This file is indexed.

/usr/include/givaro/givintsqrootmod.inl is in libgivaro-dev 3.7.2-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// ============================================================= //
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Time-stamp: <22 Mar 11 15:05:39 Jean-Guillaume.Dumas@imag.fr>
// Givaro : Modular square roots
// Author : Yanis Linge
// ============================================================= //

#ifndef __GIVARO_sqrootmod_INL
#define __GIVARO_sqrootmod_INL

#include <givaro/givtimer.h>

namespace Givaro {

template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodprime (Rep & x,
                                         const Rep & a,
                                         const Rep & p) const {
//         std::cerr << "p:= " << p << ';' << std::endl;
//         std::cerr << "a:= " << a << ';' << std::endl;
    Rep amp (a); amp %=p;
    if (amp == 0UL || amp == 1UL) return x = amp;

    if (legendre (amp, p) == -1){
        std::cerr << amp << " is not a quadratic residue mod " << p << std::endl;
        return x = -1;
    }

    if ((p & 3UL) == 3UL) {			// If p = 3 mod 4
        Rep ppu (p); ++ppu; ppu >>= 2UL;	// ppu = (p+1)/4
        return powmod (x, amp, ppu, p);		// powmod (x,a,(p+1)/4,p);
    }

        // O. Atkin
    if ((p & 7UL) == 5UL) {			// If p = 5 mod 8
        Rep tmp;
        Rep puis (p); puis -= 1UL; puis >>= 2UL;// puis = (p-1)/4
        powmod (tmp, amp, puis, p);

        if (tmp == 1UL) {
            puis = p; puis += 3UL; puis >>= 3UL;// puis = (p+3)/8
            return powmod (x, amp, puis, p);
        }
        puis = p; puis -= 5UL; puis >>= 3UL; 	// puis = (p-5)/8

        Rep a4 (amp); a4 <<= 2;
        powmod (x, a4, puis, p);
        x *= amp; x <<= 1; 			// 2a(4a)^{(p-5)/8}
        return x %= p;
    }

    size_t l = (size_t) ceil (logtwo (p) - 1);

        // S. Mueller
    if ((p & 15UL) == 9UL) {			// If p = 9 mod 16
        Rep i (amp); i <<= 1UL;
        Rep puis (p); puis -= 1UL; puis >>= 2UL;// puis = (p-1)/4
        powmod (x, i, puis, p);			// (2a)^{(p-1}/4} is +1 or -1
 	if (x != 1UL) x = -1L;

        Rep d; while (legendre (Rep::nonzerorandom (d, l), p) == x) ;
        puis = p; puis -= 9UL; puis >>= 4UL; 	// puis = (p-9)/16
        i *= d; i *= d;
        powmod(x, i, puis, p);			// (2d^2a)^{(p-9)/16}
        i *= x; i%=p; i *= x; i%=p; 		// i=2d^2x^2a ; i^2 = -1
        --i;
        x *= d; x%=p; x *= i; x%=p; x *= amp;	// xda(i-1)
        return x %= p;				// +/- x is a root
    }

        // Tonelli and Shanks
	// [H. Cohen, Algorithm 1.5.1, p33,
        // A course in computational algebraic number theory]
    Rep p1 (p); --p1;
    Rep q (p1);
    long e (0);
    for( ; (q & 1UL) == 0; ++e) q >>= 1;

	// now we have e and q such that : p-1=q*2^e with q odd
	// we need a non quadratic element : g
    Rep g; while (legendre (Rep::nonzerorandom (g, l), p) != -1) ;

    Rep z;
    powmod (z, g, q, p);	// z = g^q mod p
	//Initialize
    Rep y (z);
    Rep tmp (q); tmp -= 1; tmp >>= 1;
    powmod (x, amp, tmp, p); 	// a^{(q-1)/2} mod p
    Rep b (x);
    b *= x; b *= amp; b %= p;	// ax^2
    x *= amp; x %= p;		// ax

        // Find exponent
    long m(1), r(e);
    Rep b2k, t, puis(r);
    while (b != 1){
        b2k = b;
        for(m = 0; b2k != 1; ++m) {
            b2k *= b2k; b2k %= p;
        } // m smallest such that b^{2^m} is 1 mod p
        if (m == r){
            std::cerr << amp << " is not a quadratic residu mod " << p << std::endl;
            return x = -1;
        }
        long lpuis = r; lpuis -= m; --lpuis;
        puis = 1; puis <<= lpuis;	// 2^{m-r-1}
        powmod (t, y, puis, p);		// t = y^{ 2^{m-r-1} } mod p
        y = t; y *= t; y %= p;		// y = t^2 mod p
        r = m;				// r = m
        x *= t; x %= p;			// x = xt mod p
        b *= y; b %= p;			// b = by mod p
    }
    return x;
}

template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodprimepower (Rep & x,
                                              const Rep & a,
                                              const Rep & p,
                                              const unsigned long k,
                                              const Rep & pk) const{

    Rep tmpa(a); tmpa%=pk;
    if(tmpa==0) return x=0;
    if(tmpa==1) return x=1;
    if (k == 1) return sqrootmodprime (x, tmpa, p);

    if ((tmpa%p)==0){
        Rep b(tmpa);
        unsigned long t=0;
        for( ; (b%p) == 0; ++t) b/=p; // a = b p^t and p does not divide b

        if((t&1UL)==0){
            Rep sqrtb;
            sqrootmodprimepower(sqrtb,b,p,k,pk);
            powmod(x,p,(t>>1),pk);
            x*=sqrtb;
            return x%=pk;
        }
        else{
            std::cerr <<tmpa << "is not a quadratic residu mod " << pk << std::endl;
            return x=-1;
        }
    }
	//linear version
    if (k < 3 ) return sqrootlinear (x, a, p, k);
    else{
	//quadratic version
        unsigned long kdivtwo(k>>1);
        if ((k & 1) == 1){ // kdivtwo = (k-1)/2
	    Rep sqpkdivp; pow(sqpkdivp,p,kdivtwo);

                //x1^2 = a mod (p^((k-1)/2))
            sqrootmodprimepower (x, a, p, kdivtwo, sqpkdivp);
            if (x == -1) return x;

                //x0^2 = a mod (p^(k-1))
            sqroothensellift (x, a, p, kdivtwo, sqpkdivp);
            if (x == -1) return x;

            Rep pkdivp (pk); pkdivp /= p;
                //x2^2 = a mod (p^k)
            return sqrootonemorelift (x, a, p, k-1, ((pkdivp)));
        } else { // kdivtwo = k/2
	    Rep sqpk; pow(sqpk,p,kdivtwo);

            	//x1^2 = a mod (p^(k/2))
            sqrootmodprimepower(x, a, p, kdivtwo, sqpk);
            if (x == -1) return x = -1;

                //x0^2 = a mod (p^k)
            return sqroothensellift (x, a, p, kdivtwo, sqpk);
        }
    }
    return x;
}

template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodpoweroftwo (Rep & x,
                                              const Rep & a,
                                              const unsigned long k,
                                              const Rep & pk) const {
    Rep tmpa (a); tmpa %= pk;
    x = 0;
        //first cases k = 1,2,3
    if (k == 1) return x = tmpa;
    if (k == 2) {
        if (tmpa == 0) return x = 0;
        if (tmpa == 1) return x = 1;
        else {
            std::cerr << tmpa << "is not a quadratic residu mod " << pk << std::endl;
            return x = -1;
        }
    }
    if (k == 3) {
        if (tmpa == 0) return x = 0;
        if (tmpa == 1) return x = 1;
        if (tmpa == 4) return x = 2;
        else{
            std::cerr << tmpa << " is not a quadratic residu mod " << pk << " (case k = 3)" << std::endl;
            return x = -1;
        }
    }
        // General case k >= 4
    if(tmpa==0) return x=0;
    if(tmpa==1) return x=1;
    if ((tmpa & 1UL)==0){

        Rep b(tmpa);
        unsigned long t=0;
        for( ; (b & 1UL) == 0; ++t) b>>=1; // a = b p^t and p does not divide b

        if ((t & 1UL)==0) {
            Rep sqrtpt(1); sqrtpt<<=(t>>1);
            sqrootmodpoweroftwo(x,b,k,pk);
            x <<= (t>>1); // x <-- x * 2^{t/2}
            return x%=pk;
        } else {
            std::cerr << tmpa  << "is not a quadratic residu mod " << pk << std::endl;
            return x=-1;
        }
    }


        //linear version
    if (k < 29) return sqroottwolinear (x, a, k);
    else {

        Rep un (1);
        unsigned long kdivtwoplusone(k);
        kdivtwoplusone >>= 1; ++kdivtwoplusone;
            // is k/2+1 if k is even, (k-1)/2+1 otherwise

        Rep pkmulttwo (pk); pkmulttwo <<= 1;
        Rep pkdivtwo (pk); pkdivtwo >>= 1;

        if ((k & 1) == 0){
                //if k is even
            Rep sqrt_pk_mult_two (2); sqrt_pk_mult_two <<= (k>>1);
                //x0^2=a mod (2^{k/2+1})
            sqrootmodpoweroftwo (x, tmpa, kdivtwoplusone, (sqrt_pk_mult_two));
            if (x == -1) return x;

                //x1^2=a mod (2^k)
            return sqrootmodtwolift (x, tmpa, kdivtwoplusone, (sqrt_pk_mult_two));
        } else {
                //if k is odd
            Rep sqrt_pkdivtwo_mult_two (2); sqrt_pkdivtwo_mult_two <<= (k>>1);
                //x0^2=a mod (2^{k/2+1})
            sqrootmodpoweroftwo (x, tmpa,kdivtwoplusone, (sqrt_pkdivtwo_mult_two));
            if (x == -1) return x;

                //x1^2=a mod (p^{k-1})
            sqrootmodtwolift (x, tmpa, kdivtwoplusone, (sqrt_pkdivtwo_mult_two));
            if (x == -1) return x;

            Rep u(tmpa);
            Integer::maxpyin(u,x,x); u %= pk;
                //if x is a square root of a mod p^k
            if (u == 0) return x;

                //if x is not square root of a mod p^k
                //x + (p^{k-2}) is a square root of a mod p^k
            return x += pk>>2;
        }
    }
    return x;
}

template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootlinear (Rep & x,
                                       const Rep & a,
                                       const Rep & p,
                                       const unsigned long k) const {
    sqrootmodprime(x,a,p);
    Rep pk(p);
    for(unsigned long i=1;i<k;i++){
        sqrootonemorelift(x,a,p,i,pk);
        pk *= p;
    }
    return x;
}

template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqroottwolinear (Rep & x,
                                          const Rep & a,
                                          const unsigned long k) const {
        //first cases k = 1,2,3
    sqrootmodpoweroftwo(x, a, 3, 8);
    if (x == -1 || k<4) return x;

    Rep pk(16);
    Rep pk2(4);
    for(unsigned long i=4;i<=k;i++){
        if(((x*x)%pk)!=(a%pk)){
            x+=pk2;
        }
        pk2=pk;
        pk2>>=1;
        pk<<=1;
    }
    return x;
}


template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqroothensellift (Rep & x,
                                           const Rep & a,
                                           const Rep & p,
                                           const unsigned long k,
                                           const Rep & pk) const {
//we have a square root of a mod p^k : x0
//x = x0 + h*p^k mod p^{2k}
//with h = ((((a-x0^2) mod p^{2k})/p^k)*(2x0)^{-1} mod p^k) mod p^(2k)
//is a square root of a mod p^{2k}
    Rep u(a);
    Integer::maxpyin(u,x,x);
    if(u == 0) return x;

    u /= pk;
//    u %= pk;
//u=(a-x0^2)/p^k

    Rep h(x<<1);
    this->invin (h, pk);
    h *= u; h %= pk;
// h = (a-x0^2)/(2*x0*p^k) modulo pk

    return Integer::axpyin(x,h,pk);
}

template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootonemorelift (Rep & x0,
                                            const Rep & a,
                                            const Rep & p,
                                            const unsigned long k,
                                            const Rep & pk) const {
    Rep u(a);
    Integer::maxpyin(u,x0,x0);
    u /= pk; u %= p;
    if (u == 0) return x0;

//u=(a-x0^2)/p^k

    Rep h(x0<<1);
    this->invin (h, p);
    h *= u; h %= p;
// h = (a-x0^2)/(2*x0*p^k) modulo p

    return Integer::axpyin(x0,h,pk);
}

template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodtwolift (Rep & x,
                                           const Rep & a,
                                           const unsigned long k,
                                           const Rep & pk) const {
//we have a square root of a mod 2^k : x0 and we have
//x = x0 + h*2^{k-1}
//with h = ((((a-x0^2)mod 2^{2k-2})/2^k)*x0^{-1}mod 2^{k-1}) mod 2^{k-1}
//is a square root of a mod 2^{2k-2}
    Rep u(a);
    Integer::maxpyin(u,x,x);
    u /= pk;

    Rep pk1(pk); pk1 >>= 1;
    u %= pk1;
    if (u == 0) return x;

    Rep h(x);
    invin(h,pk1);
    h *= u; h %= pk1;

    return Integer::axpyin(x,h,pk1);
}

} // namespace Givaro

#endif // __GIVARO_sqrootmod_INL