This file is indexed.

/usr/include/libfilezilla/event_handler.hpp is in libfilezilla-dev 0.4.0.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#ifndef LIBFILEZILLA_EVENT_HANDLER
#define LIBFILEZILLA_EVENT_HANDLER

#include "event_loop.hpp"

/** \file
 * \brief Declares the \ref fz::event_handler "event_handler" class.
 */
namespace fz {

/**
\brief Simple handler for asynchronous event processing.

Usage example:
\code
	struct foo_event_type{}; // Any uniquely named type that's not implicitly convertible
	typedef fz::simple_event<foo_event_type, int, std::string> foo_event;

	struct bar_event_type{};
	typedef fz::simple_event<bar_event_type> bar_event;

	class my_handler final : public fz::event_handler
	{
	public:
		my_handler(fz::event_loop& loop)
			: fz::event_handler(loop)
		{}

		virtual ~my_handler()
		{
			// It is imperative to call remove_handler
			remove_handler();
		}

		void foo(int v, std::string const& s) {
			std::cout << "foo called with:" << s << v;
		}

		void bar() {
			std::cout << "bar called";
		}

		virtual void operator()(event_base const& ev) {
			// Tip: Put in order of decreasing frequency
			fz::dispatch<foo_event, bar_event>(ev, this, &my_handler::foo, &my_handler::bar);
		}
	};

	fz::event_loop loop;
	my_handler h(loop);
	h.SendEvent<foo_event>(42, "Don't Panic");
\endcode
*/
class FZ_PUBLIC_SYMBOL event_handler
{
public:
	event_handler() = delete;

	explicit event_handler(event_loop& loop);
	virtual ~event_handler();

	event_handler(event_handler const&) = delete;
	event_handler& operator=(event_handler const&) = delete;

	/** \brief Deactivates handler, removes all pending events and stops all timers for this handler.
	 *
	 * When function returns, handler is not in its callback anymore.
	 *
	 * \warning You _MUST_ call remove_handler no later than inside the destructor of the most derived class.
	 *
	 *  This may deadlock if a handler removes itself inside its own callback.
	 */
	void remove_handler();

	/** \brief Called by the event loop in the worker thread with the event to process
	 *
	 * Override in your derived class.
	 * 
	 * Consider using \ref dispatch inside your function.
	 */
	virtual void operator()(event_base const&) = 0;

	/* \brief Sends the passed event asynchronously to the handler.
	 *
	 * Can be called from any thread.
	 *
	 * All events are processed in the order they are sent, excluding possible races between threads.
	 */
	template<typename T, typename... Args>
	void send_event(Args&&... args) {
		event_loop_.send_event(this, new T(std::forward<Args>(args)...));
	}

	/** \brief Adds a timer, returns the timer id.
	 *
	 * Once the interval expires, you get a timer event from the event loop.
	 *
	 * One-shot timers are deleted automatically
	 *
	 * For periodic timers, the next event is scheduled right before the callback is called. If multiple
	 * intervals expire before the timer fires, e.g. under heavy load, only one event is sent.
	 *
	 * If multiple different timers have expired, the order in which the callbacks are executed is unspecified,
	 * there is no fairness guarantee.
	 *
	 * Timers take precedence over other queued events.
	 *
	 * \note High-frequency timers doing heavy processing can starve other timers and queued events.
	 */
	timer_id add_timer(duration const& interval, bool one_shot);

	/** Stops the given timer.
	 *
	 * One-shot timers that have fired stop automatically and do not need to be stopped.
	 */
	void stop_timer(timer_id id);

	event_loop & event_loop_;
private:
	friend class event_loop;
	bool removing_{};
};

/** \brief Dispatch for simple_event<> based events to simple functors
 *
 * \tparam T the event type, a simple_event<> instantiation
 *
 * \param ev the received event
 * \param f functor that should be called if the event matches the passed type.
 *
 * If the passed event is of the type passed as template argument, the passed function is called with the contents of the event
 * unpacked as arguments.
 *
 * \return true iff event matches passed type.
 *
 * \sa event_handler for complete usage example.
 */
template<typename T, typename F>
bool dispatch(event_base const& ev, F&& f)
{
	bool const same = same_type<T>(ev);
	if (same) {
		T const* e = static_cast<T const*>(&ev);
		apply(std::forward<F>(f), e->v_);
	}
	return same;
}

/** \brief Dispatch for simple_event<> based events to pointer to member
 *
 * \tparam T the event type, a simple_event<> instantiation
 *
 * \param ev the received event.
 * \param h object whose member gets called if the event matches the passed type.
 * \param f pointer to member of \c h that should be called if the event matches the passed type.
 *
 * If the passed event is of the type passed as template argument, the passed function is called with the contents of the event
 * unpacked as arguments.
 *
 * \return true iff event matches passed type.
 *
 * \sa event_handler for complete usage example.
 */
template<typename T, typename H, typename F>
bool dispatch(event_base const& ev, H* h, F&& f)
{
	bool const same = same_type<T>(ev);
	if (same) {
		T const* e = static_cast<T const*>(&ev);
		apply(h, std::forward<F>(f), e->v_);
	}
	return same;
}

/** \brief Compound dispatch for simple_event<> based events
 *
 * Calls the simple dispatch for each passed type and tries the next one if it didn't match.
 *
 * Order the passed types in decreasing usage frequency for maximum performance.
 *
 * \tparam T the event type, a simple_event<> instantiation
 * \tparam Ts additional event types
 *
 * \param ev the received event.
 * \param h object whose member gets called if the event matches the passed type.
 * \param f pointer to member of \c h that should be called if the event matches the passed type.
 * \param fs additional pairs of objects and pointers to members.
 *
 * \return true iff event matched a passed type.
 *
 * \sa event_handler for complete usage example.
 */
template<typename T, typename ... Ts, typename H, typename F, typename ... Fs>
bool dispatch(event_base const& ev, H* h, F&& f, Fs&& ... fs)
{
	if (dispatch<T>(ev, h, std::forward<F>(f))) {
		return true;
	}

	return dispatch<Ts...>(ev, h, std::forward<Fs>(fs)...);
}

}

#endif