
      // Early termination if no intersection
      if (!dw.intersects(dvsBounds)) {
        return;
      }
      for (int k = dvsBounds.min.z; k <= dvsBounds.max.z; ++k) {
        for (int j = dvsBounds.min.y; j <= dvsBounds.max.y; ++j) {
          for (int i = dvsBounds.min.x; i <= dvsBounds.max.x; ++i) {
            float val = f[field].field->fastValue(i, j, k);
            min[0] = std::min(val, min[0]);
            max[0] = std::max(val, max[0]);
          }
        }
      }
    }
  }
  // Get min/max
  static void getMinMaxMIP(const WrapperVec_T &f, 
                           const Box3d &wsBounds, float *min, float *max)
  {
    for (size_t field = 0, end = f.size(); field < end; ++field) {
      // Data window
      const Box3i dw = f[field].field->dataWindow();
      // Transform corners to voxel space and compute bounds
      Box3d vsBounds;
      worldToVoxel(f[field].mapping, wsBounds, vsBounds);
      Box3i dvsBounds = clipBounds(discreteBounds(vsBounds), dw);
      // Early termination if no intersection
      if (!dw.intersects(dvsBounds)) {
        return;
      }
      for (int k = dvsBounds.min.z; k <= dvsBounds.max.z; ++k) {
        for (int j = dvsBounds.min.y; j <= dvsBounds.max.y; ++j) {
          for (int i = dvsBounds.min.x; i <= dvsBounds.max.x; ++i) {
            float val = f[field].field->fastMipValue(0, i, j, k);
            min[0] = std::min(val, min[0]);
            max[0] = std::max(val, max[0]);
          }
        }
      }
    }
  }
};

//------------------------------------------------------------------------------

//! Vector specialization
template <typename WrapperVec_T>
struct FieldSampler<WrapperVec_T, 3>
{
  // Ordinary fields
  static void sample(const WrapperVec_T &f, const V3d &p, float *value, 
                     bool isVs)
  {
    V3f v(value[0], value[1], value[2]);
    if (isVs) {
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        if (f[i].vsBounds.intersects(p)) {
          v += f[i].interp.sample(*f[i].field, p);
        }
      }
    } else {
      V3d vsP;
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        f[i].mapping->worldToVoxel(p, vsP);
        if (f[i].vsBounds.intersects(vsP)) {
          v += f[i].interp.sample(*f[i].field, vsP);
        }
      }
    }
    memcpy(value, &v[0], sizeof(V3f));
  }

  // MIP fields
  static void sampleMIP(const WrapperVec_T &f, const V3d &p,
                        const float wsSpotSize, float *value, bool isVs)
  {
    V3f v(value[0], value[1], value[2]);
    if (isVs) {
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        if (f[i].vsBounds.intersects(p)) {
          v += f[i].interp->sample(p, wsSpotSize);
        }
      }
    } else {
      V3d vsP;
      for (size_t i = 0, end = f.size(); i < end; ++i) {
        f[i].mapping->worldToVoxel(p, vsP);
        if (f[i].vsBounds.intersects(vsP)) {
          v += f[i].interp->sample(vsP, wsSpotSize);
        }
      }
    }
    memcpy(value, &v[0], sizeof(V3f));    
  }

  static void getMinMax(const WrapperVec_T &f, 
                        const Box3d &wsBounds, float *min, float *max)
  {
    for (size_t field = 0, end = f.size(); field < end; ++field) {
      // Data window
      const Box3i dw = f[field].field->dataWindow();
      // Transform corners to voxel space and compute bounds
      Box3d vsBounds;
      worldToVoxel(f[field].mapping, wsBounds, vsBounds);
      Box3i dvsBounds = clipBounds(discreteBounds(vsBounds), dw);
      // Early termination if no intersection
      if (!dw.intersects(dvsBounds)) {
        return;
      }
      for (int k = dvsBounds.min.z; k <= dvsBounds.max.z; ++k) {
        for (int j = dvsBounds.min.y; j <= dvsBounds.max.y; ++j) {
          for (int i = dvsBounds.min.x; i <= dvsBounds.max.x; ++i) {
            V3f val = f[field].field->fastValue(i, j, k);
            min[0] = std::min(val.x, min[0]);
            min[1] = std::min(val.y, min[1]);
            min[2] = std::min(val.z, min[2]);
            max[0] = std::max(val.x, max[0]);
            max[1] = std::max(val.y, max[1]);
            max[2] = std::max(val.z, max[2]);
          }
        }
      }
    }
  }

  static void getMinMaxMIP(const WrapperVec_T &f, 
                           const Box3d &wsBounds, float *min, float *max)
  {
    for (size_t field = 0, end = f.size(); field < end; ++field) {
      // Data window
      const Box3i dw = f[field].field->dataWindow();
      // Transform corners to voxel space and compute bounds
      Box3d vsBounds;
      worldToVoxel(f[field].mapping, wsBounds, vsBounds);
      Box3i dvsBounds = clipBounds(discreteBounds(vsBounds), dw);
      // Early termination if no intersection
      if (!dw.intersects(dvsBounds)) {
        return;
      }
      for (int k = dvsBounds.min.z; k <= dvsBounds.max.z; ++k) {
        for (int j = dvsBounds.min.y; j <= dvsBounds.max.y; ++j) {
          for (int i = dvsBounds.min.x; i <= dvsBounds.max.x; ++i) {
            V3f val = f[field].field->fastMipValue(0, i, j, k);
            min[0] = std::min(val.x, min[0]);
            min[1] = std::min(val.y, min[1]);
            min[2] = std::min(val.z, min[2]);
            max[0] = std::max(val.x, max[0]);
            max[1] = std::max(val.y, max[1]);
            max[2] = std::max(val.z, max[2]);
          }
        }
      }
    }
  }
};

//----------------------------------------------------------------------------//

FIELD3D_NAMESPACE_HEADER_CLOSE

//------------------------------------------------------------------------------

#endif // include guard

//------------------------------------------------------------------------------