/usr/include/givaro/givintsqrootmod.inl is in libgivaro-dev 3.7.2-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | // ============================================================= //
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Time-stamp: <22 Mar 11 15:05:39 Jean-Guillaume.Dumas@imag.fr>
// Givaro : Modular square roots
// Author : Yanis Linge
// ============================================================= //
#ifndef __GIVARO_sqrootmod_INL
#define __GIVARO_sqrootmod_INL
#include <givaro/givtimer.h>
namespace Givaro {
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodprime (Rep & x,
const Rep & a,
const Rep & p) const {
// std::cerr << "p:= " << p << ';' << std::endl;
// std::cerr << "a:= " << a << ';' << std::endl;
Rep amp (a); amp %=p;
if (amp == 0UL || amp == 1UL) return x = amp;
if (legendre (amp, p) == -1){
std::cerr << amp << " is not a quadratic residue mod " << p << std::endl;
return x = -1;
}
if ((p & 3UL) == 3UL) { // If p = 3 mod 4
Rep ppu (p); ++ppu; ppu >>= 2UL; // ppu = (p+1)/4
return powmod (x, amp, ppu, p); // powmod (x,a,(p+1)/4,p);
}
// O. Atkin
if ((p & 7UL) == 5UL) { // If p = 5 mod 8
Rep tmp;
Rep puis (p); puis -= 1UL; puis >>= 2UL;// puis = (p-1)/4
powmod (tmp, amp, puis, p);
if (tmp == 1UL) {
puis = p; puis += 3UL; puis >>= 3UL;// puis = (p+3)/8
return powmod (x, amp, puis, p);
}
puis = p; puis -= 5UL; puis >>= 3UL; // puis = (p-5)/8
Rep a4 (amp); a4 <<= 2;
powmod (x, a4, puis, p);
x *= amp; x <<= 1; // 2a(4a)^{(p-5)/8}
return x %= p;
}
size_t l = (size_t) ceil (logtwo (p) - 1);
// S. Mueller
if ((p & 15UL) == 9UL) { // If p = 9 mod 16
Rep i (amp); i <<= 1UL;
Rep puis (p); puis -= 1UL; puis >>= 2UL;// puis = (p-1)/4
powmod (x, i, puis, p); // (2a)^{(p-1}/4} is +1 or -1
if (x != 1UL) x = -1L;
Rep d; while (legendre (Rep::nonzerorandom (d, l), p) == x) ;
puis = p; puis -= 9UL; puis >>= 4UL; // puis = (p-9)/16
i *= d; i *= d;
powmod(x, i, puis, p); // (2d^2a)^{(p-9)/16}
i *= x; i%=p; i *= x; i%=p; // i=2d^2x^2a ; i^2 = -1
--i;
x *= d; x%=p; x *= i; x%=p; x *= amp; // xda(i-1)
return x %= p; // +/- x is a root
}
// Tonelli and Shanks
// [H. Cohen, Algorithm 1.5.1, p33,
// A course in computational algebraic number theory]
Rep p1 (p); --p1;
Rep q (p1);
long e (0);
for( ; (q & 1UL) == 0; ++e) q >>= 1;
// now we have e and q such that : p-1=q*2^e with q odd
// we need a non quadratic element : g
Rep g; while (legendre (Rep::nonzerorandom (g, l), p) != -1) ;
Rep z;
powmod (z, g, q, p); // z = g^q mod p
//Initialize
Rep y (z);
Rep tmp (q); tmp -= 1; tmp >>= 1;
powmod (x, amp, tmp, p); // a^{(q-1)/2} mod p
Rep b (x);
b *= x; b *= amp; b %= p; // ax^2
x *= amp; x %= p; // ax
// Find exponent
long m(1), r(e);
Rep b2k, t, puis(r);
while (b != 1){
b2k = b;
for(m = 0; b2k != 1; ++m) {
b2k *= b2k; b2k %= p;
} // m smallest such that b^{2^m} is 1 mod p
if (m == r){
std::cerr << amp << " is not a quadratic residu mod " << p << std::endl;
return x = -1;
}
long lpuis = r; lpuis -= m; --lpuis;
puis = 1; puis <<= lpuis; // 2^{m-r-1}
powmod (t, y, puis, p); // t = y^{ 2^{m-r-1} } mod p
y = t; y *= t; y %= p; // y = t^2 mod p
r = m; // r = m
x *= t; x %= p; // x = xt mod p
b *= y; b %= p; // b = by mod p
}
return x;
}
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodprimepower (Rep & x,
const Rep & a,
const Rep & p,
const unsigned long k,
const Rep & pk) const{
Rep tmpa(a); tmpa%=pk;
if(tmpa==0) return x=0;
if(tmpa==1) return x=1;
if (k == 1) return sqrootmodprime (x, tmpa, p);
if ((tmpa%p)==0){
Rep b(tmpa);
unsigned long t=0;
for( ; (b%p) == 0; ++t) b/=p; // a = b p^t and p does not divide b
if((t&1UL)==0){
Rep sqrtb;
sqrootmodprimepower(sqrtb,b,p,k,pk);
powmod(x,p,(t>>1),pk);
x*=sqrtb;
return x%=pk;
}
else{
std::cerr <<tmpa << "is not a quadratic residu mod " << pk << std::endl;
return x=-1;
}
}
//linear version
if (k < 3 ) return sqrootlinear (x, a, p, k);
else{
//quadratic version
unsigned long kdivtwo(k>>1);
if ((k & 1) == 1){ // kdivtwo = (k-1)/2
Rep sqpkdivp; pow(sqpkdivp,p,kdivtwo);
//x1^2 = a mod (p^((k-1)/2))
sqrootmodprimepower (x, a, p, kdivtwo, sqpkdivp);
if (x == -1) return x;
//x0^2 = a mod (p^(k-1))
sqroothensellift (x, a, p, kdivtwo, sqpkdivp);
if (x == -1) return x;
Rep pkdivp (pk); pkdivp /= p;
//x2^2 = a mod (p^k)
return sqrootonemorelift (x, a, p, k-1, ((pkdivp)));
} else { // kdivtwo = k/2
Rep sqpk; pow(sqpk,p,kdivtwo);
//x1^2 = a mod (p^(k/2))
sqrootmodprimepower(x, a, p, kdivtwo, sqpk);
if (x == -1) return x = -1;
//x0^2 = a mod (p^k)
return sqroothensellift (x, a, p, kdivtwo, sqpk);
}
}
return x;
}
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodpoweroftwo (Rep & x,
const Rep & a,
const unsigned long k,
const Rep & pk) const {
Rep tmpa (a); tmpa %= pk;
x = 0;
//first cases k = 1,2,3
if (k == 1) return x = tmpa;
if (k == 2) {
if (tmpa == 0) return x = 0;
if (tmpa == 1) return x = 1;
else {
std::cerr << tmpa << "is not a quadratic residu mod " << pk << std::endl;
return x = -1;
}
}
if (k == 3) {
if (tmpa == 0) return x = 0;
if (tmpa == 1) return x = 1;
if (tmpa == 4) return x = 2;
else{
std::cerr << tmpa << " is not a quadratic residu mod " << pk << " (case k = 3)" << std::endl;
return x = -1;
}
}
// General case k >= 4
if(tmpa==0) return x=0;
if(tmpa==1) return x=1;
if ((tmpa & 1UL)==0){
Rep b(tmpa);
unsigned long t=0;
for( ; (b & 1UL) == 0; ++t) b>>=1; // a = b p^t and p does not divide b
if ((t & 1UL)==0) {
Rep sqrtpt(1); sqrtpt<<=(t>>1);
sqrootmodpoweroftwo(x,b,k,pk);
x <<= (t>>1); // x <-- x * 2^{t/2}
return x%=pk;
} else {
std::cerr << tmpa << "is not a quadratic residu mod " << pk << std::endl;
return x=-1;
}
}
//linear version
if (k < 29) return sqroottwolinear (x, a, k);
else {
Rep un (1);
unsigned long kdivtwoplusone(k);
kdivtwoplusone >>= 1; ++kdivtwoplusone;
// is k/2+1 if k is even, (k-1)/2+1 otherwise
Rep pkmulttwo (pk); pkmulttwo <<= 1;
Rep pkdivtwo (pk); pkdivtwo >>= 1;
if ((k & 1) == 0){
//if k is even
Rep sqrt_pk_mult_two (2); sqrt_pk_mult_two <<= (k>>1);
//x0^2=a mod (2^{k/2+1})
sqrootmodpoweroftwo (x, tmpa, kdivtwoplusone, (sqrt_pk_mult_two));
if (x == -1) return x;
//x1^2=a mod (2^k)
return sqrootmodtwolift (x, tmpa, kdivtwoplusone, (sqrt_pk_mult_two));
} else {
//if k is odd
Rep sqrt_pkdivtwo_mult_two (2); sqrt_pkdivtwo_mult_two <<= (k>>1);
//x0^2=a mod (2^{k/2+1})
sqrootmodpoweroftwo (x, tmpa,kdivtwoplusone, (sqrt_pkdivtwo_mult_two));
if (x == -1) return x;
//x1^2=a mod (p^{k-1})
sqrootmodtwolift (x, tmpa, kdivtwoplusone, (sqrt_pkdivtwo_mult_two));
if (x == -1) return x;
Rep u(tmpa);
Integer::maxpyin(u,x,x); u %= pk;
//if x is a square root of a mod p^k
if (u == 0) return x;
//if x is not square root of a mod p^k
//x + (p^{k-2}) is a square root of a mod p^k
return x += pk>>2;
}
}
return x;
}
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootlinear (Rep & x,
const Rep & a,
const Rep & p,
const unsigned long k) const {
sqrootmodprime(x,a,p);
Rep pk(p);
for(unsigned long i=1;i<k;i++){
sqrootonemorelift(x,a,p,i,pk);
pk *= p;
}
return x;
}
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqroottwolinear (Rep & x,
const Rep & a,
const unsigned long k) const {
//first cases k = 1,2,3
sqrootmodpoweroftwo(x, a, 3, 8);
if (x == -1 || k<4) return x;
Rep pk(16);
Rep pk2(4);
for(unsigned long i=4;i<=k;i++){
if(((x*x)%pk)!=(a%pk)){
x+=pk2;
}
pk2=pk;
pk2>>=1;
pk<<=1;
}
return x;
}
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqroothensellift (Rep & x,
const Rep & a,
const Rep & p,
const unsigned long k,
const Rep & pk) const {
//we have a square root of a mod p^k : x0
//x = x0 + h*p^k mod p^{2k}
//with h = ((((a-x0^2) mod p^{2k})/p^k)*(2x0)^{-1} mod p^k) mod p^(2k)
//is a square root of a mod p^{2k}
Rep u(a);
Integer::maxpyin(u,x,x);
if(u == 0) return x;
u /= pk;
// u %= pk;
//u=(a-x0^2)/p^k
Rep h(x<<1);
this->invin (h, pk);
h *= u; h %= pk;
// h = (a-x0^2)/(2*x0*p^k) modulo pk
return Integer::axpyin(x,h,pk);
}
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootonemorelift (Rep & x0,
const Rep & a,
const Rep & p,
const unsigned long k,
const Rep & pk) const {
Rep u(a);
Integer::maxpyin(u,x0,x0);
u /= pk; u %= p;
if (u == 0) return x0;
//u=(a-x0^2)/p^k
Rep h(x0<<1);
this->invin (h, p);
h *= u; h %= p;
// h = (a-x0^2)/(2*x0*p^k) modulo p
return Integer::axpyin(x0,h,pk);
}
template <class RandIter> inline typename IntSqrtModDom<RandIter>::Rep &
IntSqrtModDom<RandIter>::sqrootmodtwolift (Rep & x,
const Rep & a,
const unsigned long k,
const Rep & pk) const {
//we have a square root of a mod 2^k : x0 and we have
//x = x0 + h*2^{k-1}
//with h = ((((a-x0^2)mod 2^{2k-2})/2^k)*x0^{-1}mod 2^{k-1}) mod 2^{k-1}
//is a square root of a mod 2^{2k-2}
Rep u(a);
Integer::maxpyin(u,x,x);
u /= pk;
Rep pk1(pk); pk1 >>= 1;
u %= pk1;
if (u == 0) return x;
Rep h(x);
invin(h,pk1);
h *= u; h %= pk1;
return Integer::axpyin(x,h,pk1);
}
} // namespace Givaro
#endif // __GIVARO_sqrootmod_INL
|