/usr/include/givaro/givgfqext.h is in libgivaro-dev 3.7.2-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | // ==========================================================================
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// file: givgfqext.h
// Time-stamp: <07 May 12 15:08:17 Jean-Guillaume.Dumas@imag.fr>
// date: 2007
// version:
// author: Jean-Guillaume.Dumas
/*! @file givgfqext.h
* @ingroup zpz
* @brief Arithmetic on GF(p^k), with p a prime number less than 2^15.
* Specialized for fast conversions to floating point numbers.
* Main difference in interface is init/convert.
* @bib
* - JG Dumas, <i>Q-adic Transform Revisited</i>, ISSAC 2008
* @warning k strictly greater than 1
*/
#ifndef __GIVARO_gfq_extension_H
#define __GIVARO_gfq_extension_H
#include "givaro/givgfq.h"
#include "givaro/givpower.h"
#include <limits>
#include <vector>
#include <deque>
namespace Givaro {
// init with preconditions, bad entry could segfault
template<class TT> class GFqExtFast;
// init defensive, bad entry are transformed, to the cost of slowdown
template<class TT> class GFqExt;
//! GFq Ext
template<class TT> class GFqExtFast : public GFqDom<TT> {
protected:
typedef typename Signed_Trait<TT>::unsigned_type UTT;
typedef TT Rep;
typedef GFqDom<TT> Father_t;
UTT _BITS; // the q-adic transform will be with q=2^_BITS
UTT _BASE; // this is 2^_BITS
UTT _MASK; // 2^_BITS - 1
UTT _maxn; // Worst case Maximal number of multiplications
// without reduction
UTT _degree;// exponent-1
UTT _pceil; // smallest such that characteristic<2^_pceil,
// used for fast for table indexing
UTT _MODOUT;// Largest accepted double for init
// Conversion tables from exponent to double z-adic representation
std::vector<double> _log2dbl; // Exponent to double
std::vector<UTT> _high2log; // Half double to exponent
std::vector<UTT> _low2log; // Other half in Time-Memory Trade-Off
public:
typedef GFqExtFast<TT> Self_t;
typedef Rep Element;
typedef UTT Residu_t;
typedef Rep* Array;
typedef const Rep* constArray;
typedef GIV_randIter< GFqExtFast<TT> , Rep> RandIter;
GFqExtFast(): Father_t(), balanced(false) {}
// Extension MUST be a parameter of the constructor
GFqExtFast( const UTT P, const UTT e) : Father_t(P,e),
_BITS( std::numeric_limits< double >::digits/( (e<<1)-1) ),
_BASE(1 << _BITS),
_MASK( _BASE - 1),
_maxn( _BASE/(P-1)/(P-1)/e),
_degree( e-1 ),
balanced(false)
{
GIVARO_ASSERT(_maxn>0 , "[GFqExtFast]: field too large");
builddoubletables();
}
// Extension MUST be a parameter of the constructor
template<typename Vector>
GFqExtFast( const UTT P, const UTT e, const Vector& modPoly) : Father_t(P,e, modPoly),
_BITS( std::numeric_limits< double >::digits/( (e<<1)-1) ),
_BASE(1 << _BITS),
_MASK( _BASE - 1),
_maxn( _BASE/(P-1)/(P-1)/e),
_degree( e-1 ),
balanced(false)
{
GIVARO_ASSERT(_maxn>0 , "[GFqExtFast]: field too large");
builddoubletables();
}
virtual ~GFqExtFast() {};
Self_t operator=( const Self_t& F)
{
this->zero = F.zero;
this->one = F.one;
this->_characteristic = F._characteristic;
this->_dcharacteristic = F._dcharacteristic;
this->_exponent = F._exponent;
this->_q = F._q;
this->_qm1 = F._qm1;
this->_qm1o2 = F._qm1o2;
this->_log2pol = F._log2pol;
this->_pol2log = F._pol2log;
this->_plus1 = F._plus1;
this->_BITS = F._BITS;
this->_BASE = F._BASE;
this->_MASK = F._MASK;
this->_maxn = F._maxn;
this->_degree = F._degree;
this->_log2dbl = F._log2dbl;
this->_low2log = F._low2log;
this->_high2log = F._high2log;
return *this;
}
GFqExtFast( const GFqDom<TT>& F) : Father_t(F),
_BITS( F._BITS ), _BASE( F._BASE ),_MASK( F._MASK ),
_maxn( F._maxn ),_degree( F._degree ),
_log2dbl ( F._log2dbl ), _low2log( F._low2log ),
_high2log (F._high2log ), balanced(false) {
}
// Accesses
UTT bits() const
{ return _BITS;}
UTT base() const
{ return _BASE;}
UTT mask() const
{ return _MASK;}
UTT maxdot() const
{ return _maxn; }
UTT& characteristic(UTT& a) const
{ return a=this->_characteristic; }
UTT characteristic() const
{ return this->_characteristic; }
const bool balanced;
Rep& init( Rep& r, const unsigned long l) const
{
return Father_t::init(r,l);
}
using Father_t::init;
virtual double& convert(double& d, const Rep a) const
{
return d=_log2dbl[(size_t)a];
}
virtual float& convert(float& d, const Rep a) const
{
return d=(float)_log2dbl[(size_t)a];
}
virtual Rep& init(Rep& pad, const double d) const
{
GIVARO_ASSERT(d>=0.0 , "[GFqExtFast]: init from a negative number");
GIVARO_ASSERT(d<_MODOUT, "[GFqExtFast]: init from a too large number");
// WARNING WARNING WARNING WARNING
// Precondition : 0 <= d < _MODOUT
// Can segfault if d is too large
// WARNING WARNING WARNING WARNING
uint64_t rll( static_cast<uint64_t>(d) );
uint64_t tll( static_cast<uint64_t>(d/this->_dcharacteristic) );
UTT prec(0);
UTT padl = (UTT)(rll - tll*this->_characteristic);
if (padl == this->_characteristic) {
padl -= this->_characteristic;
tll += 1;
}
for(size_t j = 0;j<_degree;++j) {
rll >>= _BITS;
tll >>= _BITS;
prec = (UTT)(rll-tll*this->_characteristic);
padl <<= _pceil;
padl ^= prec;
}
pad = (Rep)prec;
for(size_t j = 0;j<_degree;++j) {
rll >>= _BITS;
tll >>= _BITS;
prec = (UTT)(rll-tll*this->_characteristic);
pad <<= _pceil;
pad ^= prec;
}
padl = this->_low2log[(size_t)padl];
pad = (Rep)this->_high2log[(size_t)pad];
return this->addin(pad,(Rep)padl);
}
virtual Rep& init(Rep& pad, const float d) const
{
return init(pad, (double)d);
}
template<class RandIter> Rep& random(RandIter& g, Rep& r) const {
return init(r, static_cast<double>( (UTT)g() % _MODOUT));
}
protected:
void builddoubletables()
{
_log2dbl.resize(this->_log2pol.size());
_pceil = 1;
for(unsigned long ppow = 2; ppow < this->_characteristic; ppow <<= 1,++_pceil) {}
unsigned long powersize = 1<<(_pceil * this->_exponent);
_MODOUT = UTT(powersize - 1);
_high2log.resize(powersize);
_low2log.resize(powersize);
typedef typename Father_t::Element ZElem;
Father_t Zp(this->_characteristic,1);
ZElem q,mq; Zp.init(q,2UL);
dom_power(q,q,_BITS,Zp);
Zp.neg(mq,q);
Element xkmu;
// This is X
xkmu = (Element)this->_pol2log[(size_t)this->_characteristic];
// This is X^{e-1}
dom_power(xkmu,xkmu,this->_exponent-1,*this);
typedef Poly1FactorDom< Father_t, Dense > PolDom;
PolDom Pdom( Zp );
typedef Poly1PadicDom< Father_t, Dense > PadicDom;
PadicDom PAD(Pdom);
Father_t Z2B(2,_BITS);
PolDom P2dom( Z2B );
PadicDom P2AD( P2dom );
std::vector<double>::iterator dblit = _log2dbl.begin();
typename std::vector<UTT>::const_iterator polit = this->_log2pol.begin();
for( ; polit != this->_log2pol.end(); ++polit, ++dblit) {
std::vector<double> vect;
std::deque<ZElem> low_ui;
P2AD.evaldirect( *dblit,
PAD.radixdirect(
vect,
(double)(*polit),
this->_exponent)
);
unsigned long binpolit = static_cast<unsigned long>(vect[0]);
for(size_t i =1; i<this->_exponent; ++i) {
binpolit <<= _pceil;
binpolit += static_cast<unsigned long>(vect[i]);
}
ZElem tmp, prec, cour; Zp.init(cour);
Zp.init(prec, vect[0]);
for(size_t i = 1; i<this->_exponent; ++i) {
Zp.init(cour, vect[i]);
Zp.axpy(tmp, mq, cour, prec);
low_ui.push_back(tmp);
prec = cour;
}
PAD.eval(tmp , low_ui );
_low2log[binpolit] = this->_pol2log[(size_t)tmp];
low_ui.push_back(cour);
PAD.eval( tmp, low_ui);
Father_t::mul((Element&)_high2log[(size_t)binpolit],(Element)this->_pol2log[(size_t)tmp], xkmu);
}
}
};
//! GFq Ext (other)
template<class TT> class GFqExt : public GFqExtFast<TT> {
protected:
typedef typename Signed_Trait<TT>::unsigned_type UTT;
typedef TT Rep;
typedef GFqDom<TT> Father_t;
typedef GFqExtFast<TT> DirectFather_t;
double _fMODOUT;
public:
typedef GFqExt<TT> Self_t;
typedef Rep Element;
typedef UTT Residu_t;
typedef Rep* Array;
typedef const Rep* constArray;
typedef GIV_randIter< GFqExt<TT> , Rep> RandIter;
GFqExt(): DirectFather_t(),
_fMODOUT(static_cast<double>(this->_MODOUT)) {}
GFqExt( const UTT P, const UTT e) :
DirectFather_t(P,e),
_fMODOUT(static_cast<double>(this->_MODOUT)) {}
GFqExt( const GFqDom<TT>& F) :
DirectFather_t(F),
_fMODOUT(static_cast<double>(this->_MODOUT)) {}
~GFqExt() {}
using Father_t::init;
virtual Rep& init(Rep& pad, const double d) const
{
// Defensive init
const double tmp(fmod(d,this->_fMODOUT));
return DirectFather_t::init(pad, (tmp>0.0)?tmp:(tmp+_fMODOUT) );
}
};
} // namespace Givaro
#endif // __GIVARO_gfq_extension_H
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|