/usr/include/ginac/inifcns.h is in libginac-dev 1.6.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | /** @file inifcns.h
*
* Interface to GiNaC's initially known functions. */
/*
* GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef GINAC_INIFCNS_H
#define GINAC_INIFCNS_H
#include "numeric.h"
#include "function.h"
#include "ex.h"
namespace GiNaC {
/** Complex conjugate. */
DECLARE_FUNCTION_1P(conjugate_function)
/** Real part. */
DECLARE_FUNCTION_1P(real_part_function)
/** Imaginary part. */
DECLARE_FUNCTION_1P(imag_part_function)
/** Absolute value. */
DECLARE_FUNCTION_1P(abs)
/** Step function. */
DECLARE_FUNCTION_1P(step)
/** Complex sign. */
DECLARE_FUNCTION_1P(csgn)
/** Eta function: log(a*b) == log(a) + log(b) + eta(a, b). */
DECLARE_FUNCTION_2P(eta)
/** Sine. */
DECLARE_FUNCTION_1P(sin)
/** Cosine. */
DECLARE_FUNCTION_1P(cos)
/** Tangent. */
DECLARE_FUNCTION_1P(tan)
/** Exponential function. */
DECLARE_FUNCTION_1P(exp)
/** Natural logarithm. */
DECLARE_FUNCTION_1P(log)
/** Inverse sine (arc sine). */
DECLARE_FUNCTION_1P(asin)
/** Inverse cosine (arc cosine). */
DECLARE_FUNCTION_1P(acos)
/** Inverse tangent (arc tangent). */
DECLARE_FUNCTION_1P(atan)
/** Inverse tangent with two arguments. */
DECLARE_FUNCTION_2P(atan2)
/** Hyperbolic Sine. */
DECLARE_FUNCTION_1P(sinh)
/** Hyperbolic Cosine. */
DECLARE_FUNCTION_1P(cosh)
/** Hyperbolic Tangent. */
DECLARE_FUNCTION_1P(tanh)
/** Inverse hyperbolic Sine (area hyperbolic sine). */
DECLARE_FUNCTION_1P(asinh)
/** Inverse hyperbolic Cosine (area hyperbolic cosine). */
DECLARE_FUNCTION_1P(acosh)
/** Inverse hyperbolic Tangent (area hyperbolic tangent). */
DECLARE_FUNCTION_1P(atanh)
/** Dilogarithm. */
DECLARE_FUNCTION_1P(Li2)
/** Trilogarithm. */
DECLARE_FUNCTION_1P(Li3)
/** Derivatives of Riemann's Zeta-function. */
DECLARE_FUNCTION_2P(zetaderiv)
// overloading at work: we cannot use the macros here
/** Multiple zeta value including Riemann's zeta-function. */
class zeta1_SERIAL { public: static unsigned serial; };
template<typename T1>
inline function zeta(const T1& p1) {
return function(zeta1_SERIAL::serial, ex(p1));
}
/** Alternating Euler sum or colored MZV. */
class zeta2_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2>
inline function zeta(const T1& p1, const T2& p2) {
return function(zeta2_SERIAL::serial, ex(p1), ex(p2));
}
class zeta_SERIAL;
template<> inline bool is_the_function<zeta_SERIAL>(const ex& x)
{
return is_the_function<zeta1_SERIAL>(x) || is_the_function<zeta2_SERIAL>(x);
}
// overloading at work: we cannot use the macros here
/** Generalized multiple polylogarithm. */
class G2_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2>
inline function G(const T1& x, const T2& y) {
return function(G2_SERIAL::serial, ex(x), ex(y));
}
/** Generalized multiple polylogarithm with explicit imaginary parts. */
class G3_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2, typename T3>
inline function G(const T1& x, const T2& s, const T3& y) {
return function(G3_SERIAL::serial, ex(x), ex(s), ex(y));
}
class G_SERIAL;
template<> inline bool is_the_function<G_SERIAL>(const ex& x)
{
return is_the_function<G2_SERIAL>(x) || is_the_function<G3_SERIAL>(x);
}
/** Polylogarithm and multiple polylogarithm. */
DECLARE_FUNCTION_2P(Li)
/** Nielsen's generalized polylogarithm. */
DECLARE_FUNCTION_3P(S)
/** Harmonic polylogarithm. */
DECLARE_FUNCTION_2P(H)
/** Gamma-function. */
DECLARE_FUNCTION_1P(lgamma)
DECLARE_FUNCTION_1P(tgamma)
/** Beta-function. */
DECLARE_FUNCTION_2P(beta)
// overloading at work: we cannot use the macros here
/** Psi-function (aka digamma-function). */
class psi1_SERIAL { public: static unsigned serial; };
template<typename T1>
inline function psi(const T1 & p1) {
return function(psi1_SERIAL::serial, ex(p1));
}
/** Derivatives of Psi-function (aka polygamma-functions). */
class psi2_SERIAL { public: static unsigned serial; };
template<typename T1, typename T2>
inline function psi(const T1 & p1, const T2 & p2) {
return function(psi2_SERIAL::serial, ex(p1), ex(p2));
}
class psi_SERIAL;
template<> inline bool is_the_function<psi_SERIAL>(const ex & x)
{
return is_the_function<psi1_SERIAL>(x) || is_the_function<psi2_SERIAL>(x);
}
/** Factorial function. */
DECLARE_FUNCTION_1P(factorial)
/** Binomial function. */
DECLARE_FUNCTION_2P(binomial)
/** Order term function (for truncated power series). */
DECLARE_FUNCTION_1P(Order)
ex lsolve(const ex &eqns, const ex &symbols, unsigned options = solve_algo::automatic);
/** Find a real root of real-valued function f(x) numerically within a given
* interval. The function must change sign across interval. Uses Newton-
* Raphson method combined with bisection in order to guarantee convergence.
*
* @param f Function f(x)
* @param x Symbol f(x)
* @param x1 lower interval limit
* @param x2 upper interval limit
* @exception runtime_error (if interval is invalid). */
const numeric fsolve(const ex& f, const symbol& x, const numeric& x1, const numeric& x2);
/** Check whether a function is the Order (O(n)) function. */
inline bool is_order_function(const ex & e)
{
return is_ex_the_function(e, Order);
}
/** Converts a given list containing parameters for H in Remiddi/Vermaseren notation into
* the corresponding GiNaC functions.
*/
ex convert_H_to_Li(const ex& parameterlst, const ex& arg);
} // namespace GiNaC
#endif // ndef GINAC_INIFCNS_H
|