This file is indexed.

/usr/include/Gyoto/GyotoScreen.h is in libgyoto4-dev 1.0.2-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/**
 * \file GyotoScreen.h
 * \brief Description of the observer screen
 * 
 */

/*
    Copyright 2011-2015 Thibaut Paumard, Frederic Vincent

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef __GyotoScreen_H_
#define __GyotoScreen_H_ 

#include <iostream>
#include <fstream>
#include <string>
#if defined HAVE_BOOST_ARRAY_HPP
#include <boost/array.hpp>
#define GYOTO_ARRAY boost::array
#else
template <typename T, size_t sz> class GYOTO_ARRAY {
 private:
  T buf[sz];
 public:
  T& operator[](size_t c) { return buf[c] ; }
};
#endif

namespace Gyoto {
  class Screen;
}

#include <GyotoDefs.h>
#include <GyotoUtils.h>
#include <GyotoSmartPointer.h>
#include <GyotoObject.h>
#include <GyotoMetric.h>
#include <GyotoSpectrometer.h>

/**
 * \class Gyoto::Screen
 * \brief The camera with which the Astrobj is observed
 *
 * In the observer-centric point-of-view, the center of the Metric's
 * coordinate system is positioned relatively to the observing Screen
 * using three Euler angles and the distance (in meters). The three
 * Euler angles are:
 *   - position angle of the line of nodes (North of East);
 *   - inclination (0 = face-on);
 *   - argument of the X axis of the Metric's coordinate system.
 *  We use the z-x-z convention.
 *  See http://en.wikipedia.org/wiki/Euler_angles
 *
 * In addition, the Screen conveys:
 *   - the observing date (in geometrical units, but expect it to
 *     change to seconds in a future version);
 *   - the field-of-view of the image;
 *   - the resolution of the camera: number of pixels on each side
 *     (the camera is square);
 *   - the observing frequency.
 *
 * The scalar FreqObs defines the observing frequency for Scenery
 * quantity Intensity.
 *
 * Likewise, a Gyoto::Spectrometer defines for which frequencies
 * spectra are computed (when the Quantity Spectrum is requested in
 * the Scenery).
 * 
 * For the sake of theoreticians, there is an alternate way of
 * specifying the relative position of the Screen and Metric, by
 * specifying the 4-coordinates of the Screen in the Metric's
 * coordinate system (in that case, eerything is specified in
 * geometrical units).
 *
 * So an XML stanza for a Screen may look like that:
 * \code
 *  <Screen>
 *    <Time>       1000.      </Time>
 *    <FieldOfView>   0.3141592653589793 </FieldOfView>
 *    <Resolution>  128       </Resolution>
 *    <Distance>      1e30    </Distance>
 *    <PALN>          3.14159 </PALN>
 *    <Inclination>   2.0944  </Inclination>
 *    <Argument>     -2.0944  </Argument>
 *    <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer> 
 *    <FreqObs>       1e20    </FreqObs>
 *  </Screen>
 * \endcode
 *
 * or like that:
 *
 * \code
 *  <Screen>
 *    <Position> 1000. 1000. 0.15. 0.</Position>
 *    <FieldOfView>   0.3141592653589793 </FieldOfView>
 *    <Resolution>  128 </Resolution>
 *    <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer> 
 *    <FreqObs>       1e20    </FreqObs>
 *  </Screen>
 * \endcode
 *
 *
 * Units can be specified using the unit attribute in the XML file,
 * for instance:
 * 
 * \code
 *   <Distance unit="kpc"> 8 </Distance>
 * \endcode
 *
 * Possible units are (with [] noting the default):
 *  - distance: [m], geometrical, cm, km, AU, ly, pc, kpc, Mpc;
 *  - PALN, inclination, argument: [rad], deg.
 *  - frequency: [Hz], µm, GeV...
 *
 * When the distance is really large and most of the ray-tracing would
 * happen de facto in flat space, the camera is transported to a
 * location at a reasonable distance from the metric and the images
 * are scaled accordingly. The default value for this distance should
 * be fine, but it can be customized using the "dmax" attribute of the
 * "Distance" element. "dmax" is always expressed in geometrical
 * units:
 *
 * \code
 *    <Distance unit="kpc" dmax="1e7"> 8 </Distance>
 * \endcode
 *
 * Symptoms when dmax is too large include pixelization of the image
 * (neighbouring photons are numerically identical) and other
 * numerical overflows. dmax is too small when it is apparent that
 * changing it yields projection effects. dmax must be large compared
 * to rmax in the Astrobj and ideally, changing it by an order of
 * magnitude should not yield significant changes in the ray-traced
 * image.
 *
 * A mask may be used to limit ray-tracing to only some portions of
 * the field. The Scenery checks whether a mask is to be used using
 * Screen::operator()(size_t i, size_t j). The mask can be loaded from
 * a FITS file as a square image of doubles:
 * \code
 *    <Mask>maskfile.fits</Mask>
 * \endcode
 * The mask needs to be have the same size as the Screen itself, so
 * loading a mask also sets the resolution, and changing the
 * resolution after setting a mask also removes the mask. The content
 * of the Mask entity is parsed by Factory::fullPath(), so it can be
 * an absolute path, a path relative to where the XML file is stored,
 * or relative to the current working directory if prefixed with
 * "`pwd`/".
 *
 */
class Gyoto::Screen
: public Gyoto::SmartPointee,
  public Gyoto::Object
{
  friend class Gyoto::SmartPointer<Gyoto::Screen>;

 private:
  double tobs_; ///< Observing date in s
  double fov_;  ///< Field-of-view in rad
  //  double tmin_;
  size_t npix_; ///< Resolution in pixels

  /**
   * \brief Mask with 0 where the ray-tracing should not be performed
   */
  double * mask_;

  /**
   * \brief Last read or written FITS file
   *
   * Used when saving to XML: if the mask was saved or loaded from
   * FITS file, output this file name in the XML.
   */
  std::string mask_filename_;

  double distance_; ///< Distance to the observer in m
  double dmax_; ///< Maximum distance from which the photons are launched (geometrical units) 

  enum anglekind_e { equatorial_angles=0, rectilinear=1, spherical_angles=2};
  typedef int anglekind_t;

  anglekind_t anglekind_; ///< Screen angles kind (0: equatorial, 1: spherical)
  
  /**
   * The angles are position angle of the line of nodes (North of
   * East), inclination (0 = face-on), argument of X axis. We use the
   * z-x-z convention. See http://en.wikipedia.org/wiki/Euler_angles
   */
  double euler_[3]; ///< Euler angles
  double ex_[3]; ///< Sky coordinate of base X vector
  double ey_[3]; ///< Sky coordinate of base Y vector
  double ez_[3]; ///< Sky coordinate of base Z vector

  double fourvel_[4]; ///< Observer's 4-velocity
  double screen1_[4]; ///< Screen e1 vector
  double screen2_[4]; ///< Screen e2 vector
  double screen3_[4]; ///< Screen e3 vector (normal)

  double alpha0_; ///< Screen orientation (0,0) is right towards the BH
  double delta0_; ///< Screen orientation (0,0) is right towards the BH
  SmartPointer<Metric::Generic> gg_; ///< The Metric in this end of the Universe

  /**
   * \brief Gyoto::Spectrometer::Generic subclass instance used for quantities Spectrum and BinSpectrum
   */
  SmartPointer<Spectrometer::Generic> spectro_;

  /**
   * \brief Frequency at which the observer observes
   *
   * For the quantity Intensity
   */
  double freq_obs_;

  /**
   * \brief What kind of observer are we considering? (At infinity, ZAMO...)
   *
   */
  std::string observerkind_;

 public:
  GYOTO_OBJECT;

  // Constructors - Destructor
  // -------------------------
  Screen() ; ///< Default constructor
  Screen(const Screen& ) ;                ///< Copy constructor
  Screen * clone() const; ///< Cloner

  virtual ~Screen() ;                        ///< Destructor
  
  // Mutators / assignment
  // ---------------------

  /// Set inclination etc.
  void setProjection(const double paln,
		     const double inclination,
		     const double argument);
  /// Set distance, inclination etc.
  void setProjection(const double distance,
		     const double paln,
		     const double inclination,
		     const double argument);

  /// Set distance from observer
  /**
   * \param dist Distance in meters.
   */
  void distance(double dist);

  /// Set ray-tracing maximum distance
  /**
   * \param dist Distance in geometrical units.
   */
  void dMax(double dist);

  /// Set distance from observer
  /**
   * \param dist the distance expressed in the specified unit;
   * \param unit convertible to meters
   */
  void distance(double dist, const std::string &unit);

  /// Set inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in radians
   */
  void inclination(double);

  /// Set inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in specified unit.
   */
  void inclination(double, const std::string &unit);

  void PALN(double);
           ///< Set position angle of the line of nodes
  void PALN(double, const std::string &unit);
           ///< Set position angle of the line of nodes
  void argument(double);
           ///< Set angle beetwen line of nodes and X axis of object
  void argument(double, const std::string &unit);
           ///< Set angle beetwen line of nodes and X axis of object
  void spectrometer(SmartPointer<Spectrometer::Generic> spectro);
           ///< Set Screen::spectro_
  SmartPointer<Spectrometer::Generic> spectrometer() const ;
           ///< Get Screen::spectro_

  /**
   * \brief Set freq_obs_
   * \param fo double: observing frequency in Hz
   */
  void freqObs(double fo);


  /**
   * \brief Set freq_obs_
   * \param fo double: observing frequency (or wavelength) in "unit"
   * \param unit string: unit in which fo is expressed, convertable to
   * Herz or meters or energy.
   */
  void freqObs(double fo, const std::string &unit);

  /**
   * \brief Get freq_obs_.
   */
  double freqObs() const ;

  /**
   * \brief Get freq_obs_.
   * \param unit string: unit in which freq_obs_ should be returned is
   * expressed, convertable to Herz or meters or energy.
   */
  double freqObs(const std::string &unit) const;

  /// Alternative way to set projection
  /**
   * Beware : paln can not be set this way, setting later other
   * parameters change the observer's coordinates. For observationnal
   * ray-tracing purposes, prefer setProjection().
   *
   * \param[in] pos position of observer in Screen's coordinate
   * system. Content is copied.
   */
  void setObserverPos(const double pos[4]);
  void observerKind(const std::string &kind);
  std::string observerKind() const;
  void setFourVel(const double coord[4]);
  ///< Sets the observer's 4-velocity
  void setScreen1(const double coord[4]);
  ///< Sets the screen vector e1
  void setScreen2(const double coord[4]);
  ///< Sets the screen vector e2
  void setScreen3(const double coord[4]);
  ///< Sets the screen vector e3 (normal)

  // Accessors
  // ---------

  /// Get coordinate kind
  /**
   * From Screen::gg_.
   */
  int coordKind() const;

  /// Get distance from observer
  /**
   * In meters.
   */
  double distance() const;

  /// Get distance from observer
  /**
   * In specified unit.
   */
  double distance(const std::string&) const;	 ///< Get distance from observer

  /// Get maximum ray-tracing distance
  /**
   * In geometrical units.
   */
  double dMax() const;

  /// Get inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in radians.
   */
  double inclination() const;

  /// Get inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in specified unit.
   */
  double inclination(const std::string&) const;

  double PALN() const;	 ///< Get position angle of the line of nodes
  double PALN(const std::string&) const;	 ///< Get position angle of the line of nodes
  double argument() const;	 ///< Get angle between line of nodes and X axis of object
  double argument(const std::string&) const;	 ///< Get angle between line of nodes and X axis of object

  SmartPointer<Metric::Generic> metric() const; ///< Get Screen::gg_
  void metric(SmartPointer<Metric::Generic> gg); ///< Set Screen::gg_

  /// Get observing date in seconds
  double time() const;

  /// Get observing date in seconds
  double time(const std::string &) const;

  /// Set observing date in specified unit
  void time(double, const std::string &);

  /// Set observing date in seconds
  void time(double);

  /// Get Screen::fov_ in radians
  double fieldOfView() const;

  /// Get Screen::fov_ in specified unit
  double fieldOfView(std::string const &unit) const;

  /// Set Screen::fov_ in radians
  void fieldOfView(double);

  /// Set Screen::fov_ in specified unit
  void fieldOfView(double, const std::string &unit);

  /// Set direction of the center of the field
  void alpha0(double);
  /// Set direction of the center of the field in specified unit
  void alpha0(double, const std::string &unit);
  /// Get direction of the center of the field
  double alpha0() const;
  /// Get direction of the center of the field in specified unit
  double alpha0(std::string const &unit)const;
  /// Set direction of the center of the field
  void delta0(double);
  /// Set direction of the center of the field in specified unit
  void delta0(double, const std::string &unit);
  /// Get direction of the center of the field
  double delta0() const;
  /// Get direction of the center of the field in specified unit
  double delta0(std::string const &unit)const;

  /// Set Screen::anglekind_
  void anglekind(int);
  void anglekind(std::string const&);
  std::string anglekind() const;

  /// Get Screen::npix_
  size_t resolution() const;
  /// Set Screen::npix_
  void resolution(size_t);

  /// Set mask_ from array
  /**
   * mm will be copied. mm must be a square resolution x resolution
   * array. If mm==NULL, just deallocate mask_.
   */
  void mask(double const * const mm, size_t resolution=0);

  /// Retrieve const pointer to mask_
  double const * mask() const ;
  void maskFile(std::string const &fname);
  std::string maskFile() const;
# ifdef GYOTO_USE_CFITSIO

  /// Read mask_ from FITS file
  void fitsReadMask(std::string const &fname);

  /// Save mask_ from FITS file
  void fitsWriteMask(std::string const &fname);
# endif

  /// Whether this pixel should be ray-traced
  /**
   * If mask_ is not set, always true. Else, true for non-zero cells
   * in mask_.
   */
  bool operator()(size_t, size_t);


  /// 4-Position of the observer relative to the metric
  /**
   * A Screen is positioned relative to the observer with four elements:
   * Screen::distance, Screen::inclination, Screen::paln and
   * Screen::argument.
   *
   * This function returns the position of the observer relative to
   * the metric system in Screen::gg_, using these parameters. The
   * output parameter is coord.
   *
   * \param[out] coord position of the observer. Must be preallocated.
   */
  void getObserverPos(double coord[]) const;

  /// Get copy of Screen::fourvel_
  /**
   * \param[out] fourvel preallocated 4-element array
   */
  void getFourVel(double fourvel[]) const;

  void fourVel(std::vector<double> const &);
  std::vector<double> fourVel() const;
  void screenVector1(std::vector<double> const &);
  std::vector<double> screenVector1() const;
  void screenVector2(std::vector<double> const &);
  std::vector<double> screenVector2() const;
  void screenVector3(std::vector<double> const &);
  std::vector<double> screenVector3() const;

  /// Get copy of Screen::screen1_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen1(double output[]) const;

  /// Get copy of Screen::screen2_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen2(double output[]) const;

  /// Get copy of Screen::screen3_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen3(double output[]) const;

  /// Get 8-coordinate of Photon hitting screen from a given direction
  /**
   * Similar to Screen::getObserverPos() but will return in addition
   * the 4-velocity of a photon corresponding to the sky direction
   * given by x and y.
   * \param[in] x    RA (d_alpha*cos(delta)) offset in radians;
   * \param[in] y    Dec offset (d_delta) in radians; 
   * \param[out] coord position-velocity of the observer Photon. Preallocated.
   * 
   */
  void getRayCoord(double x, double y, double coord[]) const;

  /// Get 8-coordinate of Photon hitting screen pixel
  /**
   * Similar to Screen::getObserverPos() but will return in addition
   * the 4-velocity of a photon corresponding to the sky direction
   * given by x and y.
   * \param[in] i, j pixel coordinates   
   * \param[out] coord position-velocity of the Photon. Preallocated.
   * 
   */
  void getRayCoord(const size_t i, const size_t j, double coord[]) const;
  
  void coordToSky(const double pos[4], double skypos[3]) const;
  ///< Convert 4-position to 3-sky position

  void coordToXYZ(const double pos[4], double xyz[3]) const;
  ///< Convert 4-position to 3-cartesian coordinates

  void computeBaseVectors() ;
  ///< Compute base vectors according to projection parameters

  /// Display
  //  friend std::ostream& operator<<(std::ostream& , const Screen& ) ;
  std::ostream& print(std::ostream&) const ; ///< Debug helper
  std::ostream& printBaseVectors(std::ostream&) const ; ///< Debug helper

  // UDUNITS
# ifdef HAVE_UDUNITS
  /// Map "pix" and "pixel" to angular pixel width in unit system
  /**
   * "pix" or "pixel" can then be used in units.
   *
   * There is only one unit system in Gyoto: "pix" can therefore be
   * registered only for one Screen at a time. See Gyoto::Units.
   * 
   * The unit must later be unmapped with unmapPixUnit().
   */
  void mapPixUnit();

  /// Unmap "pix" and "pixel" from unit system
  /**
   * See also mapPixUnit().
   */
  void unmapPixUnit();
# endif


#ifdef GYOTO_USE_XERCES
 public:
  void fillProperty(Gyoto::FactoryMessenger *fmp, Property const &p) const;

    /// Instanciate a Screen from XML entity 
    static   SmartPointer<Screen> Subcontractor(FactoryMessenger* fmp);
#endif

    /// Enum to specify whether a coordinate set (Coord1dSet or Coord2dSet) holds pixel values or angles
    enum CoordType_e {angle, pixel};

    /// Set of 1-d coordinates: indices or angles
    /**
     * Acts like a container (array-like) of either size_t (pixel
     * coordinate) or double (angle) values. This container can be
     * iterated-through using the operator++(), derefenced using the
     * operator*() (if containing pixel coordinates) or angle() (in
     * containing angles).
     */
    class Coord1dSet {
    public:
      /// Whether this specifier represents angles or pixels
      const CoordType_e kind;
    public:
      /// Set kind during initialization
      Coord1dSet(CoordType_e k);
      /// Virtual destructor
      virtual ~Coord1dSet();
      /// Reset specifier to point to the first value
      virtual void begin() =0;
      /// True if pointing to something, false if end has been reached.
      virtual bool valid() =0;
      /// Number of values in this container
      virtual size_t size()=0;
      /// Get size_t value crrently pointed to
      virtual size_t operator*() const ;
      /// Get double value currently pointed to
      virtual double angle() const ;
      /// Increment iterator (point to next value)
      virtual Coord1dSet& operator++()=0;
    };

    /// Class to specify a set of points on the Screen
    /**
     * Container (array-like) holding several 2D points. Can be a 2D
     * grid of pixel coordinates or a vector of floating-point (alpha,
     * delta) pairs, for instance.
     */
    class Coord2dSet {
    public:
      /// Whether this set holds pixels or angle specifications
      const CoordType_e kind;
      /// Set kind at initialisation
      Coord2dSet(CoordType_e k);
      /// Virtual destructor
      virtual ~Coord2dSet();
      /// Increment pointer
      virtual Coord2dSet& operator++()    =0;
      /// Get pixel coordinates
      virtual GYOTO_ARRAY<size_t, 2> operator*  () const;
      /// Get angle coordinates
      virtual GYOTO_ARRAY<double, 2> angles() const ;
      /// Reset pointer
      virtual void begin() =0;
      /// Whether the end has not been passed
      virtual bool valid() =0;
      /// Number of positions contained
      virtual size_t size()=0;
    };

    /// Class containing 2D-points organized in a grid
    class Grid: public Coord2dSet {
    protected:
    protected:
      /// If non-NULL, cout j each tims it is incremented.
      const char * const prefix_;
      Coord1dSet &iset_;
      Coord1dSet &jset_;
    public:
      Grid(Coord1dSet &iset, Coord1dSet &jset, const char * const p=NULL);
      virtual Coord2dSet& operator++();
      virtual GYOTO_ARRAY<size_t, 2> operator*  () const;
      virtual void begin();
      virtual bool valid();
      virtual size_t size();
    };

    /// Class containing arbitrary 2D-points 
    /**
     * ispec_ and jspec_ must be the same size.
     */
    class Bucket : public Coord2dSet {
    protected:
      Coord1dSet &alpha_;
      Coord1dSet &delta_;
    public:
      Bucket(Coord1dSet &iset, Coord1dSet &jset);
      virtual Coord2dSet& operator++();
      virtual GYOTO_ARRAY<double, 2> angles() const;
      virtual GYOTO_ARRAY<size_t, 2> operator*() const;
      virtual void begin();
      virtual bool valid();
      virtual size_t size();
    };

    /// A dummy, empty 2D set.
    class Empty: public Coord2dSet {
    public:
      Empty();
      virtual Coord2dSet& operator++();
      virtual void begin();
      virtual bool valid();
      virtual size_t size();
    };

    /// 1D coordinated specifier for a range
    class Range : public Coord1dSet {
    protected:
      const size_t mi_, ma_, d_, sz_;
      size_t cur_;
    public:
      /// Specify min, max and step of this range.
      Range(size_t mi, size_t ma, size_t d);
      void begin();
      bool valid();
      size_t size();
      Coord1dSet& operator++();
      size_t operator*() const ;
    };

    /// 1D specifier for an arbitrary pixel coordinate set.
    class Indices : public Coord1dSet {
    protected:
      size_t const * const indices_;
      size_t const sz_;
      size_t i_;
    public:
      Indices (size_t const*const buf, size_t sz);
      void begin();
      bool valid();
      size_t size();
      Coord1dSet& operator++();
      size_t operator*() const ;
    };

    /// 1D specifier for an arbitrary angle coordinate set.
    class Angles : public Coord1dSet {
    protected:
      double const * const buf_;
      size_t const sz_;
      size_t i_;
    public:
      Angles (double const*const buf, size_t sz);
      void begin();
      bool valid();
      size_t size();
      Coord1dSet& operator++();
      double angle() const ;
    };

    /// 1D specifier for an angle that is repeated.
    class RepeatAngle : public Coord1dSet {
    protected:
      double const val_;
      size_t const sz_;
      size_t i_;
    public:
      RepeatAngle (double val, size_t sz);
      void begin();
      bool valid();
      size_t size();
      Coord1dSet& operator++();
      double angle() const ;
    };
};

#endif