This file is indexed.

/usr/include/ginac/inifcns.h is in libginac-dev 1.6.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/** @file inifcns.h
 *
 *  Interface to GiNaC's initially known functions. */

/*
 *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef GINAC_INIFCNS_H
#define GINAC_INIFCNS_H

#include "numeric.h"
#include "function.h"
#include "ex.h"

namespace GiNaC {

/** Complex conjugate. */
DECLARE_FUNCTION_1P(conjugate_function)

/** Real part. */
DECLARE_FUNCTION_1P(real_part_function)

/** Imaginary part. */
DECLARE_FUNCTION_1P(imag_part_function)
	
/** Absolute value. */
DECLARE_FUNCTION_1P(abs)
	
/** Step function. */
DECLARE_FUNCTION_1P(step)
	
/** Complex sign. */
DECLARE_FUNCTION_1P(csgn)

/** Eta function: log(a*b) == log(a) + log(b) + eta(a, b). */
DECLARE_FUNCTION_2P(eta)

/** Sine. */
DECLARE_FUNCTION_1P(sin)

/** Cosine. */
DECLARE_FUNCTION_1P(cos)

/** Tangent. */
DECLARE_FUNCTION_1P(tan)

/** Exponential function. */
DECLARE_FUNCTION_1P(exp)

/** Natural logarithm. */
DECLARE_FUNCTION_1P(log)

/** Inverse sine (arc sine). */
DECLARE_FUNCTION_1P(asin)

/** Inverse cosine (arc cosine). */
DECLARE_FUNCTION_1P(acos)

/** Inverse tangent (arc tangent). */
DECLARE_FUNCTION_1P(atan)

/** Inverse tangent with two arguments. */
DECLARE_FUNCTION_2P(atan2)

/** Hyperbolic Sine. */
DECLARE_FUNCTION_1P(sinh)

/** Hyperbolic Cosine. */
DECLARE_FUNCTION_1P(cosh)

/** Hyperbolic Tangent. */
DECLARE_FUNCTION_1P(tanh)

/** Inverse hyperbolic Sine (area hyperbolic sine). */
DECLARE_FUNCTION_1P(asinh)

/** Inverse hyperbolic Cosine (area hyperbolic cosine). */
DECLARE_FUNCTION_1P(acosh)

/** Inverse hyperbolic Tangent (area hyperbolic tangent). */
DECLARE_FUNCTION_1P(atanh)

/** Dilogarithm. */
DECLARE_FUNCTION_1P(Li2)

/** Trilogarithm. */
DECLARE_FUNCTION_1P(Li3)

/** Derivatives of Riemann's Zeta-function. */
DECLARE_FUNCTION_2P(zetaderiv)

// overloading at work: we cannot use the macros here
/** Multiple zeta value including Riemann's zeta-function. */
class zeta1_SERIAL { public: static unsigned serial; };
template<typename T1>
inline function zeta(const T1& p1) {
	return function(zeta1_SERIAL::serial, ex(p1));
}
/** Alternating Euler sum or colored MZV. */
class zeta2_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2>
inline function zeta(const T1& p1, const T2& p2) {
	return function(zeta2_SERIAL::serial, ex(p1), ex(p2));
}
class zeta_SERIAL;
template<> inline bool is_the_function<zeta_SERIAL>(const ex& x)
{
	return is_the_function<zeta1_SERIAL>(x) || is_the_function<zeta2_SERIAL>(x);
}

// overloading at work: we cannot use the macros here
/** Generalized multiple polylogarithm. */
class G2_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2>
inline function G(const T1& x, const T2& y) {
	return function(G2_SERIAL::serial, ex(x), ex(y));
}
/** Generalized multiple polylogarithm with explicit imaginary parts. */
class G3_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2, typename T3>
inline function G(const T1& x, const T2& s, const T3& y) {
	return function(G3_SERIAL::serial, ex(x), ex(s), ex(y));
}
class G_SERIAL;
template<> inline bool is_the_function<G_SERIAL>(const ex& x)
{
	return is_the_function<G2_SERIAL>(x) || is_the_function<G3_SERIAL>(x);
}

/** Polylogarithm and multiple polylogarithm. */
DECLARE_FUNCTION_2P(Li)

/** Nielsen's generalized polylogarithm. */
DECLARE_FUNCTION_3P(S)

/** Harmonic polylogarithm. */
DECLARE_FUNCTION_2P(H)

/** Gamma-function. */
DECLARE_FUNCTION_1P(lgamma)
DECLARE_FUNCTION_1P(tgamma)

/** Beta-function. */
DECLARE_FUNCTION_2P(beta)

// overloading at work: we cannot use the macros here
/** Psi-function (aka digamma-function). */
class psi1_SERIAL { public: static unsigned serial; };
template<typename T1>
inline function psi(const T1 & p1) {
	return function(psi1_SERIAL::serial, ex(p1));
}
/** Derivatives of Psi-function (aka polygamma-functions). */
class psi2_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2>
inline function psi(const T1 & p1, const T2 & p2) {
	return function(psi2_SERIAL::serial, ex(p1), ex(p2));
}
class psi_SERIAL;
template<> inline bool is_the_function<psi_SERIAL>(const ex & x)
{
	return is_the_function<psi1_SERIAL>(x) || is_the_function<psi2_SERIAL>(x);
}
	
/** Factorial function. */
DECLARE_FUNCTION_1P(factorial)

/** Binomial function. */
DECLARE_FUNCTION_2P(binomial)

/** Order term function (for truncated power series). */
DECLARE_FUNCTION_1P(Order)

ex lsolve(const ex &eqns, const ex &symbols, unsigned options = solve_algo::automatic);

/** Find a real root of real-valued function f(x) numerically within a given
 *  interval. The function must change sign across interval. Uses Newton-
 *  Raphson method combined with bisection in order to guarantee convergence.
 *
 *  @param f  Function f(x)
 *  @param x  Symbol f(x)
 *  @param x1  lower interval limit
 *  @param x2  upper interval limit
 *  @exception runtime_error (if interval is invalid). */
const numeric fsolve(const ex& f, const symbol& x, const numeric& x1, const numeric& x2);

/** Check whether a function is the Order (O(n)) function. */
inline bool is_order_function(const ex & e)
{
	return is_ex_the_function(e, Order);
}

/** Converts a given list containing parameters for H in Remiddi/Vermaseren notation into
 *  the corresponding GiNaC functions.
 */
ex convert_H_to_Li(const ex& parameterlst, const ex& arg);

} // namespace GiNaC

#endif // ndef GINAC_INIFCNS_H