/usr/share/ada/adainclude/gnatvsn/repinfo.ads is in libgnatvsn5-dev 5.3.1-14ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | ------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- R E P I N F O --
-- --
-- S p e c --
-- --
-- Copyright (C) 1999-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package contains the routines to handle back annotation of the
-- tree to fill in representation information, and also the routine used
-- by -gnatR to print this information. This unit is used both in the
-- compiler and in ASIS (it is used in ASIS as part of the implementation
-- of the data decomposition annex).
with Types; use Types;
with Uintp; use Uintp;
package Repinfo is
--------------------------------
-- Representation Information --
--------------------------------
-- The representation information of interest here is size and
-- component information for arrays and records. For primitive
-- types, the front end computes the Esize and RM_Size fields of
-- the corresponding entities as constant non-negative integers,
-- and the Uint values are stored directly in these fields.
-- For composite types, there are three cases:
-- 1. In some cases the front end knows the values statically,
-- for example in the case where representation clauses or
-- pragmas specify the values.
-- 2. If Backend_Layout is True, then the backend is responsible
-- for layout of all types and objects not laid out by the
-- front end. This includes all dynamic values, and also
-- static values (e.g. record sizes) when not set by the
-- front end.
-- 3. If Backend_Layout is False, then the front end lays out
-- all data, according to target dependent size and alignment
-- information, creating dynamic inlinable functions where
-- needed in the case of sizes not known till runtime.
-----------------------------
-- Back-Annotation by Gigi --
-----------------------------
-- The following interface is used by gigi if Backend_Layout is True
-- As part of the processing in gigi, the types are laid out and
-- appropriate values computed for the sizes and component positions
-- and sizes of records and arrays.
-- The back-annotation circuit in gigi is responsible for updating the
-- relevant fields in the tree to reflect these computations, as follows:
-- For E_Array_Type entities, the Component_Size field
-- For all record and array types and subtypes, the Esize field,
-- which contains the Size (more accurately the Object_SIze) value
-- for the type or subtype.
-- For E_Component and E_Discriminant entities, the Esize (size
-- of component) and Component_Bit_Offset fields. Note that gigi
-- does not back annotate Normalized_Position/First_Bit.
-- There are three cases to consider:
-- 1. The value is constant. In this case, the back annotation works
-- by simply storing the non-negative universal integer value in
-- the appropriate field corresponding to this constant size.
-- 2. The value depends on variables other than discriminants of the
-- current record. In this case, the value is not known, even if
-- the complete data of the record is available, and gigi marks
-- this situation by storing the special value No_Uint.
-- 3. The value depends on the discriminant values for the current
-- record. In this case, gigi back annotates the field with a
-- representation of the expression for computing the value in
-- terms of the discriminants. A negative Uint value is used to
-- represent the value of such an expression, as explained in
-- the following section.
-- Note: the extended back-annotation for the dynamic case is needed only
-- for -gnatR3 output, and for proper operation of the ASIS DDA. Since it
-- can be expensive to do this back annotation (for discriminated records
-- with many variable length arrays), we only do the full back annotation
-- in -gnatR3 mode, or ASIS mode. In any other mode, the back-end just sets
-- the value to Uint_Minus_1, indicating that the value of the attribute
-- depends on discriminant information, but not giving further details.
-- GCC expressions are represented with a Uint value that is negative.
-- See the body of this package for details on the representation used.
-- One other case in which gigi back annotates GCC expressions is in
-- the Present_Expr field of an N_Variant node. This expression which
-- will always depend on discriminants, and hence always be represented
-- as a negative Uint value, provides an expression which, when evaluated
-- with a given set of discriminant values, indicates whether the variant
-- is present for that set of values (result is True, i.e. non-zero) or
-- not present (result is False, i.e. zero). Again, the full annotation of
-- this field is done only in -gnatR3 mode or in ASIS mode, and in other
-- modes, the value is set to Uint_Minus_1.
subtype Node_Ref is Uint;
-- Subtype used for negative Uint values used to represent nodes
subtype Node_Ref_Or_Val is Uint;
-- Subtype used for values that can either be a Node_Ref (negative)
-- or a value (non-negative)
type TCode is range 0 .. 28;
-- Type used on Ada side to represent DEFTREECODE values defined in
-- tree.def. Only a subset of these tree codes can actually appear.
-- The names are the names from tree.def in Ada casing.
-- name code description operands
Cond_Expr : constant TCode := 1; -- conditional 3
Plus_Expr : constant TCode := 2; -- addition 2
Minus_Expr : constant TCode := 3; -- subtraction 2
Mult_Expr : constant TCode := 4; -- multiplication 2
Trunc_Div_Expr : constant TCode := 5; -- truncating division 2
Ceil_Div_Expr : constant TCode := 6; -- division rounding up 2
Floor_Div_Expr : constant TCode := 7; -- division rounding down 2
Trunc_Mod_Expr : constant TCode := 8; -- mod for trunc_div 2
Ceil_Mod_Expr : constant TCode := 9; -- mod for ceil_div 2
Floor_Mod_Expr : constant TCode := 10; -- mod for floor_div 2
Exact_Div_Expr : constant TCode := 11; -- exact div 2
Negate_Expr : constant TCode := 12; -- negation 1
Min_Expr : constant TCode := 13; -- minimum 2
Max_Expr : constant TCode := 14; -- maximum 2
Abs_Expr : constant TCode := 15; -- absolute value 1
Truth_Andif_Expr : constant TCode := 16; -- Boolean and then 2
Truth_Orif_Expr : constant TCode := 17; -- Boolean or else 2
Truth_And_Expr : constant TCode := 18; -- Boolean and 2
Truth_Or_Expr : constant TCode := 19; -- Boolean or 2
Truth_Xor_Expr : constant TCode := 20; -- Boolean xor 2
Truth_Not_Expr : constant TCode := 21; -- Boolean not 1
Lt_Expr : constant TCode := 22; -- comparison < 2
Le_Expr : constant TCode := 23; -- comparison <= 2
Gt_Expr : constant TCode := 24; -- comparison > 2
Ge_Expr : constant TCode := 25; -- comparison >= 2
Eq_Expr : constant TCode := 26; -- comparison = 2
Ne_Expr : constant TCode := 27; -- comparison /= 2
Bit_And_Expr : constant TCode := 28; -- Binary and 2
-- The following entry is used to represent a discriminant value in
-- the tree. It has a special tree code that does not correspond
-- directly to a gcc node. The single operand is the number of the
-- discriminant in the record (1 = first discriminant).
Discrim_Val : constant TCode := 0; -- discriminant value 1
------------------------
-- The gigi Interface --
------------------------
-- The following declarations are for use by gigi for back annotation
function Create_Node
(Expr : TCode;
Op1 : Node_Ref_Or_Val;
Op2 : Node_Ref_Or_Val := No_Uint;
Op3 : Node_Ref_Or_Val := No_Uint) return Node_Ref;
-- Creates a node using the tree code defined by Expr and from one to three
-- operands as required (unused operands set as shown to No_Uint) Note that
-- this call can be used to create a discriminant reference by using (Expr
-- => Discrim_Val, Op1 => discriminant_number).
function Create_Discrim_Ref (Discr : Entity_Id) return Node_Ref;
-- Creates a reference to the discriminant whose entity is Discr
--------------------------------------------------------
-- Front-End Interface for Dynamic Size/Offset Values --
--------------------------------------------------------
-- If Backend_Layout is False, then the front-end deals with all
-- dynamic size and offset fields. There are two cases:
-- 1. The value can be computed at the time of type freezing, and
-- is stored in a run-time constant. In this case, the field
-- contains a reference to this entity. In the case of sizes
-- the value stored is the size in storage units, since dynamic
-- sizes are always a multiple of storage units.
-- 2. The size/offset depends on the value of discriminants at
-- run-time. In this case, the front end builds a function to
-- compute the value. This function has a single parameter
-- which is the discriminated record object in question. Any
-- references to discriminant values are simply references to
-- the appropriate discriminant in this single argument, and
-- to compute the required size/offset value at run time, the
-- code generator simply constructs a call to the function
-- with the appropriate argument. The size/offset field in
-- this case contains a reference to the function entity.
-- Note that as for case 1, if such a function is used to
-- return a size, then the size in storage units is returned,
-- not the size in bits.
-- The interface here allows these created entities to be referenced
-- using negative Unit values, so that they can be stored in the
-- appropriate size and offset fields in the tree.
-- In the case of components, if the location of the component is static,
-- then all four fields (Component_Bit_Offset, Normalized_Position, Esize,
-- and Normalized_First_Bit) are set to appropriate values. In the case of
-- a non-static component location, Component_Bit_Offset is not used and
-- is left set to Unknown. Normalized_Position and Normalized_First_Bit
-- are set appropriately.
subtype SO_Ref is Uint;
-- Type used to represent a Uint value that represents a static or
-- dynamic size/offset value (non-negative if static, negative if
-- the size value is dynamic).
subtype Dynamic_SO_Ref is Uint;
-- Type used to represent a negative Uint value used to store
-- a dynamic size/offset value.
function Is_Dynamic_SO_Ref (U : SO_Ref) return Boolean;
pragma Inline (Is_Dynamic_SO_Ref);
-- Given a SO_Ref (Uint) value, returns True iff the SO_Ref value
-- represents a dynamic Size/Offset value (i.e. it is negative).
function Is_Static_SO_Ref (U : SO_Ref) return Boolean;
pragma Inline (Is_Static_SO_Ref);
-- Given a SO_Ref (Uint) value, returns True iff the SO_Ref value
-- represents a static Size/Offset value (i.e. it is non-negative).
function Create_Dynamic_SO_Ref (E : Entity_Id) return Dynamic_SO_Ref;
-- Given the Entity_Id for a constant (case 1), the Node_Id for an
-- expression (case 2), or the Entity_Id for a function (case 3),
-- this function returns a (negative) Uint value that can be used
-- to retrieve the entity or expression for later use.
function Get_Dynamic_SO_Entity (U : Dynamic_SO_Ref) return Entity_Id;
-- Retrieve the Node_Id or Entity_Id stored by a previous call to
-- Create_Dynamic_SO_Ref. The approach is that the front end makes
-- the necessary Create_Dynamic_SO_Ref calls to associate the node
-- and entity id values and the back end makes Get_Dynamic_SO_Ref
-- calls to retrieve them.
--------------------
-- ASIS_Interface --
--------------------
type Discrim_List is array (Pos range <>) of Uint;
-- Type used to represent list of discriminant values
function Rep_Value
(Val : Node_Ref_Or_Val;
D : Discrim_List) return Uint;
-- Given the contents of a First_Bit_Position or Esize field containing
-- a node reference (i.e. a negative Uint value) and D, the list of
-- discriminant values, returns the interpreted value of this field.
-- For convenience, Rep_Value will take a non-negative Uint value
-- as an argument value, and return it unmodified. A No_Uint value is
-- also returned unmodified.
procedure Tree_Read;
-- Initializes internal tables from current tree file using the relevant
-- Table.Tree_Read routines.
------------------------
-- Compiler Interface --
------------------------
procedure List_Rep_Info (Bytes_Big_Endian : Boolean);
-- Procedure to list representation information. Bytes_Big_Endian is the
-- value from Ttypes (Repinfo cannot have a dependency on Ttypes).
procedure Tree_Write;
-- Writes out internal tables to current tree file using the relevant
-- Table.Tree_Write routines.
--------------------------
-- Debugging Procedures --
--------------------------
procedure List_GCC_Expression (U : Node_Ref_Or_Val);
-- Prints out given expression in symbolic form. Constants are listed
-- in decimal numeric form, Discriminants are listed with a # followed
-- by the discriminant number, and operators are output in appropriate
-- symbolic form No_Uint displays as two question marks. The output is
-- on a single line but has no line return after it. This procedure is
-- useful only if operating in backend layout mode.
procedure lgx (U : Node_Ref_Or_Val);
-- In backend layout mode, this is like List_GCC_Expression, but
-- includes a line return at the end. If operating in front end
-- layout mode, then the name of the entity for the size (either
-- a function of a variable) is listed followed by a line return.
end Repinfo;
|